1
|
Nijhawan A, Howard G. Associations between climate variables and water quality in low- and middle-income countries: A scoping review. WATER RESEARCH 2022; 210:117996. [PMID: 34959067 DOI: 10.1016/j.watres.2021.117996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding how climate change will affect water quality and therefore, health, is critical for building resilient water services in low- and middle-income countries (LMICs) where the effect of climate change will be felt most acutely. Evidence of the effect of climate variables such as temperate and rainfall on water quality can generate insights into the likely impact of future climate change. While the seasonal effects on water quality are known, and there is strong qualitative evidence that climate change will impact water quality, there are no reviews that synthesise quantitative evidence from LMICs on links between climate variables and water quality. We mapped the available evidence on a range of climate exposures and water quality outcomes and identified 98 peer-reviewed studies. This included observational studies on the impact of temperature and rainfall events (which may cause short-term changes in contaminant concentrations), and modelling studies on the long-term impacts of sea level rise. Evidence on links between antecedent rainfall and microbiological contamination of water supplies is strong and relatively evenly distributed geographically, but largely focused on faecal indicator bacteria and on untreated shallow groundwater sources of drinking water. The literature on climate effects on geogenic contaminants was sparse. There is substantial research on the links between water temperature and cyanobacteria blooms in surface waters, although most studies were from two countries and did not examine potential effects on water treatment. Similarly, studies modelling the impact of sea level rise on groundwater salinity, mostly from south-Asia and the Middle East, did not discuss challenges for drinking water supplies. We identified key future research priorities based on this review. These include: more studies on specific pathogens (including opportunistic pathogens) in water supplies and their relationships with climate variables; more studies that assess likely relationships between climate variables and water treatment processes; studies into the relationships between climate variables and geogenic contaminants, including risks from heavy metals released as glacier retreat; and, research into the impacts of wildfires on water quality in LMICs given the current dearth of studies but recognised importance.
Collapse
Affiliation(s)
- Anisha Nijhawan
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| | - Guy Howard
- Department of Civil Engineering and Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1TR, UK.
| |
Collapse
|
2
|
Etchie TO, Etchie AT, Jauro A, Pinker RT, Swaminathan N. Season, not lockdown, improved air quality during COVID-19 State of Emergency in Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145187. [PMID: 33736334 PMCID: PMC7825968 DOI: 10.1016/j.scitotenv.2021.145187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 05/24/2023]
Abstract
Globally, ambient air pollution claims ~9 million lives yearly, prompting researchers to investigate changes in air quality. Of special interest is the impact of COVID-19 lockdown. Many studies reported substantial improvements in air quality during lockdowns compared with pre-lockdown or as compared with baseline values. Since the lockdown period coincided with the onset of the rainy season in some tropical countries such as Nigeria, it is unclear if such improvements can be fully attributed to the lockdown. We investigate whether significant changes in air quality in Nigeria occurred primarily due to statewide COVID-19 lockdown. We applied a neural network approach to derive monthly average ground-level fine aerosol optical depth (AODf) across Nigeria from year 2001-2020, using the Multi-angle Implementation of Atmospheric Correction (MAIAC) AODs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) satellites, AERONET aerosol optical properties, meteorological and spatial parameters. During the year 2020, we found a 21% or 26% decline in average AODf level across Nigeria during lockdown (April) as compared to pre-lockdown (March), or during the easing phase-1 (May) as compared to lockdown, respectively. Throughout the 20-year period, AODf levels were highest in January and lowest in May or June, but not April. Comparison of AODf levels between 2020 and 2019 shows a small decline (1%) in pollution level in April of 2020 compare to 2019. Using a linear time-lag model to compare changes in AODf levels for similar months from 2002 to 2020, we found no significant difference (Levene's test and ANCOVA; α = 0.05) in the pollution levels by year, which indicates that the lockdown did not significantly improve air quality in Nigeria. Impact analysis using multiple linear regression revealed that favorable meteorological conditions due to seasonal change in temperature, relative humidity, planetary boundary layer height, wind speed and rainfall improved air quality during the lockdown.
Collapse
Affiliation(s)
| | | | - Aliyu Jauro
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Garki-Abuja, Nigeria.
| | - Rachel T Pinker
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, USA.
| | | |
Collapse
|
3
|
Etchie AT, Etchie TO, Elemile OO, Boladale O, Oni T, Akanno I, Bankole DT, Ibitoye OO, Pillarisetti A, Sivanesan S, Afolabi TY, Krishnamurthi K, Swaminathan N. Burn to kill: Wood ash a silent killer in Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141316. [PMID: 32814289 DOI: 10.1016/j.scitotenv.2020.141316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Aside the emissions, burning of wood in traditional cookstoves (TCs) also generates substantial amount of ash containing hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. But, their concentrations in the ash, particularly in Africa where over 70% of the population utilize TCs, remain unknown. Here, we determined concentrations of sixteen PAHs and eleven heavy metals in ashes from twelve different African TCs, comprising six three-stone fires (TSFs) and six built-in-place cookstoves (BIPCs), burning common African wood species under real world situation. For each TC, ash samples were collected for six consecutive days (Monday-Saturday), and a total of seventy-two daily samples were collected from January-June 2019. Ash yields were measured gravimetrically, and concentrations of the pollutants were determined following standard analytical protocols. The results were used alongside secondary data (annual fuelwood consumption, African fuelwood densities, population proportion using fuelwood and surface human population density) to estimate annual tonnage, exposure potential and risk to health in Africa, using Monte Carlo simulation technique. The ash yields from all TCs studied exceeded 1% on dry weight basis, indicating that ash is a major waste by-product of wood combustion in TCs. TSFs produced more ash (5.7 ± 0.7%) than BIPCs (3.4 ± 1.0%). Concentrations of As, Cd, Hg and Pb in ashes were significantly higher (α = 0.05) for TSFs than BIPCs. In contrast, concentrations of PAHs were higher in ashes from BIPCs than TSFs. Assuming ash consumption rates range from 250 to 500 mg/day for young children weighing 10 to 30 kg, the upper dose (μg/kg-day) of Pb (0.2-3.9) or Σ16PAHs (0.02-0.34), for instance, surpasses the 0.3 μg/kg-day of Pb or PAH recognized as causing adverse effects in children, indicating a concern. The top five countries with the highest annual tonnage or exposure potential to toxic pollutants are Nigeria>Ethiopia>DR-Congo>Tanzania>Uganda, or Rwanda>Burundi>Uganda>Nigeria>Guinea-Bissau, respectively.
Collapse
Affiliation(s)
| | | | | | - Oluwatobi Boladale
- Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria.
| | - Timileyin Oni
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | - Ifeanyi Akanno
- Department of Civil Engineering, Landmark University, Omu-Aran, Nigeria.
| | | | | | - Ajay Pillarisetti
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | |
Collapse
|
4
|
Etchie AT, Etchie TO, Shen H, Pillarisetti A, Popovicheva O. Burden of disease at the same limit of exposure to airborne polycyclic aromatic hydrocarbons varies significantly across countries depending on the gap in longevity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:420-429. [PMID: 31108419 DOI: 10.1016/j.ecoenv.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) disproportionately affect human health across the globe, and differential exposure is believed to drive the unequal health burden. Therefore, this study assessed and compared the burden of disease, in disability-adjusted life years (DALYs), at the same level (or limit) of exposure to atmospheric PAHs in nine countries. We calculated the DALYs per person-year per ng/m3 of benzo[a]pyrene from ten cancers and thirty-four non-cancer adverse outcomes using published toxicity information and country-specific disease severity. Exposure duration was averaged over 30 years and we adjusted for early-life vulnerability to cancer. The DALYs per person-year per ng/m3 of fifteen other individual PAHs was calculated using relative potency factors, and toxicity factors derived from quantitative structure-activity relationships. We found that even at the same level of exposure to PAHs, the incremental burdens of disease varied substantially across countries. For instance, they varied by about 2-3 folds between Nigeria and the USA. Countries having the lowest longevity had the highest DALYs per person-year per ng/m3 of each PAH. Kruskal-Wallis test (α = 0.05) showed that the variation across countries was significant. The post hoc tests detected a significant difference between two countries when the gap in longevity was >10 years. This suggests that countries having very low average life expectancy require more stringent PAH limit. Linear or exponential function of average longevity gave valid approximation of the DALYs per person-year per ng/m3 of benzo[a]pyrene or phenanthrene, respectively. Furthermore, we used global gridded surface benzo[a]pyrene concentrations and global population dataset for 2007, with spatial resolution of 0.1° × 0.1°, to calculate the contribution of differential exposures to the estimated DALYs per person-year. We found that in six out of nine countries, differential exposures to PAH contribute less to the estimated health loss than differential severities of the diseases. This indicates that the risk to health from PAHs may be underreported if the severities of the diseases in the countries are not considered.
Collapse
Affiliation(s)
| | | | - Huizhong Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA.
| | | | - Olga Popovicheva
- Department of Microelectronics, Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow, Russia.
| |
Collapse
|
5
|
Abtahi M, Dobaradaran S, Jorfi S, Koolivand A, Khaloo SS, Spitz J, Saeedi H, Golchinpour N, Saeedi R. Age-sex specific disability-adjusted life years (DALYs) attributable to elevated levels of fluoride in drinking water: A national and subnational study in Iran, 2017. WATER RESEARCH 2019; 157:94-105. [PMID: 30953859 DOI: 10.1016/j.watres.2019.03.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 05/15/2023]
Abstract
National and subnational burden of disease attributable to elevated fluoride levels in drinking water apportioned by sex, age group, province, and community type in Iran, 2017 were quantified based on disability-adjusted life years (DALYs). The attributable burden of disease was estimated using four input data: (1) effect size of elevated drinking water fluoride levels for dental and skeletal fluorosis, (2) population distribution of drinking water fluoride levels, (3) the threshold levels of fluoride in drinking water for contribution in dental and skeletal fluorosis, and (4) age-sex distribution of population. The attributable burden of disease was only related to dental fluorosis, because the fluoride levels were lower than the threshold value for skeletal fluorosis (4.0 mg/L) in all of the cases. The national attributable prevalence (per 100,000 people), DALYs, and DALY rate in 2017 were calculated to be 60 (95% uncertainty interval 48-69), 3443 (1034-6940), and 4.31 (1.29-8.68), respectively. The national attributable burden of disease was not significantly different by sex, but was affected by age and community type in a manner that the highest DALY rate was related to the age group 10-14 y (6.06 [1.82-12.21]) and over 66% of the national attributable DALYs occurred in rural communities. The attributable burden of disease occurred only in 10 out of 31 provinces and about 94% of the attributable DALYs were concentrated in four provinces Fars (1967 [592-3964]), Bushehr (414 [124-836]), West Azarbaijan (400 [120-808]), and Hormozgan (377 [113-761]). Implementation of fluoride-safe drinking water supply schemes in the four leading provinces can prevent most of the national health losses and partly compensate the increasing trend of disease burden from oral conditions at the national level.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| | - Hanieh Saeedi
- Department of Statistics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Najmeh Golchinpour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Abtahi M, Dobaradaran S, Torabbeigi M, Jorfi S, Gholamnia R, Koolivand A, Darabi H, Kavousi A, Saeedi R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. ENVIRONMENTAL RESEARCH 2019; 173:469-479. [PMID: 30981118 DOI: 10.1016/j.envres.2019.03.071] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 05/25/2023]
Abstract
Occurrence of phthalates in water resources, bottled water, and tap water, and health risk of exposure to the phthalates through drinking water in Tehran, Iran, 2018 were studied. The six phthalates with the most health and environmental concerns, including di-(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and di-n-octyl phthalate (DNOP) were monitored in drinking water and water resources. The average levels (±standard deviation: SD) of the total phthalates in drinking water from the water distribution system, bottled water, surface waters, and ground waters were determined to be 0.76 ± 0.19, 0.96 ± 0.10, 1.06 ± 0.23, and 0.77 ± 0.06 μg/L, respectively. The dominant compounds in the phthalates were DMP and DEHP causing a contribution to the total phthalate levels higher than 60% in all the water sources. The phthalate levels of drinking water significantly increased by contact of hot water with disposable plastic and paper cups and by sunlight exposure of bottled water (p value < 0.05). The hazard quotients (HQs) of DEHP, BBP, DBP, and DEP for all ages both sexes combined were determined to be 1.56 × 10-4, 1.01 × 10-5, 1.80 × 10-5, and 1.29 × 10-6, respectively that were much lower than the boundary value of 1.0. The disability-adjusted life years (DALYs) and DALY rate (per 100,000 people) attributable to DEHP intake through drinking water for all ages both sexes combined were estimated to be 6.385 (uncertainty interval: UI 95% 1.892 to 22.133), and 0.073 (0.022-0.255), respectively. The proportion of mortality in the attributable DALYs was over 96%. The attributable DALY rate exhibited no significant difference by sex, but was considerably affected by age in a manner that the DALY rates ranged from 0.052 (0.015-0.175) in the age group 65 y plus to 0.099 (0.026-0.304) in the age group 5 to 9 y. Both the carcinogenic and non-carcinogenic health risks of the phthalates in drinking water were considered to be very low. The results can also be of importance in terms of developing frameworks to expand the domain of burden of disease study to the other environmental risks.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Torabbeigi
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Darabi
- The Persian Gulf Tropical Medicine Research, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Kavousi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Etchie TO, Sivanesan S, Etchie AT, Adewuyi GO, Krishnamurthi K, George KV, Rao PS. The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. CHEMOSPHERE 2018; 204:277-289. [PMID: 29665530 DOI: 10.1016/j.chemosphere.2018.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure to PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) can elicit several types of cancer and non-cancer effects. Previous studies reported substantial burdens of PAH-induced lung cancer, but the burdens of other cancer types and non-cancer effects remain unknown. Thus, we estimate the cancer and non-cancer burden of disease, in disability-adjusted life years (DALYs), attributable to ambient PM2.5-bound PAHs exposure in Nagpur district, India, using risk-based approach. We measured thirteen PAHs in airborne PM2.5 sampled from nine sites covering urban, peri-urban and rural areas, from February 2013 to June 2014. We converted PAHs concentrations to benzo[a]pyrene equivalence (B[a]Peq) for cancer and non-cancer effects using relative potency factors, and relative toxicity factors derived from quantitative structure-activity relationships, respectively. We calculated time-weighted exposure to B[a]Peq, averaged over 30 years, and adjusted for early-life susceptibility to cancer. We estimated the DALYs/year using B[a]Peq exposure levels, published toxicity data, and severity of the diseases from Global Burden of Disease 2016 database. The annual average concentration of total PM2.5-bound PAHs was 458 ± 246 ng/m3 and resulted in 49,500 DALYs/year (0.011 DALYs/person/year). The PAH-related DALYs followed this order: developmental (mostly cardiovascular) impairments (55.1%) > cancer (26.5%) or lung cancer (23.1%) > immunological impairments (18.0%) > reproductive abnormalities (0.4%).
Collapse
Affiliation(s)
- Tunde O Etchie
- Meteorology, Environment & Demographic Surveillance (MEDsurveillance) Ltd, Port Harcourt, Nigeria.
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | - K V George
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | - Padma S Rao
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| |
Collapse
|
8
|
Kumpel E, Nelson KL. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:542-553. [PMID: 26670120 DOI: 10.1021/acs.est.5b03973] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.
Collapse
Affiliation(s)
- Emily Kumpel
- Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
- The Aquaya Institute, Nairobi, Kenya
| | - Kara L Nelson
- Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
9
|
Badejo AA, Ndambuki JM, Kupolati WK, Adekunle AA, Taiwo SA, Omole DO. Appraisal of access to safe drinking water in southwest Nigeria. AFRICAN JOURNAL OF SCIENCE, TECHNOLOGY, INNOVATION AND DEVELOPMENT 2015. [DOI: 10.1080/20421338.2015.1096669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kobayashi Y, Peters GM, Ashbolt NJ, Heimersson S, Svanström M, Khan SJ. Global and local health burden trade-off through the hybridisation of quantitative microbial risk assessment and life cycle assessment to aid water management. WATER RESEARCH 2015; 79:26-38. [PMID: 25965885 DOI: 10.1016/j.watres.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/27/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
Life cycle assessment (LCA) and quantitative risk assessment (QRA) are commonly used to evaluate potential human health impacts associated with proposed or existing infrastructure and products. Each approach has a distinct objective and, consequently, their conclusions may be inconsistent or contradictory. It is proposed that the integration of elements of QRA and LCA may provide a more holistic approach to health impact assessment. Here we examine the possibility of merging LCA assessed human health impacts with quantitative microbial risk assessment (QMRA) for waterborne pathogen impacts, expressed with the common health metric, disability adjusted life years (DALYs). The example of a recent large-scale water recycling project in Sydney, Australia was used to identify and demonstrate the potential advantages and current limitations of this approach. A comparative analysis of two scenarios - with and without the development of this project - was undertaken for this purpose. LCA and QMRA were carried out independently for the two scenarios to compare human health impacts, as measured by DALYs lost per year. LCA results suggested that construction of the project would lead to an increased number of DALYs lost per year, while estimated disease burden resulting from microbial exposures indicated that it would result in the loss of fewer DALYs per year than the alternative scenario. By merging the results of the LCA and QMRA, we demonstrate the advantages in providing a more comprehensive assessment of human disease burden for the two scenarios, in particular, the importance of considering the results of both LCA and QRA in a comparative assessment of decision alternatives to avoid problem shifting. The application of DALYs as a common measure between the two approaches was found to be useful for this purpose.
Collapse
Affiliation(s)
- Yumi Kobayashi
- School of Civil & Environmental Engineering, University of New South Wales, 2052 NSW, Australia
| | - Greg M Peters
- School of Civil & Environmental Engineering, University of New South Wales, 2052 NSW, Australia; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nicholas J Ashbolt
- School of Civil & Environmental Engineering, University of New South Wales, 2052 NSW, Australia; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| | - Sara Heimersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Magdalena Svanström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Stuart J Khan
- School of Civil & Environmental Engineering, University of New South Wales, 2052 NSW, Australia.
| |
Collapse
|