1
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
2
|
Sala-Comorera L, Muniesa M, Rodríguez-Rubio L. Detection and Quantification of Bacteriophages in Wastewater Samples by Culture and Molecular Methods. Methods Mol Biol 2024; 2738:155-173. [PMID: 37966598 DOI: 10.1007/978-1-0716-3549-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in water bodies and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages are perfect surrogates for the study of the fate and transport of enteric viruses, generally better than any other group of indicators.Different groups of bacteriophages, such as somatic coliphages, F-specific RNA bacteriophages, and bacteriophages infecting selected strains of Bacteroides, have been comprehensively tested as indicators of fecal pollution. Somatic coliphages and F-specific RNA bacteriophages can be used as indicators of general fecal contamination, whereas Bacteroides phages can be used to detect a particular fecal source, for instance, human, bovine, porcine, or poultry fecal contamination.Feasible and cost-effective protocols standardized by the International Standardization Organization and the United States Environmental Protection Agency for the detection of infectious bacteriophages belonging to these three groups are available. Molecular methods for the detection of some particular phages have also been developed. Here we introduce those methods for the detection, enumeration, and isolation of bacteriophages in wastewater samples.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Bakuradze N, Merabishvili M, Kusradze I, Ceyssens PJ, Onsea J, Metsemakers WJ, Grdzelishvili N, Natroshvili G, Tatrishvili T, Lazvliashvili D, Mitskevich N, Pirnay JP, Chanishvili N. Characterization of a Bacteriophage GEC_vB_Bfr_UZM3 Active against Bacteroides fragilis. Viruses 2023; 15:v15051042. [PMID: 37243129 DOI: 10.3390/v15051042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not susceptible to the common antibiotic regimes established for B. fragilis, have been more frequently reported. Bacteriophages (phages) were found to be a successful antibacterial alternative to antibiotic therapy in many cases of multidrug-resistant (MDR) bacterial infections. We have characterized the bacteriophage GEC_vB_Bfr_UZM3 (UZM3), which was used for the treatment of a patient with a chronic osteomyelitis caused by a B. fragilis mixed infection. Studied biological and morphological properties of UZM3 showed that it seems to represent a strictly lytic phage belonging to a siphovirus morphotype. It is characterized by high stability at body temperature and in pH environments for about 6 h. Whole genome sequencing analysis of the phage UZM3 showed that it does not harbor any known virulence genes and can be considered as a potential therapeutic phage to be used against B. fragilis infections.
Collapse
Affiliation(s)
- Nata Bakuradze
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
- AIETI Medical School, Davit Tvildiani Medical University, Tbilisi 0159, Georgia
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Ia Kusradze
- Laboratory of General Microbiology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Medicine, European University, Tbilisi 0141, Georgia
| | | | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nino Grdzelishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Guliko Natroshvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
| | - Tamar Tatrishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Davit Lazvliashvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
- Faculty of Natural Science and Medicine, Ilia State University, Tbilisi 0162, Georgia
| | - Nunu Mitskevich
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Nina Chanishvili
- Laboratory of Microbial Biotechnology, Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia
| |
Collapse
|
4
|
Eifan S, Maniah K, Nour I, Hanif A, Yassin MT, Al-Ashkar I, Abid I. Pepper Mild Mottle Virus as a Potential Indicator of Fecal Contamination in Influents of Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:1038. [PMID: 37110461 PMCID: PMC10144068 DOI: 10.3390/microorganisms11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Several indicators of fecal pollution in water resources are continuously monitored for their reliability and, of particular interest, their correlation to human enteric viruses-not justified by traditional bacterial indicators. Pepper mild mottle virus (PMMoV) has recently been proposed as a successful viral surrogate of human waterborne viruses; however, in Saudi Arabia there are no available data in terms of its prevalence and concentration in water bodies. The concentration of PMMoV in three different wastewater treatment plants (King Saud University (KSU), Manfoha (MN), and Embassy (EMB) wastewater treatment plants (WWTP)) was measured using qRT-PCR during a one-year period and compared to the human adenovirus (HAdV), which is highly persistent and considered an indicator for viral-mediated fecal contamination. PMMoV was found in ~94% of the entire wastewater samples (91.6-100%), with concentrations ranging from 62 to 3.5 × 107 genome copies/l (GC/l). However, HAdV was detected in 75% of raw water samples (~67-83%). The HAdV concentration ranged between 1.29 × 103 GC/L and 1.26 × 107 GC/L. Higher positive correlation between PMMoV and HAdV concentrations was detected at MN-WWTP (r = 0.6148) than at EMB-WWTP (r = 0.207). Despite the lack of PMMoV and HAdV seasonality, a higher positive correlation (r = 0.918) of PMMoV to HAdV was recorded at KSU-WWTP in comparison to EMB-WWTP (r = 0.6401) around the different seasons. Furthermore, meteorological factors showed no significant influence on PMMoV concentrations (p > 0.05), thus supporting the use of PMMoV as a possible fecal indicator of wastewater contamination and associated public health issues, particularly at MN-WWTP. However, a continuous monitoring of the PMMoV distribution pattern and concentration in other aquatic environments, as well as its correlation to other significant human enteric viruses, is essential for ensuring its reliability and reproducibility as a fecal pollution indicator.
Collapse
Affiliation(s)
- Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Islem Abid
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| |
Collapse
|
5
|
Salazar C, Giménez M, Riera N, Parada A, Puig J, Galiana A, Grill F, Vieytes M, Mason CE, Antelo V, D'Alessandro B, Risso J, Iraola G. Human microbiota drives hospital-associated antimicrobial resistance dissemination in the urban environment and mirrors patient case rates. MICROBIOME 2022; 10:208. [PMID: 36457116 PMCID: PMC9715416 DOI: 10.1186/s40168-022-01407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/21/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The microbial community composition of urban environments is primarily determined by human activity. The use of metagenomics to explore how microbial communities are shaped in a city provides a novel input that can improve decisions on public health measures, architectural design, and urban resilience. Of note, the sewage system in a city acts as a complex reservoir of bacteria, pharmaceuticals, and antimicrobial resistant (AMR) genes that can be an important source of epidemiological information. Hospital effluents are rich in patient-derived bacteria and can thus readily become a birthplace and hotspot reservoir for antibiotic resistant pathogens which are eventually incorporated into the environment. Yet, the scope to which nosocomial outbreaks impact the urban environment is still poorly understood. RESULTS In this work, we extensively show that different urban waters from creeks, beaches, sewage spillways and collector pipes enclose discrete microbial communities that are characterized by a differential degree of contamination and admixture with human-derived bacteria. The abundance of human bacteria correlates with the abundance of AMR genes in the environment, with beta-lactamases being the top-contributing class to distinguish low vs. highly-impacted urban environments. Indeed, the abundance of beta-lactamase resistance and carbapenem resistance determinants in the urban environment significantly increased in a 1-year period. This was in line with a pronounced increase of nosocomial carbapenem-resistant infections reported during the same period that was mainly driven by an outbreak-causing, carbapenemase-producing Klebsiella pneumoniae (KPC) ST-11 strain. Genome-resolved metagenomics of urban waters before and after this outbreak, coupled with high-resolution whole-genome sequencing, confirmed the dissemination of the ST-11 strain and a novel KPC megaplasmid from the hospital to the urban environment. City-wide analysis showed that geospatial dissemination of the KPC megaplasmid in the urban environment inversely depended on the sewage system infrastructure. CONCLUSIONS We show how urban metagenomics and outbreak genomic surveillance can be coupled to generate relevant information for infection control, antibiotic stewardship, and pathogen epidemiology. Our results highlight the need to better characterize and understand how human-derived bacteria and antimicrobial resistance disseminate in the urban environment to incorporate this information in the development of effluent treatment infrastructure and public health policies. Video Abstract.
Collapse
Affiliation(s)
- Cecilia Salazar
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Matias Giménez
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Molecular Microbiology Laboratory, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Nadia Riera
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Parada
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Josefina Puig
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | | | | | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Verónica Antelo
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Bruno D'Alessandro
- Servicio de Evaluación de la Calidad y Control Ambiental, Intendencia de Montevideo, Montevideo, Uruguay
- Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jimena Risso
- Servicio de Evaluación de la Calidad y Control Ambiental, Intendencia de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Wellcome Sanger Institute, Hinxton, UK.
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile.
| |
Collapse
|
6
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
7
|
Olalemi AO, Akinwumi IM. Microbial health risks associated with rotavirus and enteric bacteria in River Ala in Akure, Nigeria. J Appl Microbiol 2022; 132:3995-4006. [PMID: 35179285 DOI: 10.1111/jam.15497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
AIM This study was carried out to determine the microbial health risks associated with a surface water commonly used for bathing, drinking, domestic and irrigational activities in Akure, Nigeria. METHODS AND RESULTS Water samples were collected from the river from March to June, 2018. The load of enteric bacteria, somatic coliphages and rotavirus in the water samples were determined using culture-based methods and molecular technique. The physicochemical characteristics of the water samples were determined using standard methods. The risks of rotavirus, Salmonella and Shigella infections resulting from ingestion of the water from the river were estimated using dose-response model. Redundancy analysis revealed that the levels of E. coli and Salmonella were highly associated with salinity and turbidity. The risks of infection associated with rotavirus (3.3 × 10-3 ) was higher than those associated with Salmonella (1.3 × 10-4 ) and Shigella (1.3 × 10-3 ), and were all above the WHO acceptable risk limit (10-4 ). CONCLUSION Accidental or intentional ingestion of water from the river may pose potential risks of gastrointestinal illness to humans. SIGNIFICANCE AND IMPACT OF STUDY Quantitative microbial risk assessment is essential in establishing adequate water management practices that must be strictly followed in order to protect human health.
Collapse
Affiliation(s)
- A O Olalemi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| | - I M Akinwumi
- Department of Microbiology, Federal University of Technology, Ondo, Nigeria
| |
Collapse
|
8
|
Méndez J, García-Aljaro C, Muniesa M, Pascual-Benito M, Ballesté E, López P, Monleón A, Blanch AR, Lucena F. Modeling human pollution in water bodies using somatic coliphages and bacteriophages that infect Bacteroides thetaiotaomicron strain GA17. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113802. [PMID: 34638039 DOI: 10.1016/j.jenvman.2021.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The ability to detect human fecal pollution in water is of great importance when assessing the associated health risks. Many microbial source tracking (MST) markers have been proposed to determine the origin of fecal pollution, but their application remains challenging. A range of factors, not yet sufficiently analyzed, may affect MST markers in the environment, such as dilution and inactivation processes. In this work, a statistical framework based on Monte Carlo simulations and non-linear regression was used to develop a classification procedure for use in MST studies. The predictive model tested uses only two parameters: somatic coliphages (SOMCPH), as an index of general fecal pollution, and human host-specific bacteriophages that infect Bacteroides thetaiotaomicron strain GA17 (GA17PH). Taking into account bacteriophage dilution and differential inactivation, the threshold concentration of SOMCPH was calculated to be around 500 PFU/100 mL for a limit of detection of 10 PFU/100 mL. However, this threshold can be lowered by increasing the analyzed volume sample, which in turn lowers the limit of detection. The resulting model is sufficiently accurate for application in practical cases involving MST and could be easily used with markers other than those tested here.
Collapse
Affiliation(s)
- Javier Méndez
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; BIOST3 Group. Section of Statistics. Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Cristina García-Aljaro
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Maite Muniesa
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Miriam Pascual-Benito
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Elisenda Ballesté
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Pere López
- Section of Statistics. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; BIOST3 Group. Section of Statistics. Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Monleón
- Section of Statistics. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; BIOST3 Group. Section of Statistics. Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Anicet R Blanch
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Francisco Lucena
- Section of Microbiology. Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; BIOST3 Group. Section of Statistics. Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Runa V, Wenk J, Bengtsson S, Jones BV, Lanham AB. Bacteriophages in Biological Wastewater Treatment Systems: Occurrence, Characterization, and Function. Front Microbiol 2021; 12:730071. [PMID: 34803947 PMCID: PMC8600467 DOI: 10.3389/fmicb.2021.730071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes. A deeper understanding of the phage ecology in BWT can lead the improvement of process monitoring and control, promote higher influent quality, and potentiate the use of phages as biocontrol agents. In this review, we highlight suitable methods for studying phages in wastewater adapted from other research fields, provide a critical overview on the current state of knowledge on the effect of phages on structure and function of BWT bacterial communities, and highlight gaps, opportunities, and priority questions to be addressed in future research.
Collapse
Affiliation(s)
- Viviane Runa
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | | | - Brian V Jones
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ana B Lanham
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
10
|
Monteiro S, Ebdon J, Santos R, Taylor H. Elucidation of fecal inputs into the River Tagus catchment (Portugal) using source-specific mitochondrial DNA, HAdV, and phage markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147086. [PMID: 34088114 DOI: 10.1016/j.scitotenv.2021.147086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Determining the source of fecal contamination in a water body is important for the application of appropriate remediation measures. However, it has been suggested in the extant literature that this can best be achieved using a 'toolbox' of molecular- and culture-based methods. In response, this study deployed three indicators (Escherichia coli (EC), intestinal enterococci (IE) and somatic coliphages (SC)), one culture-dependent human marker (Bacteroides (GB-124) bacteriophage) and five culture-independent markers (human adenovirus (HAdV), human (HMMit), cattle (CWMit), pig (PGMit) and poultry (PLMit) mitochondrial DNA markers (mtDNA)) within the River Tagus catchment (n = 105). Water samples were collected monthly over a 13-month sampling campaign at four sites (impacted by significant specific human and non-human inputs and influenced by differing degrees of marine and freshwater mixing) to determine the dominant fecal inputs and assess geographical, temporal, and meteorological (precipitation, UV, temperature) fluctuations. Our results revealed that all sampling sites were not only highly impacted by fecal contamination but that this contamination originated from human and from a range of agricultural animal sources. HMMit was present in a higher percentage (83%) and concentration (4.20 log GC/100 mL) than HAdV (32%, 2.23 log GC/100 mL) and GB-124 bacteriophage with the latter being detected once. Animal mtDNA markers were detected, with CWMit found in 73% of samples with mean concentration of 3.74 log GC/100 mL. Correlation was found between concentrations of fecal indicators (EC, IE and SC), CWMit and season. Levels of CWMit were found to be related to physico-chemical parameters, such as temperature and UV radiation, possibly as a result of the increasing presence of livestock outside in warmer months. This study provides the first evaluation of such a source-associated 'toolbox' for monitoring surface water in Portugal, and the conclusions may inform future implementation of surveillance and remediation strategies for improving water quality.
Collapse
Affiliation(s)
- S Monteiro
- School of Environment and Technology, University of Brighton, Brighton, UK; Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal.
| | - J Ebdon
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - R Santos
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| | - H Taylor
- School of Environment and Technology, University of Brighton, Brighton, UK
| |
Collapse
|
11
|
Hata A, Shirasaka Y, Ihara M, Yamashita N, Tanaka H. Spatial and temporal distributions of enteric viruses and indicators in a lake receiving municipal wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146607. [PMID: 33773350 DOI: 10.1016/j.scitotenv.2021.146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
12
|
Bacteriophages as Fecal Pollution Indicators. Viruses 2021; 13:v13061089. [PMID: 34200458 PMCID: PMC8229503 DOI: 10.3390/v13061089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.
Collapse
|
13
|
Kapoor R, Ebdon J, Wadhwa A, Chowdhury G, Wang Y, Raj SJ, Siesel C, Durry SE, Mairinger W, Mukhopadhyay AK, Kanungo S, Dutta S, Moe CL. Evaluation of Low-Cost Phage-Based Microbial Source Tracking Tools for Elucidating Human Fecal Contamination Pathways in Kolkata, India. Front Microbiol 2021; 12:673604. [PMID: 34093494 PMCID: PMC8173070 DOI: 10.3389/fmicb.2021.673604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Phages, such as those infecting Bacteroides spp., have been proven to be reliable indicators of human fecal contamination in microbial source tracking (MST) studies, and the efficacy of these MST markers found to vary geographically. This study reports the application and evaluation of candidate MST methods (phages infecting previously isolated B. fragilis strain GB-124, newly isolated Bacteroides strains (K10, K29, and K33) and recently isolated Kluyvera intermedia strain ASH-08), along with non-source specific somatic coliphages (SOMCPH infecting strain WG-5) and indicator bacteria (Escherichia coli) for identifying fecal contamination pathways in Kolkata, India. Source specificity of the phage-based methods was first tested using 60 known non-human fecal samples from common animals, before being evaluated with 56 known human samples (municipal sewage) collected during both the rainy and dry season. SOMCPH were present in 40-90% of samples from different animal species and in 100% of sewage samples. Phages infecting Bacteroides strain GB-124 were not detected from the majority (95%) of animal samples (except in three porcine samples) and were present in 93 and 71% of the sewage samples in the rainy and dry season (Mean = 1.42 and 1.83 log10PFU/100mL, respectively), though at lower levels than SOMCPH (Mean = 3.27 and 3.02 log10PFU/100mL, respectively). Phages infecting strain ASH-08 were detected in 89 and 96% of the sewage samples in the rainy and dry season, respectively, but were also present in all animal samples tested (except goats). Strains K10, K29, and K30 were not found to be useful MST markers due to low levels of phages and/or co-presence in non-human sources. GB-124 and SOMCPH were subsequently deployed within two low-income neighborhoods to determine the levels and origin of fecal contamination in 110 environmental samples. E. coli, SOMCPH, and phages of GB-124 were detected in 68, 42, and 28% of the samples, respectively. Analyses of 166 wastewater samples from shared community toilets and 21 samples from sewage pumping stations from the same districts showed that SOMCPH were present in 100% and GB-124 phages in 31% of shared toilet samples (Median = 5.59 and <1 log10 PFU/100 mL, respectively), and both SOMCPH and GB-124 phages were detected in 95% of pumping station samples (Median = 5.82 and 4.04 log10 PFU/100 mL, respectively). Our findings suggest that GB-124 and SOMCPH have utility as low-cost fecal indicator tools which can facilitate environmental surveillance of enteric organisms, elucidate human and non-human fecal exposure pathways, and inform interventions to mitigate exposure to fecal contamination in the residential environment of Kolkata, India.
Collapse
Affiliation(s)
- Renuka Kapoor
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - James Ebdon
- Environment and Public Health Research and Enterprise Group (EPHREG), University of Brighton, Brighton, United Kingdom
| | - Ashutosh Wadhwa
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Goutam Chowdhury
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Yuke Wang
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Suraja J. Raj
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Casey Siesel
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Sarah E. Durry
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | | | - Suman Kanungo
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Shanta Dutta
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Christine L. Moe
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Ballesté E, Blanch AR, Mendez J, Sala-Comorera L, Maunula L, Monteiro S, Farnleitner AH, Tiehm A, Jofre J, García-Aljaro C. Bacteriophages Are Good Estimators of Human Viruses Present in Water. Front Microbiol 2021; 12:619495. [PMID: 34012424 PMCID: PMC8128106 DOI: 10.3389/fmicb.2021.619495] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The detection of fecal viral pathogens in water is hampered by their great variety and complex analysis. As traditional bacterial indicators are poor viral indicators, there is a need for alternative methods, such as the use of somatic coliphages, which have been included in water safety regulations in recent years. Some researchers have also recommended the use of reference viral pathogens such as noroviruses or other enteric viruses to improve the prediction of fecal viral pollution of human origin. In this work, phages previously tested in microbial source tracking studies were compared with norovirus and adenovirus for their suitability as indicators of human fecal viruses. The phages, namely those infecting human-associated Bacteroides thetaiotaomicron strain GA17 (GA17PH) and porcine-associated Bacteroides strain PG76 (PGPH), and the human-associated crAssphage marker (crAssPH), were evaluated in sewage samples and fecal mixtures obtained from different animals in five European countries, along with norovirus GI + GII (NoV) and human adenovirus (HAdV). GA17PH had an overall sensitivity of ≥83% and the highest specificity (>88%) for human pollution source detection. crAssPH showed the highest sensitivity (100%) and specificity (100%) in northern European countries but a much lower specificity in Spain and Portugal (10 and 30%, respectively), being detected in animal wastewater samples with a high concentration of fecal indicators. The correlations between GA17PH, crAssPH, or the sum of both (BACPH) and HAdV or NoV were higher than between the two human viruses, indicating that bacteriophages are feasible indicators of human viral pathogens of fecal origin and constitute a promising, easy to use and affordable alternative to human viruses for routine water safety monitoring.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anicet R. Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Javier Mendez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico, Universidade Lisboa, Lisbon, Portugal
| | - Andreas H. Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Vienna, Austria
- Research Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Andreas Tiehm
- Department of Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Joan Jofre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Ji M, Liu Z, Sun K, Li Z, Fan X, Li Q. Bacteriophages in water pollution control: Advantages and limitations. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:84. [PMID: 33294248 PMCID: PMC7716794 DOI: 10.1007/s11783-020-1378-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.
Collapse
Affiliation(s)
- Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zichen Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Zhongfang Li
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899 China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| |
Collapse
|
17
|
Hernández S, Vives MJ. Phages in Anaerobic Systems. Viruses 2020; 12:E1091. [PMID: 32993161 PMCID: PMC7599459 DOI: 10.3390/v12101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of phages in 1915, these viruses have been studied mostly in aerobic systems, or without considering the availability of oxygen as a variable that may affect the interaction between the virus and its host. However, with such great abundance of anaerobic environments on the planet, the effect that a lack of oxygen can have on the phage-bacteria relationship is an important consideration. There are few studies on obligate anaerobes that investigate the role of anoxia in causing infection. In the case of facultative anaerobes, it is a well-known fact that their shifting from an aerobic environment to an anaerobic one involves metabolic changes in the bacteria. As the phage infection process depends on the metabolic state of the host bacteria, these changes are also expected to affect the phage infection cycle. This review summarizes the available information on phages active on facultative and obligate anaerobes and discusses how anaerobiosis can be an important parameter in phage infection, especially among facultative anaerobes.
Collapse
Affiliation(s)
- Santiago Hernández
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Martha J. Vives
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia;
- School of Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
18
|
Farkas K, Walker DI, Adriaenssens EM, McDonald JE, Hillary LS, Malham SK, Jones DL. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. WATER RESEARCH 2020; 181:115926. [PMID: 32417460 PMCID: PMC7211501 DOI: 10.1016/j.watres.2020.115926] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/13/2023]
Abstract
Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, DT4 8UB, UK
| | | | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Luke S Hillary
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
19
|
Pascual-Benito M, Nadal-Sala D, Tobella M, Ballesté E, García-Aljaro C, Sabaté S, Sabater F, Martí E, Gracia CA, Blanch AR, Lucena F. Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110220. [PMID: 32148290 DOI: 10.1016/j.jenvman.2020.110220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Faecal pollution modelling is a valuable tool to evaluate and improve water management strategies, especially in a context of water scarcity. The reduction dynamics of five faecal indicator organisms (E. coli, spores of sulphite-reducing clostridia, somatic coliphages, GA17 bacteriophages and a human-specific Bifidobacterium molecular marker) were assessed in an intermittent Mediterranean stream affected by a wastewater treatment plant (WWTP). Using Bayesian inverse modelling, the decay rates of each indicator were correlated with two environmental drivers (temperature and streamflow downstream of the WWTP) and the generated model was used to evaluate the self-depuration distance (SDD) of the stream. A consistent increase of 1-2 log10 in the concentration of all indicators was detected after the discharge of the WWTP effluent. The decay rates showed seasonal variation, reaching a maximum in the dry season, when SDDs were also shorter and the stream had a higher capacity to self-depurate. High seasonality was observed for all faecal indicators except for the spores of sulphite-reducing clostridia. The maximum SDD ranged from 3 km for the spores of sulphite-reducing clostridia during the dry season and 15 km for the human-specific Bifidobacterium molecular marker during the wet season. The SDD provides a single standardized metric that integrates and compares different contamination indicators. It could be extended to other Mediterranean drainage basins and has the potential to integrate changes in land use and catchment water balance, a feature that will be especially useful in the transient climate conditions expected in the coming years.
Collapse
Affiliation(s)
- M Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| | - D Nadal-Sala
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; IMK-IFU (Karlsruhe Institute of Meteorology and Climate Research-Atmospheric Environmental Research), Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - M Tobella
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - E Ballesté
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - C García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - S Sabaté
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - F Sabater
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - E Martí
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB-CSIC), 17300, Blanes, Spain
| | - C A Gracia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; CREAF (Center for Ecological Research and Forestry Applications), 08193, Cerdanyola del Vallès, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
20
|
Ballesté E, Pascual-Benito M, Martín-Díaz J, Blanch AR, Lucena F, Muniesa M, Jofre J, García-Aljaro C. Dynamics of crAssphage as a human source tracking marker in potentially faecally polluted environments. WATER RESEARCH 2019; 155:233-244. [PMID: 30851594 DOI: 10.1016/j.watres.2019.02.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 05/26/2023]
Abstract
Recent studies have shown that crAssphage is abundant in human faecal samples worldwide. It has thus been postulated as a potential microbial source tracking (MST) marker to detect human faecal pollution in water. However, an effective implementation of crAssphage in water management strategies will depend on an understanding of its environmental dynamics. In this work, the abundance and temporal distribution of crAssphage was analysed in the effluent of wastewater treatment plants using different sewage treatments, and in two rivers (water and sediments) that differ in pollution impact and flow regime. Additionally, the influence of environmental conditions (temperature and rainfall) on the removal of the marker was studied along a river section, and natural inactivation was assessed by a mesocosms approach. Molecular and culture-based tools were used to compare crAssphage abundance and dynamics with those of bacteria and bacteriophages currently applied as global indicators (E. coli, somatic coliphages, Bacteroides GA17 bacteriophages, and the human-associated MST markers HF183 and HMBif). CrAssphage concentrations in sewage effluent and river samples were similar to those of HF183 and HMBif and higher than other general and/or culture-based indicators (by 2-3 orders of magnitude). Measurement of crAssphage abundance revealed no temporal variability in the effluent, although rainfall events affected the dynamics, possibly through the mobilisation of sediments, where the marker was detected in high concentrations, and an increase in diffuse and point pollution. Another factor affecting crAssphage inactivation was temperature. Its persistence was longer compared with other bacterial markers analysed by qPCR but lower than culturable markers. The results of this study support the use of crAssphage as a human source tracking marker of faecal pollution in water, since it has similar abundances to other molecular human MST markers, yet with a longer persistence in the environment. Nevertheless, its use in combination with infectious bacteriophages is probably advisable.
Collapse
Affiliation(s)
- E Ballesté
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain.
| | - M Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - J Martín-Díaz
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - M Muniesa
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - J Jofre
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - C García-Aljaro
- Department of Genetics, Microbiology and Statistics, Microbiology Section, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| |
Collapse
|
21
|
Charuaud L, Jardé E, Jaffrézic A, Liotaud M, Goyat Q, Mercier F, Le Bot B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:605-615. [PMID: 30763841 DOI: 10.1016/j.scitotenv.2019.01.303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixed-use pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs. VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water. These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Emilie Jardé
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | | | - Marine Liotaud
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | - Quentin Goyat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France.
| |
Collapse
|
22
|
García-Aljaro C, Blanch AR, Campos C, Jofre J, Lucena F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol 2019; 126:701-717. [PMID: 30244503 DOI: 10.1111/jam.14112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The objective of this review is to assess the current state of knowledge of pathogens, general faecal indicators and human-specific microbial source tracking markers in sewage. Most of the microbes present in sewage are from the microbiota of the human gut, including pathogens. Bacteria and viruses are the most abundant groups of microbes in the human gut microbiota. Most reports on this topic show that raw sewage microbiological profiles reflect the human gut microbiota. Human and animal faeces share many commensal microbes as well as pathogens. Faecal-orally transmitted pathogens constitute a serious public health problem that can be minimized through sanitation. Assessing both the sanitation processes and the contribution of sewage to the faecal contamination of water bodies requires knowledge of the content of pathogens in sewage, microbes indicating general faecal contamination and microbes that are only present in human faecal remains, which are known as the human-specific microbial source-tracking (MST) markers. Detection of pathogens would be the ideal option for managing sanitation and determining the microbiological quality of waters contaminated by sewage; but at present, this is neither practical nor feasible in routine testing. Traditionally, faecal indicator bacteria have been used as surrogate indicators of general faecal residues. However, in many water management circumstances, it becomes necessary to detect both the origin of faecal contamination, for which MST is paramount, and live micro-organisms, for which molecular methods are not suitable. The presence and concentrations of pathogens, general faecal indicators and human-specific MST markers most frequently reported in different areas of the world are summarized in this review.
Collapse
Affiliation(s)
- C García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - A R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - C Campos
- Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - F Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.,The Water Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
García-Aljaro C, Muniesa M, Jofre J. Isolation of Bacteriophages of the Anaerobic Bacteria Bacteroides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1693:11-22. [PMID: 29119428 DOI: 10.1007/978-1-4939-7395-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we describe the detection, enumeration, and isolation of bacteriophages infecting Bacteroides. The method is based on the infection of Bacteroides host strains and the production of visible plaques in a confluent lawn of the host strain using the double-layer agar method. This is a straightforward methodology that can be applied for the detection, enumeration and isolation of bacteriophages for other anaerobic bacteria, using an appropriate host strain and culture conditions. In the case of bacteriophages of Bacteroides the results can be obtained in less than 24 h, although the time could vary depending on the growth rate of the host strain.
Collapse
Affiliation(s)
- Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Juan Jofre
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
| |
Collapse
|
24
|
Booncharoen N, Mongkolsuk S, Sirikanchana K. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater. Appl Microbiol Biotechnol 2018; 102:6235-6246. [DOI: 10.1007/s00253-018-9079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/07/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
|
25
|
Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K. Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:100-110. [PMID: 29414329 DOI: 10.1016/j.envpol.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microbial source tracking (MST) DNA-based assays have been used to successfully solve fecal pollution problems in many countries, particularly in developed nations. However, their application in developing countries has been limited but continues to increase. In this study, sixteen endpoint and quantitative PCR (qPCR) assays targeting universal and human-, swine-, and cattle-specific Bacteroidales gene markers were modified for endpoint PCR, evaluated for their performance with sewage and fecal samples from the Tha Chin watershed and subsequently validated with samples from the Chao Phraya watershed, Thailand. Sample sizes of 81 composite samples (from over 1620 individual samples) of farm animals of each type as well as 19 human sewage samples from the Tha Chin watershed were calculated using a stratified random sampling design to achieve a 90% confidence interval and an expected prevalence (i.e., desired assay's sensitivity) of 0.80. The best universal and human-, swine-, and cattle-specific fecal markers were BacUni EP, HF183/BFDrev EP, Pig-2-Bac EP, and Bac3 assays, respectively. The detection limits for these assays ranged from 30 to 3000 plasmid copies per PCR. The positive predictive values were high in universal and swine- and cattle-specific markers (85-100%), while the positive predictive value of the human-specific assay was 52.2%. The negative predictive values in all assays were relatively high (90.8-100%). A suite of PCR assays in Thailand was established for potential MST use in environmental waters, which supports the worldwide applicability of Bacteroidales gene markers. This study also emphasizes the importance of using a proper sample size in assessing the performance of MST markers in a new geographic region.
Collapse
Affiliation(s)
- Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| |
Collapse
|
26
|
Prado T, Bruni ADC, Barbosa MRF, Bonanno VMS, Garcia SC, Sato MIZ. Distribution of human fecal marker GB-124 bacteriophages in urban sewage and reclaimed water of São Paulo city, Brazil. JOURNAL OF WATER AND HEALTH 2018; 16:289-299. [PMID: 29676764 DOI: 10.2166/wh.2017.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacteriophages infecting Bacteroides fragilis GB-124 have been described as potential markers of human fecal contamination in water sources. The aim of this study was to evaluate the occurrence of GB-124 phages in raw sewage, secondary effluents and reclaimed water of the São Paulo city using a low-cost microbial source tracking method. Samples were collected monthly from April 2015 to March 2016 in four municipal wastewater treatment plants that operate with activated sludge processes followed by different tertiary treatments (sand-anthracite filtration, membrane bioreactor/reverse osmosis) and final chlorination. GB-124 phages were detected in 100% of the raw sewage samples, with viral loads varying from 7.5 × 103 to 1.32 × 106 PFU/L. Virus removal efficiency in activated sludge processes ranged from 1.89 to 2.31 log10. Frequencies of phage detection were lower in reclaimed water samples (0-22.2%). The results indicated that GB-124 phage could be a complementary low-cost viral marker for the detection of human fecal pollution in waters impacted with urban sewage in this region. However, the datasets of tertiary effluents resulted in several samples with concentrations below the detection limit (DL ≤1 PFU/mL) suggesting the need to obtain analytical methods with lower DL for greater accuracy of negative results.
Collapse
Affiliation(s)
- Tatiana Prado
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| | - Antônio de Castro Bruni
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| | - Mikaela Renata Funada Barbosa
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| | - Vilma Marques Santos Bonanno
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| | - Suzi Cristina Garcia
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| | - Maria Inês Zanoli Sato
- Environmental Company of the São Paulo State (CETESB-SP), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP 05459-900, Brazil E-mail:
| |
Collapse
|
27
|
Hernroth BE, Baden SP. Alteration of host-pathogen interactions in the wake of climate change - Increasing risk for shellfish associated infections? ENVIRONMENTAL RESEARCH 2018; 161:425-438. [PMID: 29202413 DOI: 10.1016/j.envres.2017.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The potential for climate-related spread of infectious diseases through marine systems has been highlighted in several reports. With this review we want to draw attention to less recognized mechanisms behind vector-borne transmission pathways to humans. We have focused on how the immune systems of edible marine shellfish, the blue mussels and Norway lobsters, are affected by climate related environmental stressors. Future ocean acidification (OA) and warming due to climate change constitute a gradually increasing persistent stress with negative trade-off for many organisms. In addition, the stress of recurrent hypoxia, inducing high levels of bioavailable manganese (Mn) is likely to increase in line with climate change. We summarized that OA, hypoxia and elevated levels of Mn did have an overall negative effect on immunity, in some cases also with synergistic effects. On the other hand, moderate increase in temperature seems to have a stimulating effect on antimicrobial activity and may in a future warming scenario counteract the negative effects. However, rising sea surface temperature and climate events causing high land run-off promote the abundance of naturally occurring pathogenic Vibrio and will in addition, bring enteric pathogens which are circulating in society into coastal waters. Moreover, the observed impairments of the immune defense enhance the persistence and occurrence of pathogens in shellfish. This may increase the risk for direct transmission of pathogens to consumers. It is thus essential that in the wake of climate change, sanitary control of coastal waters and seafood must recognize and adapt to the expected alteration of host-pathogen interactions.
Collapse
Affiliation(s)
- Bodil E Hernroth
- The Royal Swedish Academy of Sciences, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden; Dept. of Natural Science, Kristianstad University, SE-291 88 Kristianstad, Sweden.
| | - Susanne P Baden
- Dept. of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden
| |
Collapse
|
28
|
Ogilvie LA, Nzakizwanayo J, Guppy FM, Dedi C, Diston D, Taylor H, Ebdon J, Jones BV. Resolution of habitat-associated ecogenomic signatures in bacteriophage genomes and application to microbial source tracking. ISME JOURNAL 2017; 12:942-958. [PMID: 29259289 PMCID: PMC5864186 DOI: 10.1038/s41396-017-0015-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/06/2017] [Accepted: 11/11/2017] [Indexed: 12/28/2022]
Abstract
Just as the expansion in genome sequencing has revealed and permitted the exploitation of phylogenetic signals embedded in bacterial genomes, the application of metagenomics has begun to provide similar insights at the ecosystem level for microbial communities. However, little is known regarding this aspect of bacteriophage associated with microbial ecosystems, and if phage encode discernible habitat-associated signals diagnostic of underlying microbiomes. Here we demonstrate that individual phage can encode clear habitat-related 'ecogenomic signatures', based on relative representation of phage-encoded gene homologues in metagenomic data sets. Furthermore, we show the ecogenomic signature encoded by the gut-associated ɸB124-14 can be used to segregate metagenomes according to environmental origin, and distinguish 'contaminated' environmental metagenomes (subject to simulated in silico human faecal pollution) from uncontaminated data sets. This indicates phage-encoded ecological signals likely possess sufficient discriminatory power for use in biotechnological applications, such as development of microbial source tracking tools for monitoring water quality.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | - Fergus M Guppy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - David Diston
- Mikrobiologische & Biotechnologische Risiken Bundesamt für Gesundheit BAG, 3003, Bern, Switzerland
| | - Huw Taylor
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - James Ebdon
- School of Environment and Technology, University of Brighton, Brighton, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| |
Collapse
|
29
|
The human gut virome: form and function. Emerg Top Life Sci 2017; 1:351-362. [PMID: 33525769 DOI: 10.1042/etls20170039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.
Collapse
|
30
|
Martín-Díaz J, García-Aljaro C, Pascual-Benito M, Galofré B, Blanch AR, Lucena F. Microcosms for evaluating microbial indicator persistence and mobilization in fluvial sediments during rainfall events. WATER RESEARCH 2017; 123:623-631. [PMID: 28709106 DOI: 10.1016/j.watres.2017.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Mediterranean rivers, which are subject to long, dry periods and heavy rainfall events, could be particularly useful for understanding future climate scenarios. This study generated microcosms that mimicked riverbank sediment resuspension into the water of a typical Mediterranean river as a consequence of heavy rainfall. The mobilization and inactivation of six fecal pollution indicators and microbial source tracking markers were evaluated. The T90 values in the sediments were: 4 days for sorbitol-fermenting Bifidobacterium, 11 days for culturable E. coli, 36 days for bacteriophages infecting Bacteroides thetaiotaomicron strain GA17 and more than 42 days for qPCR-detected E. coli, somatic coliphages and sulfite-reducing clostridia spores. Bacteriophages and bacteria showed different resuspension and sedimentation patterns. The data obtained could be used in predictive models to assess the effects of climate change on surface water quality. Pathogen mobilization into the water column poses a risk for humans, animals and the natural environment, and breaches the One Health approach.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain.
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Míriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, EMGCIA, C/ General Batet 1-7, 08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001 Barcelona, Spain
| |
Collapse
|
31
|
García-Aljaro C, Ballesté E, Muniesa M, Jofre J. Determination of crAssphage in water samples and applicability for tracking human faecal pollution. Microb Biotechnol 2017; 10:1775-1780. [PMID: 28925595 PMCID: PMC5658656 DOI: 10.1111/1751-7915.12841] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022] Open
Abstract
In recent decades, considerable effort has been devoted to finding microbial source-tracking (MST) markers that are suitable to assess the health risks of faecally polluted waters, with no universal marker reported so far. In this study, the abundance and prevalence of a crAssphage-derived DNA marker in wastewaters of human and animal origins were studied by a new qPCR assay with the ultimate aim of assessing its potential as an MST marker. crAssphage showed up to 106 GC/ml in the sewage samples of human origin, in both the total DNA and the viral DNA fraction. In wastewaters containing animal faecal remains, 39% of the samples were negative for the presence of the crAssphage sequence, while those showing positive results (41% of the samples) were at least 1 log10 unit lower than the samples of human origin. Noteworthy, the log10 values of the ratio (R) crAssphage (GC/ml)/Escherichia coli (CFU/ml) varied significantly depending on the human or animal origin (R > 1.5 for human samples and R < -1.5 for animal wastewater samples. This study opens the way for further research to explore if different specific animal variants of crAssphage exist and whether other zones of the crAssphage genome are better suited to source discrimination.
Collapse
Affiliation(s)
- Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
32
|
McMinn BR, Ashbolt NJ, Korajkic A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett Appl Microbiol 2017; 65:11-26. [PMID: 28304098 PMCID: PMC6089083 DOI: 10.1111/lam.12736] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/17/2023]
Abstract
Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Nicholas J. Ashbolt
- University of Alberta, School of Public Health, 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
33
|
Yahya M, Blanch AR, Meijer WG, Antoniou K, Hmaied F, Ballesté E. Comparison of the Performance of Different Microbial Source Tracking Markers among European and North African Regions. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:760-766. [PMID: 28783792 DOI: 10.2134/jeq2016.11.0432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial source tracking (MST) has been extensively used to detect the sources of fecal pollution in water. The inclusion of MST in water management strategies improves the ecological status of the ecosystem and human and animal health under interdisciplinary analysis in all aspects of health care for humans, animals, and the environment (One Health approach). In this study, the performance of MST markers targeting host-specific Bacteroidales (HF183 and Rum-2-Bac) and species (HMBif and CWBif) were evaluated in raw sewage collected from human, ruminant, swine, and poultry sources in Tunisia, Cyprus, Ireland, and Spain. In addition, the ratio between somatic coliphages and bacteriophages infecting GA17 (SOMCPH/GA17PH) was measured in Tunisia and Spain. The obtained results showed variability of the bacterial markers between the four countries, suggesting that their usefulness could be affected by several conditions (dietary habits, agricultural practices, and climatic conditions) that differ between countries. The Rum-2-Bac marker stood out as a valid MST tool, particularly in Ireland, whereas CWBif was the best option in Tunisia, Spain, and Cyprus. The human-specific HMBif marker showed good sensitivity and specificity in Tunisia, Spain, and Ireland, whereas HF183 showed a low specificity. However, HF183 was suggested as a good human marker in Ireland and Cyprus because of its higher concentration than HMBif. Regarding viral markers, the ratio of SOMCPH/GA17PH showed a clear discrimination between human and nonhuman samples. The combined use of molecular bacterial markers and the ratio of SOMCPH/GA17PH may improve the success of MST.
Collapse
|
34
|
Leknoi Y, Mongkolsuk S, Sirikanchana K. Assessment of swine-specific bacteriophages of Bacteroides fragilis in swine farms with different antibiotic practices. JOURNAL OF WATER AND HEALTH 2017; 15:251-261. [PMID: 28362306 DOI: 10.2166/wh.2016.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.
Collapse
Affiliation(s)
- Yuranan Leknoi
- Inter-University Program on Environmental Toxicology, Technology and Management, Asian Institute of Technology, Chulabhorn Research Institute and Mahidol University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology and Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand 10400; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand 10210 and Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand 10400 E-mail:
| | - Kwanrawee Sirikanchana
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand 10210 and Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand 10400 E-mail:
| |
Collapse
|
35
|
Purnell S, Ebdon J, Buck A, Tupper M, Taylor H. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water. WATER RESEARCH 2016; 100:20-27. [PMID: 27176650 DOI: 10.1016/j.watres.2016.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 05/03/2023]
Abstract
The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results).
Collapse
Affiliation(s)
- Sarah Purnell
- Environment and Public Health Research Group, Aquatic Research Centre, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom.
| | - James Ebdon
- Environment and Public Health Research Group, Aquatic Research Centre, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Austen Buck
- Environment and Public Health Research Group, Aquatic Research Centre, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Martyn Tupper
- Thames Water Utilities Limited, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Huw Taylor
- Environment and Public Health Research Group, Aquatic Research Centre, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
36
|
Olalemi A, Purnell S, Caplin J, Ebdon J, Taylor H. The application of phage-based faecal pollution markers to predict the concentration of adenoviruses in mussels (Mytilus edulis) and their overlying waters. J Appl Microbiol 2016; 121:1152-62. [PMID: 27377287 DOI: 10.1111/jam.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/28/2022]
Abstract
AIM This study set out to determine whether phage-based indicators may provide a 'low-tech' alternative to existing approaches that might help maintain the microbial safety of shellfish and their overlying waters. METHODS AND RESULTS Mussels and their overlying waters were collected biweekly from an estuary in southeast England over a 2-year period (May 2013-April 2015) (n = 48). Levels of bacterial indicators were determined using membrane filtration and most probable number methods and those of bacteriophages were determined by direct plaque assay. The detection of adenovirus was determined using real-time polymerase chain reaction. The results revealed that somatic coliphages demonstrated the most significant correlations with AdV F and G in mussels (ρ = 0·55) and overlying waters (ρ = 0·66), followed by GB124 phages (ρ = 0·43) while Escherichia coli showed no correlation with AdV F and G in mussels. CONCLUSION This study demonstrates that the use of somatic coliphages and GB124 phages may provide a better indication of the risk of adenovirus contamination of mussels and their overlying waters than existing bacterial indicators. SIGNIFICANCE AND IMPACT OF THE STUDY Phage-based detection may be particularly advantageous in low-resource settings where viral infectious disease presents a significant burden to human health.
Collapse
Affiliation(s)
- A Olalemi
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton, UK. .,Department of Microbiology, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - S Purnell
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton, UK
| | - J Caplin
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton, UK
| | - J Ebdon
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton, UK
| | - H Taylor
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Moulsecoomb, Brighton, UK
| |
Collapse
|
37
|
Venegas C, Diez H, Blanch AR, Jofre J, Campos C. Microbial source markers assessment in the Bogotá River basin (Colombia). JOURNAL OF WATER AND HEALTH 2015; 13:801-10. [PMID: 26322765 DOI: 10.2166/wh.2015.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The microbiological indicators traditionally used to assess fecal contamination are insufficient to identify the source. The aim of this study was to detect microbial markers to identify the source of fecal pollution in the Bogotá River (Colombia). For this, we determined non-discriminating indicators such as Escherichia coli, somatic coliphages and phages infecting strain RYC2056 of Bacteroides, and potential source tracking markers as phages infecting strains GA17, HB13, and CA8 of Bacteroides, sorbitol-fermenting bifidobacteria, and molecular markers of Bifidobacterium adolescentis, Bifiodobacterium dentium, and Bacteroidetes in raw municipal wastewaters, slaughterhouse wastewaters, and the Bogotá River. Bacteriophages infecting Bacteroides strain GA17 and the molecular markers identified the wastewater sources. In contrast, sorbitol-fermenting bifidobacteria failed regarding specificity. In the Bogotá River, phages infecting strain GA17 were detected in all samples downstream of Bogotá, whereas they should be concentrated from 1 l samples in upstream samples containing less than 10(3) E. coli/100 ml to be detected. In the river water, the fraction of positive detections of molecular markers was lower than that of phages infecting strain GA17. The ratio SOMCPH/GA17PH was shown also to be a good marker. These results provide information that will allow focusing measures for sanitation of the Bogotá River.
Collapse
Affiliation(s)
- Camilo Venegas
- Department of Microbiology, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, Colombia E-mail:
| | - Hugo Diez
- Department of Microbiology, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, Colombia E-mail:
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Juan Jofre
- Department of Microbiology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Claudia Campos
- Department of Microbiology, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, Colombia E-mail:
| |
Collapse
|
38
|
Purnell S, Ebdon J, Buck A, Tupper M, Taylor H. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse. WATER RESEARCH 2015; 73:109-17. [PMID: 25655318 DOI: 10.1016/j.watres.2015.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 05/27/2023]
Abstract
The aim of this study was to assess the potential removal efficacy of viruses in a full-scale membrane bioreactor (MBR) wastewater reuse system, using a range of indigenous and 'spiked' bacteriophages (phages) of known size and morphology. Samples were taken each week for three months from nine locations at each treatment stage of the water recycling plant (WRP) and tested for a range of microbiological parameters (n = 135). Mean levels of faecal coliforms were reduced to 0.3 CFU/100 ml in the MBR product and were undetected in samples taken after the chlorination stage. A relatively large reduction (5.3 log) in somatic coliphages was also observed following MBR treatment. However, F-specific and human-specific (GB124) phages were less abundant at all stages, and demonstrated log reductions post-MBR of 3.5 and 3.8, respectively. In 'spiking' experiments, suspended 'spiked' phages (MS2 and B-14) displayed post-MBR log reductions of 2.25 and 2.30, respectively. The removal of these suspended phages, which are smaller than the membrane pore size (0.04 μm), also highlights the possible role of the membrane biofilm as an effective additional barrier to virus transmission. The findings from this study of a full-scale MBR system demonstrate that the enumeration of several phage groups may offer a practical and conservative way of assessing the ability of MBR to remove enteric viruses of human health significance. They also suggest that phage removal in MBR systems may be highly variable and may be closely related on the one hand to both the size and morphology of the viruses and, on the other, to whether or not they are attached to solids.
Collapse
Affiliation(s)
- Sarah Purnell
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom.
| | - James Ebdon
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Austen Buck
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| | - Martyn Tupper
- Thames Water Utilities Limited, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Huw Taylor
- Environment and Public Health Research Group, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
39
|
Yahya M, Hmaied F, Jebri S, Jofre J, Hamdi M. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia. J Appl Microbiol 2015; 118:1217-25. [DOI: 10.1111/jam.12774] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yahya
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - F. Hmaied
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - S. Jebri
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - J. Jofre
- Department of Microbiology; Barcelona University; Diagonal 645, 08028 Barcelona Spain
| | - M. Hamdi
- Laboratoire Ecologie Technologie Microbienne; Institut National des Sciences Appliquées de Tunis; Université de Carthage; Tunis Tunisia
| |
Collapse
|
40
|
Sirikanchana K, Wangkahad B, Mongkolsuk S. The capability of non-native strains of Bacteroides bacteria to detect bacteriophages as faecal indicators in a tropical area. J Appl Microbiol 2014; 117:1820-9. [PMID: 25207866 DOI: 10.1111/jam.12646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the use of nonlocal, already-available strains of phages to indicate faecal contamination in Thailand waters. METHODS AND RESULTS Phages of Bacteroides fragilis strains ATCC 700786 (RYC2056PH) and ATCC 51477 (HSP40PH) were measured in 71 human and animal wastewater samples in Thailand using a double-layer agar assay. Bacteriophage RYC2056PH was detected at concentrations comparable to representative human and animal wastewater samples from European and Mediterranean countries, with 61·7 and 33·3% above the threshold value of 100 PFU 100 ml(-1) in wastewater samples of human and animal origins, respectively. On the other hand, HSP40PH was detected at low concentrations in both human- and animal-polluted wastewaters. Moreover, RYC2056PH was found in 12 canal waters with human-influenced pollution and was not detected in 6 nonpolluted river waters being tested in this study. CONCLUSIONS The presence of RYC2056PH could indicate nonsource-specific faecal contamination in Thailand. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided the first evidence that bacteriophages of the European-isolated B. fragilis strain RYC2056 could be used as nonsource-specific faecal indicators in the Southeast Asian region. The results of this study support the worldwide use of Bacteroides phages as faecal indicators.
Collapse
Affiliation(s)
- K Sirikanchana
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | | | | |
Collapse
|