1
|
Wang XW, Tan X, Dang CC, Lu Y, Xie GJ, Liu BF. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments: Advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165259. [PMID: 37400035 DOI: 10.1016/j.scitotenv.2023.165259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermophilic microorganisms mediated significant element cycles and material conversion in the early Earth as well as mediating current thermal environments. Over the past few years, versatile microbial communities that drive the nitrogen cycle have been identified in thermal environments. Understanding the microbial-mediated nitrogen cycling processes in these thermal environments has important implications for the cultivation and application of thermal environment microorganisms as well as for exploring the global nitrogen cycle. This work provides a comprehensive review of different thermophilic nitrogen-cycling microorganisms and processes, which are described in detail according to several categories, including nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium. In particular, we assess the environmental significance and potential applications of thermophilic nitrogen-cycling microorganisms, and highlight knowledge gaps and future research opportunities.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Shi S, He L, Zhou Y, Fan X, Lin Z, He X, Zhou J. Response of nitrogen removal performance and microbial community to a wide range of pH in thermophilic denitrification system. BIORESOURCE TECHNOLOGY 2022; 352:127061. [PMID: 35351554 DOI: 10.1016/j.biortech.2022.127061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Thermophilic biological nitrogen removal would be a promising alternative to conventional approaches for the treatment of high-temperature wastewater. In this study, the response of thermophilic denitrification system (50 °C) to a wide range of pH (3-11) was investigated. The results showed that thermophilic denitrification could adapt to pH 5-11, but suffered from obvious nitrite and ammonia accumulation at pH 3. Microbial insights indicated that the enrichment of specific functional thermophiles has contributed to the tolerance towards unfavorable pH. Besides, the potential selecting advantage of nitrate reducing bacteria over nitrite reducing bacteria and the enrichment of dissimilatory nitrate reduction to ammonium (DNRA) bacteria could be responsible for the nitrite and ammonia accumulation at pH 3. Moreover, the functional gene prediction denoted higher narG/(nirK + nirS) and nrfA at pH 3, which could facilitate partial denitrification and DNRA. These findings could provide new insight into the application of thermophilic biological nitrogen removal.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
3
|
Shi S, Lin Z, Zhou J, Fan X, Huang Y, Zhou J. Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system. BIORESOURCE TECHNOLOGY 2022; 344:126190. [PMID: 34710607 DOI: 10.1016/j.biortech.2021.126190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic biological nitrogen removal will provide low-cost strategies for the treatment of high-temperature nitrogenous wastewater (greater than 45 ℃). In this study, a thermophilic denitrifying granular sludge system was established at 50 ℃ and compared with mesophilic systems (30 ℃ and 40 ℃). The results showed a significant increase in COD and nitrate removal rate with the elevating temperature. Besides, the microbial community analysis indicated an obvious succession of key functional bacteria at different temperatures. Enriched thermophiles including Truepera, Azoarcus, and Elioraea were the dominant denitrifiers in the thermophilic denitrifying granular sludge system, which ensured the high nitrate removal at 50 ℃. Moreover, the functional gene prediction also denoted an enrichment of nitrate reduction genes and carbon metabolism pathways at 50 ℃, which could explain the enhancement of thermophilic denitrification. These findings could provide new insight into the application of denitrifying granular sludge in thermophilic wastewater treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
4
|
Performance of Full-Scale Thermophilic Membrane Bioreactor and Assessment of the Effect of the Aqueous Residue on Mesophilic Biological Activity. WATER 2021. [DOI: 10.3390/w13131754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To date, the management of high-strength wastewater represents a serious problem. This work aims to evaluate the performance on chemical pollutants and on sludge production of one of the two full-scale thermophilic membrane bioreactors (ThMBRs) currently operational in Italy, based on monitoring data of the last two and a half years. Removal yields on COD, N-NOx, non-ionic and anionic surfactants (TAS and MBAS), increased with the input load up to 81.9%, 97.6%, 94.7%, and 98.4%, respectively. In the period of stability, a very low value of sludge production (0.052 kgVS kgCOD−1) was observed. Oxygen uptake rate (OUR) tests allowed us to exclude the possibility that mesophilic biomass generally exhibited any acute inhibition following contact with the aqueous residues (ARs), except for substrates that presented high concentrations of perfluoro alkyl substances (PFAS), cyanides and chlorides. In one case, nitrifying activity was partially inhibited by high chlorides and PFAS concentration, while in another the substrate determined a positive effect, stimulating the phenomenon of nitrification. Nitrogen uptake rate (NUR) tests highlighted the feasibility of reusing the organic carbon contained in the substrate as a source in denitrification, obtaining a value comparable with that obtained using the reference solution with methanol. Therefore, respirometric tests proved to be a valid tool to assess the acute effect of AR of ThMBR on the activity of mesophilic biomass in the case of recirculation.
Collapse
|
5
|
Life Cycle Assessment of the Mesophilic, Thermophilic, and Temperature-Phased Anaerobic Digestion of Sewage Sludge. WATER 2020. [DOI: 10.3390/w12113140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study the environmental impact of the anaerobic digestion (AD) of sewage sludge within an activated sludge wastewater treatment plant (WWTP) was investigated. Three alternative AD systems (mesophilic, thermophilic, and temperature-phased anaerobic digestion (TPAD)) were compared to determine which system may have the best environmental performance. Two life cycle assessments (LCA) were performed considering: (i) the whole WWTP (for a functional unit (FU) of 1 m3 of treated wastewater), and (ii) the sludge line (SL) alone (for FU of 1 m3 of produced methane). The data for the LCA were obtained from previous laboratory experimental work in combination with full-scale WWTP and literature. According to the results, the WWTP with TPAD outperforms those with mesophilic and thermophilic AD in most analyzed impact categories (i.e., Human toxicity, Ionizing radiation, Metal and Fossil depletion, Agricultural land occupation, Terrestrial acidification, Freshwater eutrophication, and Ozone depletion), except for Climate change where the WWTP with mesophilic AD performed better than with TPAD by 7%. In the case of the SL alone, the production of heat and electricity (here accounted for as avoided environmental impacts) led to credits in most of the analyzed impact categories except for Human toxicity where credits did not balance out the impacts caused by the wastewater treatment system. The best AD alternative was thermophilic concerning all environmental impact categories, besides Climate change and Human toxicity. Differences between both LCA results may be attributed to the FU.
Collapse
|
6
|
Vandekerckhove TGL, Boon N, Vlaeminck SE. Pioneering on single-sludge nitrification/denitrification at 50 °C. CHEMOSPHERE 2020; 252:126527. [PMID: 32213375 DOI: 10.1016/j.chemosphere.2020.126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92-100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g-1 VSS d-1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.
Collapse
Affiliation(s)
- Tom G L Vandekerckhove
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
7
|
Vandekerckhove TGL, Props R, Carvajal-Arroyo JM, Boon N, Vlaeminck SE. Adaptation and characterization of thermophilic anammox in bioreactors. WATER RESEARCH 2020; 172:115462. [PMID: 31958594 DOI: 10.1016/j.watres.2019.115462] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05-0.07 °C d-1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L-1 d-1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L-1 d-1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g-1 VSS d-1, and the growth rate was estimated at 0.075-0.19 d-1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93-1.42 g NO2--Nremoved g-1 NH4+-Nremoved and 0.16-0.35 g NO3--Nproduced g-1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original "Ca. Brocadia" and "Ca. Jettenia" taxa, yielding Planctomycetes members with only 94-95% similarity to "Ca. Brocadia anammoxidans" and "Ca. B. caroliniensis", accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.
Collapse
Affiliation(s)
- Tom G L Vandekerckhove
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - José M Carvajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
8
|
Santorio S, Fra-Vázquez A, Val Del Rio A, Mosquera-Corral A. Potential of endogenous PHA as electron donor for denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133747. [PMID: 31419685 DOI: 10.1016/j.scitotenv.2019.133747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The use of wastewater streams to obtain polyhydroxyalkanoates (PHA) as high added-value products is widely studied. However, nitrogen removal is not well integrated into this process. In this study, the optimal conditions to track the specific endogenous denitrifying activity (SEDA) driven by PHA as carbon source were selected as: sludge concentration of 0.5-2 g VSS/L, CODPHA/N ratio higher than 5.4 g/g and between 40 and 60 mg NO3--N/L. The seeding biomass used to perform the activity tests was collected from two sequencing batch reactors and was able to store up to 69% wt/wt of PHA. SEDA values of 0.26-0.39 g N2-N/(g VSSact d) were achieved, which proved the potential of PHA-accumulating mixed microbial cultures to be used in nitrogen removal processes. The results indicated that there is not a preference in the consumption of hydroxybutyrate over hydroxyvalerate and that PHA concentrations lower than 5% wt/wt do not allow the obtainment of the maximum SEDA value. Finally, N2O gas production was not detected in the SEDA experiments.
Collapse
Affiliation(s)
- S Santorio
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela. E- 15705 Santiago de Compostela, Spain.
| | - A Fra-Vázquez
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela. E- 15705 Santiago de Compostela, Spain
| | - A Val Del Rio
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela. E- 15705 Santiago de Compostela, Spain
| | - A Mosquera-Corral
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela. E- 15705 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Vandekerckhove TGL, Kerckhof FM, De Mulder C, Vlaeminck SE, Boon N. Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal. WATER RESEARCH 2019; 156:34-45. [PMID: 30904709 DOI: 10.1016/j.watres.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.20-0.24 g VSS g-1 N, resulting mainly from a high AOA yield (0.16-0.20 g VSS g-1 N), which was reflected in a high AOA abundance in the community (57-76%) compared to NOB (5-11%). Batch-wise determination of decay rates (AOA: 0.23-0.29 d-1; NOB: 0.32-0.43 d-1) rendered an overestimation compared to in situ estimations of overall decay rate (0.026-0.078 d-1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.12-0.15 d-1 and 0.13-0.33 d-1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.15-0.55 mg O2 L-1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L-1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.
Collapse
Affiliation(s)
- Tom G L Vandekerckhove
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Chaïm De Mulder
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| |
Collapse
|
10
|
Zhang ZZ, Ji YX, Cheng YF, Xu LZJ, Jin RC. Increased salinity improves the thermotolerance of mesophilic anammox consortia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:710-716. [PMID: 29990918 DOI: 10.1016/j.scitotenv.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
While the application of anammox-based process for mesophilic sidestream treatment is at present the state of the art and mainstream treatment at ambient temperature is also in development, the feasibility of thermophilic anammox process is still unclear. This study investigated the effects of salinity on the thermotolerance of mesophilic anammox sludge. In batch activity tests, 45 °C seems to be the critical temperature for the tolerance of mesophilic anammox consortia without acclimatization or amendments. The optimal anammox activity at 40, 42.5, and 45 °C can be achieved with the amendment of salt at 5-8, 8-10, and ~12 g NaCl L-1, respectively. However, this improvement effect was limited at 50 °C or when the shock duration was longer than 24 h even at 45 °C. In continuous-flow bioreactors, mesophilic anammox consortia could gradually adapt to 40-50 °C under a transition of 2.5 °C, and the performance was enhanced by an increase in salinity, which may be associated with the increase in extracellular polymeric substances. A nitrogen removal rate of 0.53 kgN m-3 d-1 was finally obtained at 50 °C. Overall, these interesting results facilitate further opportunities for thermophilic anammox process.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Xin Ji
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
11
|
Vandekerckhove TGL, De Mulder C, Boon N, Vlaeminck SE. Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal. BIORESOURCE TECHNOLOGY 2018; 269:104-112. [PMID: 30153548 DOI: 10.1016/j.biortech.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In specific municipal and industrial cases, thermophilic wastewater treatment (>45 °C) might bring cost advantages over commonly applied mesophilic processes (10-35 °C). To develop such a novel process, one needs sound parameters on kinetics, sludge yield and sludge settleability of three heterotrophic conversions: aerobic carbon removal, denitritation and denitrification. These features were evaluated in acetate-fed sequencing batch reactors (30, 40, 50 and 60 °C). Higher temperatures were accompanied by lower sludge production and maximum specific removal rates, resulting mainly from lower maximum growth rates. Thermophilic denitritation was demonstrated for the first time, with lower sludge production (18-26%), higher nitrogen removal rates (24-92%) and lower carbon requirement (40%) compared to denitrification. Acceptable settling of thermophilic aerobic (60 °C) and anoxic biomass (50 and 60 °C) was obtained. Overall, this parameter set may catalyze the establishment of thermophilic nitrogen removal, once nitritation and nitratation are characterized. Furthermore, waters with low COD/N ratio might benefit from thermophilic nitritation/denitritation.
Collapse
Affiliation(s)
- Tom G L Vandekerckhove
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Chaïm De Mulder
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
12
|
Luo H, Song Y, Zhou Y, Yang L, Zhao Y. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5509-5520. [PMID: 28028705 DOI: 10.1007/s11356-016-8233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
ABS resin wastewater is a high-temperature nitrogenous organic wastewater. It can be successfully treated with anoxic/aerobic (A/O) process. In this study, the effect of temperature on nitrogen removal and microbial community after quick temperature rise (QTR) was investigated. It was indicated that QTR from 25 to 30 °C facilitated the microbial growth and achieved a similar effluent quality as that at 25 °C. QTR from 25 to 35 °C or 40 °C resulted in higher effluent concentration of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), and total phosphorus (TP). Illumina MiSeq pyrosequencing analysis illustrated that the richness and diversity of the bacterial community was decreased as the temperature was increased. The percentage of many functional groups was changed significantly. QTR from 25 to 40 °C also resulted in the inhibition of ammonia oxidation rate and high concentration of free ammonia, which then inhibited the growth of NOB (Nitrospira), and thus resulted in nitrite accumulation. The high temperature above 35 °C promoted the growth of a denitrifying bacterial genus, Denitratisoma, which might increase N2O production during the denitrification process.
Collapse
Affiliation(s)
- Huilong Luo
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China.
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yudong Song
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuexi Zhou
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liwei Yang
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
| | - Yaqian Zhao
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, People's Republic of China
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Meerburg FA, Vlaeminck SE, Roume H, Seuntjens D, Pieper DH, Jauregui R, Vilchez-Vargas R, Boon N. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. WATER RESEARCH 2016; 100:137-145. [PMID: 27183209 DOI: 10.1016/j.watres.2016.04.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
High-rate activated sludge processes allow for the recovery of organics and energy from wastewaters. These systems are operated at a short sludge retention time and high sludge-specific loading rates, which results in a higher sludge yield and better digestibility than conventional, low-rate activated sludge. Little is known about the microbial ecology of high-rate systems. In this work, we address the need for a fundamental understanding of how high-rate microbial communities differ from low-rate communities. We investigated the high-rate and low-rate communities in a sewage treatment plant in relation to environmental and operational variables over a period of ten months. We demonstrated that (1) high-rate and low-rate communities are distinctly different in terms of richness, evenness and composition, (2) high-rate community dynamics are more variable and less shaped by deterministic factors compared to low-rate communities, (3) sub-communities of continuously core and transitional members are more shaped by deterministic factors than the continuously rare members, both in high-rate and low-rate communities, and (4) high-rate community members showed a co-occurrence pattern similar to that of low-rate community members, but were less likely to be correlated to environmental and operational variables. These findings provide a basis for further optimization of high-rate systems, in order to facilitate resource recovery from wastewater.
Collapse
Affiliation(s)
- Francis A Meerburg
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Hugo Roume
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dries Seuntjens
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ramiro Vilchez-Vargas
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Courtens ENP, Vandekerckhove T, Prat D, Vilchez-Vargas R, Vital M, Pieper DH, Meerbergen K, Lievens B, Boon N, Vlaeminck SE. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers. WATER RESEARCH 2016; 92:94-103. [PMID: 26841233 DOI: 10.1016/j.watres.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.
Collapse
Affiliation(s)
- Emilie N P Courtens
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Vandekerckhove
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Delphine Prat
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ramiro Vilchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ken Meerbergen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
15
|
A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME JOURNAL 2016; 10:2293-303. [PMID: 26894446 DOI: 10.1038/ismej.2016.8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Abstract
The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.
Collapse
|
16
|
Cema G, Żabczyński S, Ziembińska-Buczyńska A. The assessment of the coke wastewater treatment efficacy in rotating biological contractor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:1202-1210. [PMID: 26942544 DOI: 10.2166/wst.2015.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.
Collapse
Affiliation(s)
- G Cema
- Environmental Biotechnology Department, The Silesian University of Technology, Akademicka 2, Gliwice 44-100, Poland E-mail:
| | - S Żabczyński
- Environmental Biotechnology Department, The Silesian University of Technology, Akademicka 2, Gliwice 44-100, Poland E-mail:
| | - A Ziembińska-Buczyńska
- Environmental Biotechnology Department, The Silesian University of Technology, Akademicka 2, Gliwice 44-100, Poland E-mail:
| |
Collapse
|