1
|
Long M, Zheng CW, Roldan MA, Zhou C, Rittmann BE. Co-Removal of Perfluorooctanoic Acid and Nitrate from Water by Coupling Pd Catalysis with Enzymatic Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11514-11524. [PMID: 38757358 DOI: 10.1021/acs.est.3c10377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe, Arizona 85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
- Institute for the Environment and Health, Nanjing University, Suzhou Campus, Suzhou 215163, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Zuo Z, Niu C, Zhao X, Lai CY, Zheng M, Guo J, Hu S, Liu T. Biological bromate reduction coupled with in situ gas fermentation in H 2/CO 2-based membrane biofilm reactor. WATER RESEARCH 2024; 254:121402. [PMID: 38461600 DOI: 10.1016/j.watres.2024.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Bromate, a carcinogenic contaminant generated in water disinfection, presents a pressing environmental concern. While biological bromate reduction is an effective remediation approach, its implementation often necessitates the addition of organics, incurring high operational costs. This study demonstrated the efficient biological bromate reduction using H2/CO2 mixture as the feedstock. A membrane biofilm reactor (MBfR) was used for the efficient delivery of gases. Long-term reactor operation showed a high-level bromate removal efficiency of above 95 %, yielding harmless bromide as the final product. Corresponding to the short hydraulic retention time of 0.25 d, a high bromate removal rate of 4 mg Br/L/d was achieved. During the long-term operation, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed, which can be regulated by controlling the gas flow. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms underpinning the efficient bromate removal, showing that the microbial bromate reduction was primarily driven by the VFAs produced from in situ gas fermentation. Microbial community analysis showed an increased abundance of Bacteroidota group from 4.0 % to 18.5 %, which is capable of performing syngas fermentation, and the presence of heterotrophic denitrifiers (e.g., Thauera and Brachymonas), which are known to perform bromate reduction. Together these results for the first time demonstrated the feasibility of using H2/CO2 mixture for bromate removal coupled with in situ VFAs production. The findings can facilitate the development of cost-effective strategies for groundwater and drinking water remediation.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xinyu Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
3
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
4
|
Wang S, Wang J, Tian Y, Wang J. Uranium removal in groundwater by Priestia sp. isolated from uranium-contaminated mining soil. CHEMOSPHERE 2024; 351:141204. [PMID: 38237778 DOI: 10.1016/j.chemosphere.2024.141204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Priestia sp. WW1 was isolated from a uranium-contaminated mining soil and identified. The uranium removal characteristics and mechanism of Priestia sp. WW1 were investigated. The results showed that the removal efficiency of uranium decreased with the increase of initial uranium concentration. When the uranium initial concentration was 5 mg/L, the uranium removal efficiency achieved 92.1%. The increase of temperature could promote the uranium removal. Carbon source could affect the removal rate of uranium, which was the fastest when the methanol was used as carbon source. The solution pH had significant effect on the uranium removal efficiency, which reached the maximum under solution pH 5.0. The experimental results and FTIR as well as XPS demonstrated that Priestia sp. WW1 could remove uranium via both adsorption and reduction. The common chloride ions, sulfate ions, Mn(II) and Cu(II) enhanced the uranium removal, while Fe(III) depressed the uranium removal. The Priestia sp. WW1 could effectively remove the uranium in the actual mining groundwater, and the increase of initial biomass could improve the removal efficiency of uranium in the actual mining groundwater. This study provided a promising bacterium for uranium remediation in the groundwater.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jiazhuo Wang
- China Academy of Urban Planning & Design, Beijing, 100044, PR China
| | - Yu Tian
- Institute of Water Resources and Hydropower Research, Beijing, 100038, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
5
|
Newman-Portela AM, Krawczyk-Bärsch E, Lopez-Fernandez M, Bok F, Kassahun A, Drobot B, Steudtner R, Stumpf T, Raff J, Merroun ML. Biostimulation of indigenous microbes for uranium bioremediation in former U mine water: multidisciplinary approach assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7227-7245. [PMID: 38157180 PMCID: PMC10821841 DOI: 10.1007/s11356-023-31530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO42-) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO42-: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.01 mg/L; SO42-: 0.5 mg/L). U and SO42- seemed to influence the microbial diversity of the two water samples. Microbial diversity analysis identified U(VI)-reducing bacteria (e.g. Desulfurivibrio) and wood-degrading fungi (e.g. Cadophora) providing as electron donors for the growth of U-reducers. U-bioreduction experiments were performed to screen electron donors (glycerol, vanillic acid, and gluconic acid) for Schlema-Alberoda U-mine water bioremediation purpose. Thermodynamic speciation calculations show that under experimental conditions, U(VI) is not coordinated to the amended electron donors. Glycerol was the best-studied electron donor as it effectively removed 99% of soluble U, 95% of Fe, and 58% of SO42- from the mine water, probably by biostimulation of indigenous microbes. Vanillic acid removed 90% of U, and no U removal occurred using gluconic acid.
Collapse
Affiliation(s)
- Antonio M Newman-Portela
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Evelyn Krawczyk-Bärsch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Margarita Lopez-Fernandez
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Kassahun
- WISMUT GmbH, Jagdschänkenstraße 29, 09117, Chemnitz, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| |
Collapse
|
6
|
Levi J, Guo S, Kavadiya S, Luo Y, Lee CS, Jacobs HP, Holman Z, Wong MS, Garcia-Segura S, Zhou C, Rittmann BE, Westerhoff P. Comparing methods to deposit Pd-In catalysts on hydrogen-permeable hollow-fiber membranes for nitrate reduction. WATER RESEARCH 2023; 235:119877. [PMID: 36989800 DOI: 10.1016/j.watres.2023.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Catalytic hydrogenation of nitrate in water has been studied primarily using nanoparticle slurries with constant hydrogen-gas (H2) bubbling. Such slurry reactors are impractical in full-scale water treatment applications because 1) unattached catalysts are difficult to be recycled/reused and 2) gas bubbling is inefficient for delivering H2. Membrane Catalyst-film Reactors (MCfR) resolve these limitations by depositing nanocatalysts on the exterior of gas-permeable hollow-fiber membranes that deliver H2 directly to the catalyst-film. The goal of this study was to compare the technical feasibility and benefits of various methods for attaching bimetallic palladium/indium (Pd/In) nanocatalysts for nitrate reduction in water, and subsequently select the most effective method. Four Pd/In deposition methods were evaluated for effectiveness in achieving durable nanocatalyst immobilization on the membranes and repeatable nitrate-reduction activity: (1) In-Situ MCfR-H2, (2) In-Situ Flask-Synthesis, (3) Ex-Situ Aerosol Impaction-Driven Assembly, and (4) Ex-Situ Electrostatic. Although all four deposition methods achieved catalyst-films that reduced nitrate in solution (≥ 1.1 min-1gPd-1), three deposition methods resulted in significant palladium loss (>29%) and an accompanying decline in nitrate reactivity over time. In contrast, the In-Situ MCfR-H2 deposition method had negligible Pd loss and remained active for nitrate reduction over multiple operational cycles. Therefore, In-Situ MCfR-H2 emerged as the superior deposition method and can be utilized to optimize catalyst attachment, nitrate-reduction, and N2 selectivity in future studies with more complex water matrices, longer treatment cycles, and larger reactors.
Collapse
Affiliation(s)
- Juliana Levi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Sujin Guo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shalinee Kavadiya
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yihao Luo
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Hunter P Jacobs
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zachary Holman
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Bruce E Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States; Biodesign Swette Center for Environmental Biotechnology, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States.
| |
Collapse
|
7
|
Lu J, Zhang B, Geng R, Lian G, Dong H. Independent and synergistic bio-reductions of uranium (VI) driven by zerovalent iron in aquifer. WATER RESEARCH 2023; 233:119778. [PMID: 36871383 DOI: 10.1016/j.watres.2023.119778] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Zerovalent iron [Fe(0)] can donate electron for bioprocess, but microbial uranium (VI) [U(VI)] reduction driven by Fe(0) is still poorly understood. In this study, Fe(0) supported U(VI) bio-reduction was steadily achieved in the 160-d continuous-flow biological column. The maximum removal efficiency and capacity of U(VI) were 100% and 46.4 ± 0.52 g/(m3·d) respectively, and the longevity of Fe(0) increased by 3.09 times. U(VI) was reduced to solid UO2, while Fe(0) was finally oxidized to Fe(III). Autotrophic Thiobacillus achieved U(VI) reduction coupled to Fe(0) oxidation, verified by pure culture. H2 produced from Fe(0) corrosion was consumed by autotrophic Clostridium for U(VI) reduction. The detected residual organic intermediates were biosynthesized with energy released from Fe(0) oxidation and utilized by heterotrophic Desulfomicrobium, Bacillus and Pseudomonas to reduce U(VI). Metagenomic analysis found the upregulated genes for U(VI) reduction (e.g., dsrA and dsrB) and Fe(II) oxidation (e.g., CYC1 and mtrA). These functional genes were also transcriptionally expressed. Cytochrome c and glutathione responsible for electron transfer also contributed to U(VI) reduction. This study reveals the independent and synergistic pathways for Fe(0)-dependent U(VI) bio-reduction, providing promising remediation strategy for U(VI)-polluted aquifers.
Collapse
Affiliation(s)
- Jianping Lu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Rongyue Geng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Guoxi Lian
- School of Environment, Beijing Normal University, Beijing 100875, PR China; The Fourth Research and Design Engineering Institute of China National Nuclear Corporation, Shijiazhuang 050021, PR China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science and Resources, China University of Geosciences Beijing, Beijing 100083, PR China
| |
Collapse
|
8
|
Zheng CW, Zhou C, Luo YH, Long M, Long X, Zhou D, Bi Y, Yang S, Rittmann BE. Coremoval of Energetics and Oxyanions via the In Situ Coupling of Catalytic and Enzymatic Destructions: A Solution to Ammunition Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:666-673. [PMID: 36445010 DOI: 10.1021/acs.est.2c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130024, China
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona85281, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, Arizona85281, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
9
|
Liu Y, Xi Y, Xie T, Liu H, Su Z, Huang Y, Xu W, Wang D, Zhang C, Li X. Enhanced removal of diclofenac via coupling Pd catalytic and microbial processes in a H 2-based membrane biofilm reactor: Performance, mechanism and biofilm microbial ecology. CHEMOSPHERE 2022; 307:135597. [PMID: 35817179 DOI: 10.1016/j.chemosphere.2022.135597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DCF) is a most widely used anti-inflammatory drug, which has attracted worldwide attention given its low biodegradability and ecological damage, especially toxic effects on mammals including humans. In this study, a H2-based membrane biofilm reactor (H2-MBfR) was constructed with well-dispersed Pd nanoparticles generated in situ. The Pd-MBfR was applied for catalytic reductive dechlorination of DCF. In batch tests, DCF concentration had significantly effect on the rate and extent DCF removal, and NO3- had negative impact on DCF reductive dechlorination. Over 67% removal of 0.5 mg/L DCF and 99% removal of 10 mg/L NO3--N were achieved in 90 min, and the highest removal of 97% was obtained at 0.5 mg/L DCF in the absence of NO3-. Over 78 days of continuous operation, the highest steady-state removal flux of DCF was 0.0097 g/m2/d. LC-MS analysis indicated that the major product was 2-anilinephenylacetic acid (APA). Dechlorination was the main removal process of DCF mainly owing to the catalytic reduction by PdNPs, microbial reduction, and the synergistic reduction of microbial and PdNPs catalysis using direct delivery of H2. Moreover, DCF reductive Dechlorination shifted the microbial community in the biofilms and Sporomusa was responsible for DCF degradation. In summary, this work expands a remarkable feasibility of sustainable catalytic removal of DCF.
Collapse
Affiliation(s)
- Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
10
|
Luo YH, Long M, Zhou Y, Zhou C, Zheng X, Rittmann BE. Hydrodehalogenation of Trichlorofluoromethane over Biogenic Palladium Nanoparticles in Ambient Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13357-13367. [PMID: 36070436 DOI: 10.1021/acs.est.2c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among a number of persistent chlorofluorocarbons (CFCs, or freons), the emissions of trichlorofluoromethane (CFCl3, CFC-11) have been increasing since 2002. Zero-valent-Pd (Pd0) catalysts are known to hydrodehalogenate CFCs; however, most studies rely on cost-inefficient and eco-unfriendly chemical synthesis of Pd0NPs and harsh reaction conditions. In this study, we synthesized Pd0 nanoparticles (Pd0NPs) using D. vulgaris biomass as the support and evaluated hydrodehalogenation of CFC-11 catalyzed by the biogenic Pd0NPs. The presence of D. vulgaris biomass stabilized and dispersed 3-6 nm Pd0NPs that were highly active. We documented, for the first time, Pd0-catalyzed simultaneous hydrodechlorination and hydrodefluorination of CFC-11 at ambient conditions (room temperature and 1 atm). More than 70% CFC-11 removal was achieved within 15 h with a catalytic activity of 1.5 L/g-Pd/h, dechlorination was 50%, defluorination was 41%, and selectivity to fully dehalogenated methane was >30%. The reaction pathway had a mixture of parallel and sequential hydrodehalogenation. In particular, hydrodefluorination was favored by higher H2 availability and Pd0:CFC-11 ratio. This study offers a promising strategy for efficient and sustainable treatment of freon-contaminated water.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University,No.1, Shizishan Street, Hongshan District, Wuhan Hubei Province 430070, P.R.China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, P.R.China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
11
|
Abstract
Due to rapid industrialization, urbanization, and surge in modern human activities, water contamination is a major threat to humanity globally. Contaminants ranging from organic compounds, dyes, to inorganic heavy metals have been of major concern in recent years. This necessitates the development of affordable water remediation technologies to improve water quality. There is a growing interest in nanotechnology recently because of its application in eco-friendly, cost-effective, and durable material production. This study presents a review of recent nanocomposite technologies based on clay, applied in the removal of heavy metals from wastewater, and highlights the shortcomings of existing methods. Recently published reports, articles, and papers on clay-based nanocomposites for the removal of heavy metals have been reviewed. Currently, the most common methods utilized in the removal of heavy metals are reverse osmosis, electrodialysis, ion exchange, and activated carbon. These methods, however, suffer major shortcomings such as inefficiency when trace amounts of contaminant are involved, uneconomical costs of operation and maintenance, and production of contaminated sludge. The abundance of clay on the Earth’s surface and the ease of modification to improve adsorption capabilities have made it a viable candidate for the synthesis of nanocomposites. Organoclay nanocomposites such as polyacrylamide-bentonite, polyaniline-montmorillonite, and β-cyclodextrin-bentonite have been synthesized for the selective removal of various heavy metals such as Cu2+, Co2+, among others. Bacterial clay nanocomposites such as E. coli kaolinite nanocomposites have also been successfully synthesized and applied in the removal of heavy metals. Low-cost nanocomposites of clay using biopolymers like chitosan and cellulose are especially in demand due to the cumulative abundance of these materials in the environment. A comparative analysis of different synthetic processes to efficiently remove heavy metal contaminants with clay-based nanocomposite adsorbents is made.
Collapse
|
12
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
13
|
Microbial transformations by sulfur bacteria can recover value from phosphogypsum: A global problem and a possible solution. Biotechnol Adv 2022; 57:107949. [PMID: 35337932 DOI: 10.1016/j.biotechadv.2022.107949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Rising global population and affluence are increasing demands for food production and the phosphorus (P) fertilizers needed to grow that food. Essential are new approaches for managing the growing amount of phosphogypsum (PG) that is a by-product of phosphoric-acid production from phosphate rock. Today, only ~15% of the worldwide production of PG is recycled, mainly for agriculture and road construction. This review addresses microbial valorization of PG through strategies that apply sulfur-transforming bacteria: sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB). The focus is on recovering elemental sulfur (S0), which can be used to make the sulfuric acid needed to produce phosphoric acid from rock phosphate. Our review provides in-depth understanding of the microbiological, chemical, and technological bases for microbial reclamation of S0 from PG. The review presents the principles and practices for sulfate leaching from PG, reduction of sulfate to sulfide by SRB, and oxidation of sulfide to S0 by SOB. The choice of electron donor for SRB, control of oxygen delivery to SOB, and nutrient requirements are emphasized. Although microorganism-based technologies for PG reclamation are far from mature, the efficiency of such SRB- and SOB-based processes has been documented at laboratory and industrial scales. This review should spur biotechnological advances toward recovering value from PG.
Collapse
|
14
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
15
|
Sustainable Remedy Waste to Generate SiO2 Functionalized on Graphene Oxide for Removal of U(VI) Ions. SUSTAINABILITY 2022. [DOI: 10.3390/su14052699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hummer process is applied to generate graphene oxide from carbon stocks’ discharged Zn-C batteries waste. SiO2 is produced from rice husks through the wet process. Subsequently, SiO2 reacted with graphene oxide to form silica/graphene oxide (SiO2/GO) as a sorbent material. XRD, BET, SEM, EDX, and FTIR were employed to characterize SiO2/GO. Factors affecting U(VI) sorption on SiO2/GO, including pH, sorption time, a dosage of SiO2/GO, U(VI) ions’ concentration, and temperature, were considered. The experimental data consequences indicated that the uptake capacity of SiO2/GO towards U(VI) is 145.0 mg/g at a pH value of 4.0. The kinetic calculations match the pseudo second-order model quite well. Moreover, the sorption isotherm is consistent with the Langmuir model. The sorption procedures occur spontaneously and randomly, as well as exothermically. Moreover, SiO2/GO has essentially regenerated with a 0.8 M H2SO4 and 1:50 S:L phase ratio after 60 min of agitation time. Lastly, the sorption and elution were employed in seven cycles to check the persistent usage of SiO2/GO.
Collapse
|
16
|
Chen J, Lu J, Chen S, Wang J, Zhang B. Synchronous bio-reduction of Uranium(VI) and Vanadium(V) in aquifer: Performance and mechanisms. CHEMOSPHERE 2022; 288:132539. [PMID: 34648787 DOI: 10.1016/j.chemosphere.2021.132539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Uranium and vanadium commonly co-exist in groundwater aquifer where uranium was smelted from vanadium tailings. However, little is known about interrelationships of U(VI) and V(V) during their bio-reduction processes. In this work, 92.7 ± 1.52% U(VI) and 100% V(V) were simultaneously removed with sodium acetate as the sole exogenous electron donor and carbon source under anaerobic condition. Various conditions (i.e., increased uranium, reduced hydraulic retention time and acetate) were observed to affect removal efficiencies. Characterization of column fillings indicated that U(VI) was precipitated to U(IV) and V(V) was reduced to insoluble V(IV). Microbial community structure was observed to change, where Aquabacterium and Hydrogenophaga promoted bioreductions of U(VI) and V(V). Enriched Novosphingobium and Rhodobacter also played a vital role in reducing U(VI) and V(V). These findings could be used to study the biogeochemical fates of U(VI) and V(V) in the aquifer and to remediate groundwater co-contaminated by U(VI) and V(V).
Collapse
Affiliation(s)
- Junlin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Siming Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Jiawen Wang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
17
|
Bi C, Zheng B, Yuan Y, Ning H, Gou W, Guo J, Chen L, Hou W, Li Y. Phosphate group functionalized magnetic metal-organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution. Sci Rep 2021; 11:24328. [PMID: 34934053 PMCID: PMC8692531 DOI: 10.1038/s41598-021-03246-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
The phosphate group functionalized metal-organic frameworks (MOFs) as the adsorbent for removal of U(VI) from aqueous solution still suffer from low adsorption efficiency, due to the low grafting rate of groups into the skeleton structure. Herein, a novel phosphate group functionalized metal-organic framework nanoparticles (denoted as Fe3O4@SiO2@UiO-66-TPP NPs) designed and prepared by the chelation between Zr and phytic acid, showing fast adsorption rate and outstanding selectivity in aqueous media including 10 coexisting ions. The Fe3O4@SiO2@UiO-66-TPP was properly characterized by TEM, FT-IR, BET, VSM and Zeta potential measurement. The removal performance of Fe3O4@SiO2@UiO-66-TPP for U(VI) was investigated systematically using batch experiments under different conditions, including solution pH, incubation time, temperature and initial U(VI) concentration. The adsorption kinetics, isotherm, selectivity studies revealed that Fe3O4@SiO2@UiO-66-TPP NPs possess fast adsorption rates (approximately 15 min to reach equilibrium), high adsorption capacities (307.8 mg/g) and outstanding selectivity (Su = 94.4%) towards U(VI), which in terms of performance are much better than most of the other magnetic adsorbents. Furthermore, the adsorbent could be reused for U(VI) removal without obvious loss of adsorption capacity after five consecutive cycles. The research work provides a novel strategy to assemble phosphate group-functionalized MOFs.
Collapse
Affiliation(s)
- Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China
| | - Baoxin Zheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Ye Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China
| | - Jianghong Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China
| | - Langxing Chen
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
18
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
19
|
Ouyang Y, Xu Y, Zhao L, Deng M, Yang P, Peng G, Ke G. Preparation of ZnNiAl-LDHs microspheres and their adsorption behavior and mechanism on U(VI). Sci Rep 2021; 11:21625. [PMID: 34732804 PMCID: PMC8566569 DOI: 10.1038/s41598-021-01133-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Ternary zinc-nickel-aluminum hydrotalcites (ZnNiAl-LDHs) were prepared by hydrothermal synthesis. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption-desorption (BET) and other test techniques. ZnNiAl-LDHs was applied in the treatment of uranium-containing wastewater, the effects of initial pH of the solution, adsorption temperature and contact time on its adsorption performance were systematically investigated, and the adsorption performance of ZnNiAl-LDHs and ZnAl-LDHs on uranyl ions were compared. The result showed that ZnNiAl-LDHs were 3D microspheres self-assembled from flakes, with a specific surface area of 102.02 m2/g, which was much larger than that of flake ZnAl-LDHs (18.49 m2/g), and the saturation adsorption capacity of ZnNiAl-LDHs for uranyl ions (278.26 mg/g) was much higher than that of ZnAl-LDHs for uranyl ions (189.16 mg/g), so the ternary ZnNiAl-LDHs had a more excellent adsorption capacity. In addition, kinetic and thermodynamic studies showed that the adsorption process of ZnNiAl-LDHs on uranyl ions conformed to the pseudo-second-order kinetic model and Langmuir isotherm model. The positive value of ΔH and the negative value of ΔG indicated that the adsorption process was endothermic and spontaneous. The adsorption mechanism was analyzed by X-ray energy spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that the adsorption of uranyl ions by ZnNiAl-LDHs mainly consisted of complexation and ion substitution. The research results prove that ZnNiAl-LDHs is an adsorbent with low cost and excellent performance, and it has a good application prospect in the field of uranium-containing wastewater treatment.
Collapse
Affiliation(s)
- Yanquan Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China
| | - Yuanxin Xu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China
| | - Limei Zhao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China
| | - Mingzhan Deng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China. .,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China. .,China Nuclear Construction Key Laboratory of High Performance Concrete, University of South China, Hengyang, 421001, China.
| | - Guowen Peng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.,Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, 421001, China
| | - Guojun Ke
- China Nuclear Construction Key Laboratory of High Performance Concrete, University of South China, Hengyang, 421001, China.,Hunan Provincial Key Laboratory of High Performance Special Concrete, University of South China, Hengyang, 421001, China
| |
Collapse
|
20
|
Wang Y, Li Y, Zhang Y, Zhang Z, Li Y, Li W. Nanocellulose aerogel for highly efficient adsorption of uranium (VI) from aqueous solution. Carbohydr Polym 2021; 267:118233. [PMID: 34119185 DOI: 10.1016/j.carbpol.2021.118233] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Cellulose nanofibers (CNFs) aerogel was prepared via simple covalent crosslinking and freeze-drying method. The porous cellulose aerogel possessed high specific surface area and high metal-chelating capacity, which showed fast adsorption kinetics and high adsorption capacity (440.60 mg g-1) in static uranium adsorption process. In the dynamic filtration system, the maximum adsorption capacity reached 194 mg g-1 with the initial concentration of 10 mg L-1. In addition, the CNFs aerogel possessed excellent selectivity and good regeneration ability for uranium adsorption. The integrated analyses of attenuated total reflection Fourier transform infrared (ATR-FTIR), X-Ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) suggested that the predominant UO22+ species formed inner-sphere surface complexes with two active carboxyl groups in the coordination model. This strategy may provide a sustainable route for development of efficient biomass-based adsorbents for selective uranium removal from aqueous solution.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxiang Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yanqing Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangliang Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Zhou D, Luo YH, Zheng CW, Long M, Long X, Bi Y, Zheng X, Zhou C, Rittmann BE. H 2-Based Membrane Catalyst-Film Reactor (H 2-MCfR) Loaded with Palladium for Removing Oxidized Contaminants in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7082-7093. [PMID: 33900089 DOI: 10.1021/acs.est.1c01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Scalable applications of precious-metal catalysts for water treatment face obstacles in H2-transfer efficiency and catalyst stability during continuous operation. Here, we introduce a H2-based membrane catalyst-film reactor (H2-MCfR), which enables in situ reduction and immobilization of a film of heterogeneous Pd0 catalysts that are stably anchored on the exterior of a nonporous H2-transfer membrane under ambient conditions. In situ immobilization had >95% yield of Pd0 in controllable forms, from isolated single atoms to moderately agglomerated nanoparticles (averaging 3-4 nm). A series of batch tests documented rapid Pd-catalyzed reduction of a wide spectrum of oxyanions (nonmetal and metal) and organics (e.g., industrial raw materials, solvents, refrigerants, and explosives) at room temperature, owing to accurately controlled H2 supply on demand. Reduction kinetics and selectivity were readily controlled through the Pd0 loading on the membranes, H2 pressure, and pH. A 45-day continuous treatment of trichloroethene (TCE)-contaminated water documented removal fluxes up to 120 mg-TCE/m2/d with over 90% selectivity to ethane and minimal (<1.5%) catalyst leaching or deactivation. The results support that the H2-MCfR is a potentially sustainable and reliable catalytic platform for reducing oxidized water contaminants: simple synthesis of an active and versatile catalyst that has long-term stability during continuous operation.
Collapse
Affiliation(s)
- Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130021, China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
22
|
Long M, Long X, Zheng CW, Luo YH, Zhou C, Rittmann BE. Para-Chlorophenol (4-CP) Removal by a Palladium-Coated Biofilm: Coupling Catalytic Dechlorination and Microbial Mineralization via Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6309-6319. [PMID: 33848132 DOI: 10.1021/acs.est.0c08307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rapid dechlorination and full mineralization of para-chlorophenol (4-CP), a toxic contaminant, are unfulfilled goals in water treatment. Means to achieve both goals stem from the novel concept of coupling catalysis by palladium nanoparticles (PdNPs) with biodegradation in a biofilm. Here, we demonstrate that a synergistic version of the hydrogen (H2)-based membrane biofilm reactor (MBfR) enabled simultaneous removals of 4-CP and cocontaminating nitrate. In situ generation of PdNPs within the MBfR biofilm led to rapid 4-CP reductive dechlorination, with >90% selectivity to more bioavailable cyclohexanone. Then, the biofilm mineralized the cyclohexanone by utilizing it as a supplementary electron donor to accelerate nitrate reduction. Long-term operation of the Pd-MBfR enriched the microbial community in cyclohexanone degraders within Clostridium, Chryseobacterium, and Brachymonas. In addition, the PdNP played an important role in accelerating nitrite reduction; while NO3- reduction to NO2- was entirely accomplished by bacteria, NO2- reduction to N2 was catalyzed by PdNPs and bacterial reductases. This study documents a promising option for efficient and complete remediation of halogenated organics and nitrate by the combined action of PdNP and bacterial catalysis.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Calvo DC, Ontiveros-Valencia A, Krajmalnik-Brown R, Torres CI, Rittmann BE. Carboxylates and alcohols production in an autotrophic hydrogen-based membrane biofilm reactor. Biotechnol Bioeng 2021; 118:2338-2347. [PMID: 33675236 DOI: 10.1002/bit.27745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023]
Abstract
Microbiological conversion of CO2 into biofuels and/or organic industrial feedstock is an excellent carbon-cycling strategy. Here, autotrophic anaerobic bacteria in the membrane biofilm reactor (MBfR) transferred electrons from hydrogen gas (H2 ) to inorganic carbon (IC) and produced organic acids and alcohols. We systematically varied the H2 -delivery, the IC concentration, and the hydraulic retention time in the MBfR. The relative availability of H2 versus IC was the determining factor for enabling microbial chain elongation (MCE). When the H2 :IC mole ratio was high (>2.0 mol H2 /mol C), MCE was an important process, generating medium-chain carboxylates up to octanoate (C8, 9.1 ± 1.3 mM C and 28.1 ± 4.1 mmol C m-2 d-1 ). Conversely, products with two carbons were the only ones present when the H2 :IC ratio was low (<2.0 mol H2 /mol C), so that H2 was the limiting factor. The biofilm microbial community was enriched in phylotypes most similar to the well-known acetogen Acetobacterium for all conditions tested, but phylotypes closely related with families capable of MCE (e.g., Bacteroidales, Rhodocyclaceae, Alcaligenaceae, Thermoanaerobacteriales, and Erysipelotrichaceae) became important when the H2 :IC ratio was high. Thus, proper management of IC availability and H2 supply allowed control over community structure and function, reflected by the chain length of the carboxylates and alcohols produced in the MBfR.
Collapse
Affiliation(s)
- Diana C Calvo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA
| | - Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,Department of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA.,Biodesign Center for Health Through Microbiome, Arizona State University, Tempe, Arizona, USA
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Tempe, Arizona, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA
| |
Collapse
|
24
|
Esquivel-Hernández DA, García-Pérez JS, Xu X, Metha S, Maldonado J, Xia S, Zhao HP, Rittmann BE, Ontiveros-Valencia A. Microbial ecology in selenate-reducing biofilm communities: Rare biosphere and their interactions with abundant phylotypes. Biotechnol Bioeng 2021; 118:2460-2471. [PMID: 33719058 DOI: 10.1002/bit.27754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
Selenate (SeO4 2- ) reduction in hydrogen (H2 )-fed membrane biofilm reactors (H2 -MBfRs) was studied in combinations with other common electron acceptors. We employed H2 -MBfRs with two distinctly different conditions: R1, with ample electron-donor availability and acceptors SeO4 2- and sulfate (SO4 2- ), and R2, with electron-donor limitation and the presence of electron acceptors SeO4 2- , nitrate (NO3 - ), and SO4 2- . Even though H2 was available to reduce all input SeO4 2- and SO4 2- in R1, SeO4 2- reduction was preferred over SO4 2- reduction. In R2, co-reduction of NO3 - and SeO4 2- occurred, and SO4 2- reduction was mostly suppressed. Biofilms in all MBfRs had high microbial diversity that was influenced by the "rare biosphere" (RB), phylotypes with relative abundance less than 1%. While all MBfR biofilms had abundant members, such as Dechloromonas and Methyloversatilis, the bacterial communities were significantly different between R1 and R2. For R1, abundant genera were Methyloversatilis, Melioribacter, and Propionivibrio; for R2, abundant genera were Dechloromonas, Hydrogenophaga, Cystobacter, Methyloversatilis, and Thauera. Although changes in electron-acceptor or -donor loading altered the phylogenetic structure of the microbial communities, the biofilm communities were resilient in terms of SeO4 2- and NO3 - reductions, because interacting members of the RB had the capacity of respiring these electron acceptors.
Collapse
Affiliation(s)
- Diego A Esquivel-Hernández
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jonathan S García-Pérez
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Xiaoyin Xu
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Sanya Metha
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Juan Maldonado
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Bruce E Rittmann
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
| | - Aura Ontiveros-Valencia
- School of Sustainable Engineering and The Built Environment, Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
25
|
Cai Y, Long X, Luo YH, Zhou C, Rittmann BE. Stable dechlorination of Trichloroacetic Acid (TCAA) to acetic acid catalyzed by palladium nanoparticles deposited on H 2-transfer membranes. WATER RESEARCH 2021; 192:116841. [PMID: 33503571 PMCID: PMC9753135 DOI: 10.1016/j.watres.2021.116841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 05/12/2023]
Abstract
Trichloroacetic acid (TCAA) is a common disinfection byproduct (DBP) produced during chlorine disinfection. With the outbreak of the Coronavirus Disease 2019 (COVID-19) pandemic, the use of chlorine disinfection has increased, raising the already substantial risks of DBP exposure. While a number of methods are able to remove TCAA, their application for continuous treatment is limited due to their complexity and expensive or hazardous inputs. We investigated a novel system that employs palladium (Pd0) nanoparticles (PdNPs) for catalytic reductive dechlorination of TCAA. H2 was delivered directly to PdNPs in situ coated on the surface of bubble-free hollow-fiber gas-transfer membranes. The H2-based membrane Pd film reactor (H2-MPfR) achieved a high catalyst-specific TCAA reduction rate, 32 L/g-Pd/min, a value similar to the rate of using homogeneously suspended PdNP, but orders of magnitude higher than with other immobilized PdNP systems. In batch tests, over 99% removal of 1 mM TCAA was achieved in 180 min with strong product selectivity (≥ 93%) to acetic acid. During 50 days of continuous operation, over 99% of 1 mg/L influent TCAA was removed, again with acetic acid as the major product (≥ 94%). We identified the reaction pathways and their kinetics for TCAA reductive dechlorination with PdNPs using direct delivery of H2. Sustained continuous TCAA removal, high selectivity to acetic acid, and minimal loss of PdNPs support that the H2-MPfR is a promising catalytic reactor to remove chlorinated DBPs in practice.
Collapse
Affiliation(s)
- Yuhang Cai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States; College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| |
Collapse
|
26
|
Chen L, Tong DG. Amorphous boron phosphide nanosheets: A highly efficient capacitive deionization electrode for uranium separation from seawater with superior selectivity. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Yin N, Ai Y, Xu Y, Ouyang Y, Yang P. Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07392-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Zeng T, Mo G, Hu Q, Wang G, Liao W, Xie S. Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114176. [PMID: 32088436 DOI: 10.1016/j.envpol.2020.114176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10-50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%-96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| | - Guanhai Mo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Qing Hu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Wei Liao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| |
Collapse
|
29
|
Suárez JI, Aybar M, Nancucheo I, Poch B, Martínez P, Rittmann BE, Schwarz A. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. CHEMOSPHERE 2020; 244:125508. [PMID: 31812042 DOI: 10.1016/j.chemosphere.2019.125508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Two H2-based membrane biofilm reactor (H2-MBfR) systems, differing in membrane type, were tested for sulfate reduction from a real mining-process water having low alkalinity and high concentrations of dissolved sulfate and calcium. Maximum sulfate reductions were 99%, with an optimum pH range between 8 and 8.5, which minimized any toxic effect of unionized hydrogen sulfide (H2S) on sulfate-reducing bacteria (SRB) and calcite scaling on the fibers and in the biofilm. Although several strategies for control of pH and gas back-diffusion were applied, it was not possible to sustain a high degree of sulfate reduction over the long-term. The most likely cause was precipitation of calcite inside the biofilm and on the surface of fibers, which was shown by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) analysis. Another possible cause was a decline in pH, leading to inhibition by H2S. A H2/CO2 mixture in the gas supply was able to temporarily recover the effectiveness of the reactors and stabilize the pH. Biomolecular analysis showed that the biofilm was comprised of 15-20% SRB, but a great variety of autotrophic and heterotrophic genera, including sulfur-oxidizing bacteria, were present. Results also suggest that the MBfR system can be optimized by improving H2 mass transfer using fibers of higher gas permeability and by feeding a H2/CO2 mixture that is automatically adjusted for pH control.
Collapse
Affiliation(s)
- José Ignacio Suárez
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Marcelo Aybar
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Iván Nancucheo
- Faculty of Engineering and Technology, Universidad San Sebastián, Lientur 1457, Concepción, 4030000, Chile
| | - Benjamín Poch
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, United States
| | - Alex Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
30
|
Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Int J Biol Macromol 2020; 148:887-897. [PMID: 31945442 DOI: 10.1016/j.ijbiomac.2020.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 01/27/2023]
Abstract
In this study m-AHLPICS (magnetic Arachis hypogaea leaves powder impregnated into chitosan) was prepared and utilized as an adsorbent to remove U(VI) from aqueous and real polluted wastewater samples. m-AHLPICS was characterized by using the BET, XRD, FTIR, SEM with elemental mapping and magnetization measurements. Different experimental effects such as pH, dose, contact time, and temperature were considered broadly. Chitosan modified magnetic leaf powder (m-AHLPICS) exhibits an excellent adsorption capacity (232.4 ± 5.59 mg/g) towards U(VI) ions at pH 5. Different kinetic models such as pseudo-first-order, and pseudo-second-order models were used to know the kinetic data. Langmuir, Freundlich and D-R isotherms were implemented to know the adsorption behavior. Isothermal information fitted well with Langmuir isotherm. Kinetic data followed by the pseudo-second-order kinetics (with high R2 values, i.e., 0.9954, 0.9985 and 0.9971) and the thermodynamic data demonstrate that U(VI) removal using m-AHLPICS was feasible, and endothermic in nature.
Collapse
|
31
|
Yuvaraja G, Su M, Chen DY, Pang Y, Kong LJ, Subbaiah MV, Wen JC, Reddy GM. Impregnation of magnetic - Momordica charantia leaf powder into chitosan for the removal of U(VI) from aqueous and polluted wastewater. Int J Biol Macromol 2020; 149:127-139. [DOI: 10.1016/j.ijbiomac.2020.01.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/09/2023]
|
32
|
Zhang J, Chen X, Zhou J, Luo X. Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121588. [PMID: 31744728 DOI: 10.1016/j.jhazmat.2019.121588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Further understanding absorption uranium mechanism of the regenerational biosorbent is very interesting in application of the biosorbent. The regeneration adsorbent of Saccharomyces cerevisiae biomass was made by hydrochloric acid. Using it to absorb uranium at low constant pH(2.50), accompanied with proton releasing the ratio almost 1:2 which is to be analyzed in this paper. The type and amount of functional groups in the biomass such as carboxyl, amino, phosphoryl were determined by Potentiometric titrations and FTIR analysis. Chemical modification showed that the contribution of functional groups to uranium adsorption was carboxyl, phosphoryl and amino in turn. Analysis of SEM-EDX and staining microscopy showed that uranium on the surface of cells did not exist in the form of precipitation at lower pH 2.98, but at higher pH 4.52. The effects of phosphorus release and pH on uranium species was analyzed by MINTEQ software 3.0. Based on the above boundary conditions of the model construction, a multi-site of functional groups model equation of ion exchange absorption mechanism was built in which the final uranium ion concentration and pH as functions. It could well describe the exchange equilibrium of proton with uranium ion at pH2.50 to pH4.00.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Environmental and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Jian Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China.
| | - Xuegang Luo
- School of Environmental and Resources, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| |
Collapse
|
33
|
Wang Y, Li Y, Li L, Kong F, Lin S, Wang Z, Li W. Preparation of three-dimensional fiber-network chitosan films for the efficient treatment of uranium-contaminated effluents. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:52-61. [PMID: 32293588 DOI: 10.2166/wst.2020.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fiber-network chitosan film with three-dimensional interconnected structure was prepared in an alkali/urea solution and regenerated from an ethanol/water coagulation solution. The surface morphology and structure were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption-desorption, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Batch adsorption for uranium U(VI) was conducted to investigate the effects of pH, contact time and initial uranium concentration on adsorption capacity. The adsorption of CS-80% was in good agreement with the pseudo-second-order kinetic model and Langmuir isotherm model. The three-dimensional interconnected structure provided more active sites and favored the diffusion of uranium solute, and therefore enhanced the adsorption capacity. The maximum adsorption capacity at pH 5 was 196.735 mg/g. The adsorption mechanism was attributed to chelation and coordination of uranium with -NH2 and -OH groups on chitosan molecules.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxiang Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China E-mail:
| | - Lei Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China E-mail:
| | - Fangong Kong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Jinan 250353, China
| | - Song Lin
- Guizhou Water Fuquan Co., Ltd, Guiyang 550500, China
| | - Zaiqian Wang
- Guizhou Water Fuquan Co., Ltd, Guiyang 550500, China
| | - Wangliang Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China E-mail:
| |
Collapse
|
34
|
Li H, Zhou L, Lin H, Zhang W, Xia S. Nitrate effects on perchlorate reduction in a H 2/CO 2-based biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133564. [PMID: 31400688 DOI: 10.1016/j.scitotenv.2019.07.370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The H2/CO2-based membrane biofilm reactor (H2/CO2-MBfR) that effectively combines microporous diffusions of H2 and CO2 is efficient in removing perchlorate (ClO4-). Nitrate (NO3-) is a common oxidized contaminant frequently coexists with ClO4- in water, with the NO3- concentration in most ClO4--contaminated waters being several orders of magnitude higher than ClO4-. Determining the effect of NO3- on ClO4- reduction is a critical issue in practice. The ClO4- reduction performance, biofilm microbial community and influencing mechanism were investigated under a series of feed NO3- loadings in this work. ClO4- reduction was slightly promoted when NO3--N levels were <10 mg/L and inhibited at higher NO3--N levels. Denitrification competed more strongly for H2 than ClO4- reduction, regardless of H2 availability. A higher NO3--N loading was a strong driving force to change the biofilm microbial community. Betaproteobacteria were the dominant bacteria at all stages, and the biofilm reactor was enriched in Methyloversatilis and Zoogloea (31.9-56.5% and 10.6-25.8%, respectively). Changes in the relative amounts of Methyloversatilis and Zoogloea coincided with changes in the ClO4- fluxes and removal efficiencies and the relative abundances of nitrogen cycle functional genes. These results suggest that Methyloversatilis and Zoogloea likely follow independent reduction mechanisms for ClO4- removal.
Collapse
Affiliation(s)
- Haixiang Li
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hua Lin
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China
| | - Wenjie Zhang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
35
|
Xia S, Xu X, Zhou L. Insights into selenate removal mechanism of hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:123-129. [PMID: 30999180 DOI: 10.1016/j.ecoenv.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The selenate removal mechanism of hydrogen-based membrane biofilm reactor (MBfR) for nitrate-polluted groundwater treatment was studied based on anaerobic biofilm analysis. A laboratory-scale MBfR was operated for over 60 days with electron balance, structural analysis, and bacterial community identification. Results showed that anaerobic biofilm had an excellent removal of both selenate (95%) and nitrate (100%). Reduction of Selenate → Selenite → Se0 with hydrogen was the main pathway of anaerobic biofilm for selenate removal with amorphous Se0 precipitate accumulating in the biofilm. The element selenium was observed to be evenly distributed along the cross-sectional thin biofilm. A part of selenate (3%) was also reduced into methyl-selenide by heterotrophic bacteria. Additionally, Hydrogenophaga bacteria of β-Proteobacteria, capable of both nitrate and selenate removal, worked as the dominant species (over 85%) in the biofilm and contributed to the stable removal of both nitrate and selenate. With the selenate input, bacteria with a capacity for both selenate and nitrate removal were also developed in the anaerobic biofilm community.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoyin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
36
|
Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y. Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:117-124. [PMID: 30897483 DOI: 10.1016/j.jenvrad.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated U(VI) biosorption properties by the resistant bacterium, Bacillus amyloliquefaciens, which was isolated from the soils with residual radionuclides. The effect of biosorption factors (uptake time, pH, ionic concentration, biosorbent dosage and temperature) on U(VI) removal was determined by batch experiments. The uptake processes were characterized by using SEM, FTIR, and XPS. The experimental data of U(VI) biosorption were fitted by the pseudo-second-order. The maximum uptake capacity was 179.5 mg/g at pH 6.0 by Langmuir model. The thermodynamic results: ΔGо, ΔHо and ΔSо for uptake processes were calculated as -6.359 kJ/mol, 14.20 kJ/mol and 67.19 J/mol/K, respectively. The results showed that the biosorption of Bacillus amyloliquefaciens will be an ideal method to remove radionuclides.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China; School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xiaoting Liu
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Chengwei Dai
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Zexin Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
37
|
Wu Y, Chen D, Kong L, Tsang DCW, Su M. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:397-405. [PMID: 30870644 DOI: 10.1016/j.jhazmat.2019.02.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Rapidly increasing development of nuclear power stimulates the exploration of low-cost and highly efficient materials to selectively remove uranium (VI) from contaminated wastewater streams. Herein, we successfully developed a novel hydroxyapatite (HAP) adsorbent by using a facile and template-free hydrothermal method. The XRD results demonstrated that the HAP was crystallized in hexagonal structure (space group P63/m(176)), and the images of SEM and TEM indicated that the HAP possessed hollow and hierarchical nanostructure. A large BET specific surface area (182.6 m2/g) and average pore size of 10.5 nm, suggested that the hierarchical hollow HAP microspheres could provide sufficient active sites for highly efficient removal of uranium from aqueous solutions, indicated the HAP might be a prompt emergency material for the remediation of nuclear leakage accident. Freundlich isotherm and pseudo-second-order kinetics model fitted well to sorption experimental data. The study was further advanced by FT-IR and XPS. The sorption mechanism was mainly attributed to surface chemisorption between U(VI) and HAP, forming a new U-containing compound, viz., autunite (Ca(UO2)2(PO4)2·3H2O).
Collapse
Affiliation(s)
- Yanhong Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Lakaniemi AM, Douglas GB, Kaksonen AH. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:198-212. [PMID: 30851673 DOI: 10.1016/j.jhazmat.2019.02.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Biological reduction of soluble uranium from U(VI) to insoluble U(IV) coupled to the oxidation of an electron donor (hydrogen or organic compounds) is a potentially cost-efficient way to reduce the U concentrations in contaminated waters to below regulatory limits. A variety of microorganisms originating from both U contaminated and non-contaminated environments have demonstrated U(VI) reduction capacity under anaerobic conditions. Bioreduction of U(VI) is considered especially promising for in situ remediation, where the activity of indigenous microorganisms is stimulated by supplying a suitable electron donor to the subsurface to contain U contamination to a specific location in a sparingly soluble form. Less studied microbial biofilm-based bioreactors and bioelectrochemical systems have also shown potential for efficient U(VI) reduction to remove U from contaminated water streams. This review compares the advantages and challenges of U(VI)-reducing in situ remediation processes, bioreactors and bioelectrochemical systems. In addition, the current knowledge of U(VI) bioreduction mechanisms and factors affecting U(VI) reduction kinetics (e.g. pH, temperature, and the chemical composition of the contaminated water) are discussed, as both of these aspects are important in designing efficient remediation processes.
Collapse
Affiliation(s)
- Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI- 33104, Tampere University, Finland; CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia.
| | - Grant B Douglas
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia
| |
Collapse
|
39
|
Shi LD, Du JJ, Wang LB, Han YL, Cao KF, Lai CY, Zhao HP. Formation of nanoscale Te 0 and its effect on TeO 32- reduction in CH 4-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1232-1239. [PMID: 30577115 DOI: 10.1016/j.scitotenv.2018.11.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Formation and recovery of elemental tellurium (Te0) from wastewaters are required by increasing demands and scarce resources. Membrane biofilm reactor (MBfR) using gaseous electron donor has been reported as a low-cost and benign technique to reduce and recover metal (loids). In this study, we demonstrate the feasibility of nanoscale Te0 formation by tellurite (TeO32-) reduction in a CH4-based MBfR. Biogenic Te0 intensively attached on cell surface, within diameters ranging from 10 nm to 30 nm and the hexagonal nanostructure. Along with the Te0 formation, the TeO32- reduction was inhibited. After flushing, biofilm resumed the TeO32- reduction ability, suggesting that the formed nanoscale Te0 might inhibit the reduction by hindering substrate transfer of TeO32- to microbes. The 16S rRNA gene amplicon sequencing revealed that Thermomonas and Hyphomicrobium were possibly responsible for TeO32- reduction since they increased consecutively along with the experiment operation. The PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis showed that the sulfite reductases were positively correlated with the TeO32- flux, indicating they were potential enzymes involved in reduction process. This study confirms the capability of CH4-based MBfR in tellurium reduction and formation, and provides more techniques for resources recovery and recycles.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Jie Du
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Lu-Bin Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yu-Lin Han
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ke-Fan Cao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Zhou C, Ontiveros-Valencia A, Nerenberg R, Tang Y, Friese D, Krajmalnik-Brown R, Rittmann BE. Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor. Front Microbiol 2019; 9:3268. [PMID: 30687262 PMCID: PMC6335333 DOI: 10.3389/fmicb.2018.03268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Oxyanions, such as nitrate, perchlorate, selenate, and chromate are commonly occurring contaminants in groundwater, as well as municipal, industrial, and mining wastewaters. Microorganism-mediated reduction is an effective means to remove oxyanions from water by transforming oxyanions into harmless and/or immobilized forms. To carry out microbial reduction, bacteria require a source of electrons, called the electron-donor substrate. Compared to organic electron donors, H2 is not toxic, generates minimal secondary contamination, and can be readily obtained in a variety of ways at reasonable cost. However, the application of H2 through conventional delivery methods, such as bubbling, is untenable due to H2's low water solubility and combustibility. In this review, we describe the membrane biofilm reactor (MBfR), which is a technological breakthrough that makes H2 delivery to microorganisms efficient, reliable, and safe. The MBfR features non-porous gas-transfer membranes through which bubbleless H2 is delivered on-demand to a microbial biofilm that develops naturally on the outer surface of the membranes. The membranes serve as an active substratum for a microbial biofilm able to biologically reduce oxyanions in the water. We review the development of the MBfR technology from bench, to pilot, and to commercial scales, and we elucidate the mechanisms that control MBfR performance, particularly including methods for managing the biofilm's structure and function. We also give examples of MBfR performance for cases of treating single and co-occurring oxyanions in different types of contaminated water. In summary, the MBfR is an effective and reliable technology for removing oxyanion contaminants by accurately providing a biofilm with bubbleless H2 on demand. Controlling the H2 supply in accordance to oxyanion surface loading and managing the accumulation and activity of biofilm are the keys for process success.
Collapse
Affiliation(s)
- Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | | | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | | | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
41
|
Xu XJ, Shao B, Chen C, Zhang RC, Xie P, Wang XT, Yuan Y, Wang AJ, Lee DJ, Yuan YX, Ren NQ. Response of the reactor performance and microbial community to a shift of ISDD process from micro-aerobic to anoxic condition. CHEMOSPHERE 2018; 212:837-844. [PMID: 30193232 DOI: 10.1016/j.chemosphere.2018.08.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/04/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Micro-aerobic condition has proven to be effective in enhancing sulfide oxidation to elemental sulfur (S0) during integrated simultaneous desulfurization and denitrification process (ISDD). In this study we investigated and compared the performance and microbial community of ISDD process operating under initially anoxic, then micro-aerobic and finally switch back to anoxic condition. For all the three tested scenarios, comparable bioreactor performance in terms of sulfate (95.0 ± 4.4%, 90.6 ± 3.8%, 89.8 ± 3.5%) and nitrate (∼100%) removal was achieved. However, a shift of ISDD bioreactor from micro-aerobic to anoxic environment clearly increased the S0 production (30.6%), relative to that at initial anoxic condition (14.2%). Further anoxic bioreactor operation with different influent nitrate concentrations also obtained satisfactory performance particularly in terms of S0 production. Microbial community analysis results showed that functional microorganisms selectively enriched at micro-aerobic condition, particularly sulfide-oxidizing bacteria (SOB), could also function well and enhance S0 production when bioreactor switching from micro-aerobic to anoxic environment. We proposed that micro-aerobic strategy could function as a bio-selector and provide a new idea in functional microorganisms selectively enrichment for wastewater treatment.
Collapse
Affiliation(s)
- Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| | - Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yi-Xing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
42
|
Li H, Zhou L, Lin H, Xu X, Jia R, Xia S. Dynamic response of biofilm microbial ecology to para-chloronitrobenzene biodegradation in a hydrogen-based, denitrifying and sulfate-reducing membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:842-849. [PMID: 29958172 DOI: 10.1016/j.scitotenv.2018.06.245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The dynamic response of biofilm microbial ecology to para-chloronitrobenzene (p-CNB) biodegradation was systematically evaluated according to the composition and loading of electron acceptors and H2 availability (controlled by H2 pressure) in a hydrogen-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR). To accomplish this, a laboratory-scale MBfR was set up and operated with different influent p-CNB concentrations (0, 2, and 5 mg p-CNB/L) and H2 pressures (0.04 and 0.05 MPa). Polymerase chain reaction-denaturing gel electrophoresis (PCR-DGGE) and cloning were then applied to investigate the bacterial diversity response of biofilm during p-CNB biodegradation. The results showed that denitrification and sulfate reduction largely controlled the total demand for H2. Additionally, the DGGE fingerprint demonstrated that the addition of p-CNB, which acted as an electron acceptor, was a critical factor in the dynamics of the MBfR biofilm microbial ecology. The presence of p-CNB also had a more advantageous effect on the biofilm microbial community. Additionally, clone library analysis showed that Proteobacteria (especially beta- and gamma-) comprised the majority of the microbial biofilm response to p-CNB biodegradation, and that Pseudomonas sp. (Gammaproteobacteria) played a significant role in the biotransformation of p-CNB to aniline.
Collapse
Affiliation(s)
- Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, PR China
| | - Xiaoyin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Renyong Jia
- Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
43
|
Liu F, Xiong W, Liu J, Cheng Q, Cheng G, Shi L, Zhang Y. Novel amino-functionalized carbon material derived from metal organic framework: A characteristic adsorbent for U(VI) removal from aqueous environment. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Xie J, Wang J, Lin J, Zhou X. The dynamic role of pH in microbial reduction of uranium(VI) in the presence of bicarbonate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:659-666. [PMID: 30025339 DOI: 10.1016/j.envpol.2018.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/06/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The negative effect of carbonate on the rate and extent of bioreduction of aqueous U(VI) has been commonly reported. The solution pH is a key chemical factor controlling U(VI)aq species and the Gibbs free energy of reaction. Therefore, it is interesting to study whether the negative effect can be diminished under specific pH conditions. Experiments were conducted using Shewanella putrefaciens under anaerobic conditions with varying pH values (4-9) and bicarbonate concentrations ( [Formula: see text] , 0-50 mmol/L). The results showed a clear correlation between the pH-bioreduction edges of U(VI)aq and the [Formula: see text] . The specific pH at which the maximum bioreduction occurred (pHmbr) shifted from slightly basic to acidic pH (∼7.5-∼6.0) as the [Formula: see text] increased (2-50 mmol/L). At [Formula: see text] = 0, however, no pHmbr was observed in terms of increasing bioreduction with pH (∼100%, pH > 7). In the presence of [Formula: see text] , significant bioreduction was observed at pHmbr (∼100% at 2-30 mmol/L [Formula: see text] , 93.7% at 50 mmol/L [Formula: see text] ), which is in contrast to the previously reported infeasibility of bioreduction at high [Formula: see text] . The pH-bioreduction edges were almost comparable to the pH-biosorption edges of U(VI)aq on heat-killed cells, revealing that biosorption is favorable for bioreduction. The end product of U(VI)aq bioreduction was characterized as insoluble nanobiogenic uraninite by HRTEM. The redox potentials of the master complex species of U(VI)aq, such as [Formula: see text] , [Formula: see text] , and [Formula: see text] , were calculated to obtain insights into the thermodynamic reduction mechanism. The observed dynamic role of pH in bioreduction suggests the potential for bioremediation of uranium-contaminated groundwater containing high carbonate concentrations.
Collapse
Affiliation(s)
- Jinchuan Xie
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an City, Shanxi Province, 710024, PR China.
| | - Jinlong Wang
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an City, Shanxi Province, 710024, PR China
| | - Jianfeng Lin
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an City, Shanxi Province, 710024, PR China
| | - Xiaohua Zhou
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an City, Shanxi Province, 710024, PR China
| |
Collapse
|
45
|
Li X, Lan SM, Zhu ZP, Zhang C, Zeng GM, Liu YG, Cao WC, Song B, Yang H, Wang SF, Wu SH. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:162-170. [PMID: 29684746 DOI: 10.1016/j.ecoenv.2018.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial. Fully understanding the metabolism of SRB paves the way for allowing the microorganisms to provide more beneficial services in bioremediation. Here we review progress in bioenergetics mechanisms and application of SRB including: (1) electron acceptors and donors for SRB; (2) pathway for sulfate reduction; (3) electron transfer in sulfate reduction; (4) application of SRB for economical and concomitant treatment of heavy metal, organic contaminants and sulfates. Moreover, current knowledge gaps and further research needs are identified.
Collapse
Affiliation(s)
- Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shi-Ming Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhong-Ping Zhu
- School of Minerals processing and Bioengineering, Central South University, No. 932 South Lushan road, Changsha, Hunan 410083, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei-Cheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hong Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Sheng-Fan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shao-Hua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
46
|
Ontiveros-Valencia A, Zhou C, Zhao HP, Krajmalnik-Brown R, Tang Y, Rittmann BE. Managing microbial communities in membrane biofilm reactors. Appl Microbiol Biotechnol 2018; 102:9003-9014. [PMID: 30128582 DOI: 10.1007/s00253-018-9293-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
Membrane biofilm reactors (MBfRs) deliver gaseous substrates to biofilms that develop on the outside of gas-transfer membranes. When an MBfR delivers electron donors hydrogen (H2) or methane (CH4), a wide range of oxidized contaminants can be reduced as electron acceptors, e.g., nitrate, perchlorate, selenate, and trichloroethene. When O2 is delivered as an electron acceptor, reduced contaminants can be oxidized, e.g., benzene, toluene, and surfactants. The MBfR's biofilm often harbors a complex microbial community; failure to control the growth of undesirable microorganisms can result in poor performance. Fortunately, the community's structure and function can be managed using a set of design and operation features as follows: gas pressure, membrane type, and surface loadings. Proper selection of these features ensures that the best microbial community is selected and sustained. Successful design and operation of an MBfR depends on a holistic understanding of the microbial community's structure and function. This involves integrating performance data with omics results, such as with stoichiometric and kinetic modeling.
Collapse
Affiliation(s)
- A Ontiveros-Valencia
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46617, USA. .,Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Puebla, Ave. Atlixcáyotl 2301, 72453, Puebla, Pue, Mexico. .,Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001S McAllister Ave, Tempe, AZ, 85287-5701, USA.
| | - C Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001S McAllister Ave, Tempe, AZ, 85287-5701, USA
| | - H-P Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Water Pollution Control & Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
| | - R Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001S McAllister Ave, Tempe, AZ, 85287-5701, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Y Tang
- FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - B E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001S McAllister Ave, Tempe, AZ, 85287-5701, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
47
|
Agarwal R, Sharma MK. Selective Electrochemical Separation and Recovery of Uranium from Mixture of Uranium(VI) and Lanthanide(III) Ions in Aqueous Medium. Inorg Chem 2018; 57:10984-10992. [DOI: 10.1021/acs.inorgchem.8b01603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Agarwal
- Homi Bhabha National Institute, Mumbai 400 094, India
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Manoj Kumar Sharma
- Homi Bhabha National Institute, Mumbai 400 094, India
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
48
|
Liu F, Song S, Cheng G, Xiong W, Shi L, Zhang Y. MIL-101(Cr) metal–organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (VI) from waste water. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418789516] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The metal–organic frameworks material functionalized by grafting amino group of tetraethylenepentamine on the coordinative unsaturated Cr (III) centers is described. The obtained tetraethylenepentamine-functionalized adsorbents with different mass ratios of tetraethylenepentamine have been characterized by scanning electron microscopy, Fourier-transform infrared, X-ray powder diffraction, and N2 adsorption and desorption isotherms. Significantly, MIL-101-tetraethylenepentamine 60% exhibited high adsorption capacity (350 mg/g) for removal of uranium (VI) from water at pH 4.5. At uranium concentration <20 mg/L, the isothermal plot was best represented by Freundlich model. At U(VI) concentration approximately >30 mg/L, the isotherm was best described by Langmuir model.
Collapse
Affiliation(s)
- Fengtai Liu
- Department of Radiochemistry and Radiotoxicology, College of Public Health, Jilin University, Changchun, PR China
| | - Shanshan Song
- Department of Radiochemistry and Radiotoxicology, College of Public Health, Jilin University, Changchun, PR China
| | - Ge Cheng
- Department of Radiochemistry and Radiotoxicology, College of Public Health, Jilin University, Changchun, PR China
| | - Wenjing Xiong
- Department of Epidemiology and Biostatistics, College of Public Health, Jilin University, Changchun, PR China
| | - Lei Shi
- Department of Radiochemistry and Radiotoxicology, College of Public Health, Jilin University, Changchun, PR China
| | - Yibo Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
49
|
Liao Y, Wang M, Chen D. Preparation of Polydopamine-Modified Graphene Oxide/Chitosan Aerogel for Uranium(VI) Adsorption. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01745] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yun Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meng Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dajun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
50
|
Li A, Zhou C, Liu Z, Xu X, Zhou Y, Zhou D, Tang Y, Ma F, Rittmann BE. Direct solid-state evidence of H 2 -induced partial U(VI) reduction concomitant with adsorption by extracellular polymeric substances (EPS). Biotechnol Bioeng 2018; 115:1685-1693. [PMID: 29574765 DOI: 10.1002/bit.26592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 11/05/2022]
Abstract
Adsorption of hexavalent uranium (U(VI)) by extracellular polymeric substances (EPS) has been studied, but the possibility of simultaneous U(VI) reduction mediated by EPS has not had experimental confirmation, as the reduction products have not yet been directly proven. Here, we reported the first direct evidence of lower-valent products of U(VI) immobilization by loosely associated EPS (laEPS) isolated from a fermenter strain of Klebsiella sp. J1 when the laEPS was exposed to H2 . During the 120-min tests for similarly 86% adsorption under O2 , N2 , and H2 , 8% more U was immobilized through a non-adsorptive pathway by the EPS for H2 than for N2 and O2 . A set of solid-state characterization tools (FT-IR, XPS, EELS, and TEM-EDX) confirmed partial reduction of U(VI) to lower-valence U, with the main reduced form being uraninite (UIV O2 ) nanoparticles, and the results reinforced the role of the reduction in accelerating U immobilization and shaping the characteristics of immobilized U in terms of valency, size, and crystallization. The laEPS, mostly comprised of carbohydrate and protein, contained non-cytochrome enzymes and electron carriers that could be responsible for electron transfer to U(VI). Taken together, our results directly confirm that EPS was able to mediate partial U(VI) reduction in the presence of H2 through non-cytochrome catalysis and that reduction enhanced overall U immobilization. Our study fills in some gaps of the microbe-mediated U cycle and will be useful to understand and control U removal in engineered reactors and in-situ bioremediation.
Collapse
Affiliation(s)
- Ang Li
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| | - Zhuolin Liu
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| | - Xiaoyin Xu
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yun Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona.,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona
| |
Collapse
|