1
|
Poursat BAJ, Rempe F, Pereira J, Sutton NB, Ter Heijne A. Unravelling the mechanisms of organic micropollutant removal in bio-electrochemical systems: Insights into sorption, electrochemical degradation, and biodegradation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173932. [PMID: 38880133 DOI: 10.1016/j.scitotenv.2024.173932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Bio-electrochemical systems (BESs) have recently been proposed as an efficient treatment technology to remove organic micropollutants from water treatment plants. In this study, we aimed to differentiate between sorption, electrochemical transport/degradation, and biodegradation. Using electro-active microorganisms and electrodes, we investigated organic micropollutant removal at environmentally relevant concentrations, clarifying the roles of sorption and electrochemical and biological degradation. The role of anodic biofilms on the removal of 10 relevant organic micropollutants was studied by performing separate sorption experiments on carbon-based electrodes (graphite felt, graphite rod, graphite granules, and granular activated carbon) and electrochemical degradation experiments at two different electrode potentials (-0.3 and 0 V). Granular activated carbon showed the highest sorption of micropollutants; applying a potential to graphite felt electrodes increased organic micropollutant removal. Removal efficiencies >80 % were obtained for all micropollutants at high anode potentials (+0.955 V), indicating that the studied compounds were more susceptible to oxidation than to reduction. All organic micropollutants showed removal when under bio-electrochemical conditions, ranging from low (e.g. metformin, 9.3 %) to exceptionally high removal efficiencies (e.g. sulfamethoxazole, 99.5 %). The lower removal observed under bio-electrochemical conditions when compared to only electrochemical conditions indicated that sorption to the electrode is key to guarantee high electrochemical degradation. The detection of transformation products of chloridazon and metformin indicated that (bio)-electrochemical degradation occurred. This study confirms that BES can treat some organic micropollutants through several mechanisms, which merits further investigation.
Collapse
Affiliation(s)
- Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Fleur Rempe
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - João Pereira
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
2
|
Xia J, Li Y, Jiang X, Chen D, Shen J. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131426. [PMID: 37084513 DOI: 10.1016/j.jhazmat.2023.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at - 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Coccia M, Bontempi E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. ENVIRONMENTAL RESEARCH 2023; 229:115938. [PMID: 37086878 DOI: 10.1016/j.envres.2023.115938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Modern society has increasingly a diffusion of pollutants and emerging contaminants (e.g., different types of chemicals and endocrine disruptors in pharmaceuticals, pesticides, household cleaning, and personal care products, etc.) that have detrimental effects on the environment (atmosphere, hydrosphere, biosphere and anthroposphere) and also generate diseases and disorders on the people health. Environmental science requires efforts in the detection and elimination of manifold pollutants and emerging pollutants with appropriate product and process technologies. This study aims to analyze different paths of treatment technologies to investigate their evolution and predict new directions of promising technological trajectories to support the removal of contaminants directed to reach, whenever possible, sustainable development objectives. The work is mainly devoted to wastewater treatment technologies. A proposed model analyzes the evolution of patents (proxy of innovation and new technology) on publications (proxy of science and knowledge advances) to quantify the relative growth rate of new trajectories of technologies to remove pollutants and emerging contaminants. Results reveal that new directions of treatment technologies having an accelerated rate of growth are (in decreasing order): biochar and reverse osmosis in physical-based technologies, coagulation, and disinfection water treatments in chemical-based technologies and anaerobic processes in biological-based technologies. Other main technologies, such as carbon nanotubes and advanced oxidation processes, seem to be in the initial phase of development and need learning by using processes and further science and technology advances to be implemented as effective treatments and cost-effective. The results here are in accord with global water and wastewater equipment treatment market revenues by technology, showing a similar trend. These findings bring us to the main information to extend the knowledge about new directions of technologies for the treatment and/or elimination of pollutants and microorganisms that can support decisions of policymakers towards goals of sustainable development by reducing environmental degradation and people health disorders.
Collapse
Affiliation(s)
- Mario Coccia
- National Research Council of Italy, IRCRES-CNR, Turin Research Area of the National Research Council, Strada Delle Cacce, 73-10135, Torino, Italy.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
4
|
Dai W, Pang JW, Ding J, Wang YQ, Zhang LY, Ren NQ, Yang SS. Study on the removal characteristics and degradation pathways of highly toxic and refractory organic pollutants in real pharmaceutical factory wastewater treated by a pilot-scale integrated process. Front Microbiol 2023; 14:1128233. [PMID: 36970662 PMCID: PMC10034018 DOI: 10.3389/fmicb.2023.1128233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionPharmaceutical wastewater frequently contains high levels of toxic pollutants. If they are discharged untreated, they pose a threat to the environment. The traditional activated sludge process and the advanced oxidation process do not sufficiently remove toxic and conventional pollutants from pharmaceutical wastewater treatment plants (PWWTPs).MethodsWe designed a pilot-scale reaction system to reduce toxic organic pollutants and conventional pollutants from pharmaceutical wastewater during the biochemical reaction stage. This system included a continuous stirred tank reactor (CSTR), microbial electrolysis cells (MECs), an expanded sludge bed reactor (EGSB), and a moving bed biofilm reactor (MBBR). We used this system to further investigate the benzothiazole degradation pathway.Results and discussionThe system effectively degraded the toxic pollutants (benzothiazole, pyridine, indole, and quinoline) and the conventional chemicals (COD, NH4+-N, TN). During the stable operation of the pilot-scale plant, the total removal rates of benzothiazole, indole, pyridine, and quinoline were 97.66, 94.13, 79.69, and 81.34%, respectively. The CSTR and MECs contributed the most to the removal of toxic pollutants, while the EGSB and MBBR contributed less to the removal of the four toxic pollutants. Benzothiazoles can be degraded via two pathways: the benzene ring-opening reaction and the heterocyclic ring-opening reaction. The heterocyclic ring-opening reaction was more important in degrading the benzothiazoles in this study.ConclusionThis study provides feasible design alternatives for PWWTPs to remove both toxic and conventional pollutants at the same time.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China
| | - Jie Ding
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin, China
- *Correspondence: Jie Ding,
| | - Yu-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
- Shan-Shan Yang,
| |
Collapse
|
5
|
Li S, Ondon BS, Ho SH, Li F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. ENVIRONMENTAL RESEARCH 2023; 219:115132. [PMID: 36563979 DOI: 10.1016/j.envres.2022.115132] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Zou R, Tang K, Hambly AC, Chhetri RK, Andersen HR, Zhang Y. Elimination of recalcitrant micropollutants by medium pressure UV-catalyzed bioelectrochemical advanced oxidation process: Influencing factors, transformation pathway and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154543. [PMID: 35302016 DOI: 10.1016/j.scitotenv.2022.154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
7
|
Hartl M, García-Galán MJ, Matamoros V, Fernández-Gatell M, Rousseau DPL, Du Laing G, Garfí M, Puigagut J. Constructed wetlands operated as bioelectrochemical systems for the removal of organic micropollutants. CHEMOSPHERE 2021; 271:129593. [PMID: 33460890 DOI: 10.1016/j.chemosphere.2021.129593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electrolysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX). The study evaluated the removal efficiency of conventional CW systems (CW-control) as well as CW systems operated as closed-circuit MFCs (CW-MFCs) and MECs (CW-MECs). Although a few positive trends were identified for the CW-BES compared to the CW-control (higher average CBZ, DCF and NPX removal by 10-17% in CW-MEC and 5% in CW-MFC), these proved to be not statistically significantly different. Mesoscale experiments with real wastewater could thus not confirm earlier positive effects of CW-BES found under strictly controlled laboratory conditions with synthetic wastewaters.
Collapse
Affiliation(s)
- Marco Hartl
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - María Jesús García-Galán
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Victor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Marta Fernández-Gatell
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Diederik P L Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Marianna Garfí
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Jaume Puigagut
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| |
Collapse
|
8
|
Zou R, Tang K, Angelidaki I, Andersen HR, Zhang Y. An innovative microbial electrochemical ultraviolet photolysis cell (MEUC) for efficient degradation of carbamazepine. WATER RESEARCH 2020; 187:116451. [PMID: 33007673 DOI: 10.1016/j.watres.2020.116451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Discharge of recalcitrant pharmaceuticals into aquatic environments can lead to serious negative environmental effects. While traditional wastewater treatment plants (WWTPs) are efficient for a wide range of non-toxic pollutants (i.e. ammonia), some wastewater streams contain recalcitrant toxic trace micropollutants such as pharmaceuticals that cannot be removed by the treatment processes that are typically employed in common WWTPs. Herein, an innovative 20 L microbial electrochemical ultraviolet photolysis cell (MEUC) was developed for the first time by the integration of a UV irradiation and a bioelectrochemical system, which exhibited efficient treatment of carbamazepine-a model pharmaceutical compound. Notably, neither the UV irradiation nor the bioelectrochemical system alone could effectively eliminate carbamazepine. The effect of operational parameters including applied voltage, cathodic aeration rate, UV intensity, and hydraulic retention time were evaluated. The obtained results elucidated that the degradation of carbamazepine was consistent with pseudo-first-order reaction kinetics, and required a lower energy input than traditional advanced oxidation processes. Five main transformation products were identified, and probable transformation pathways were established. Furthermore, the eco-toxicity as tested by Vibrio fischeri showed no significant bioluminescence inhibition by the treated carbamazepine effluent. Finally, the MEUC system was further tested with a real wastewater matrix, which again exhibited effective removal of carbamazepine. This paper provides a proof-of-concept verification of the novel MEUC system, which contributes insight for the subsequent vigorous development of the application of such efficient and cost-effective technologies for the treatment of trace pharmaceuticals wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
9
|
Yang K, Ji M, Liang B, Zhao Y, Zhai S, Ma Z, Yang Z. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122892. [PMID: 32768818 DOI: 10.1016/j.jhazmat.2020.122892] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn't be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhifan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
10
|
Chakraborty T, Balusani D, Sabourin L, Renaud J, Sumarah M, Nakhla G, Ray MB. Fate of micropollutants in chemically enhanced primary treatment using recovered coagulants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110815. [PMID: 32561017 DOI: 10.1016/j.jenvman.2020.110815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, the fate of several micropollutants (MPs) in wastewater due to coagulation using both fresh and recovered aluminum and iron coagulants was determined. 18 MPs from different groups such as antibiotics, food additives, and surfactants were selected and spiked into the primary influent collected from a local wastewater plant. The distribution of MPs in the recovered coagulant and treated effluent after coagulation was determined for both fresh and recycled coagulants. The distribution of MPs in wastewater and the removal during coagulation were compound specific; MPs with log Kow < 2.5 were predominantly present in the effluent after coagulation, while MPs with log Kow > 2.5 were sorbed on the coagulated sludge. The distribution ratio (Kd) of all the MPs (diclofenac, clarithromycin, etc.) with log Kow > 2.5 was determined along with their extent of accumulation in sludge due to the recycling of coagulants. Compounds such as sulfamethoxazole, erythromycin and sulfathiazole, showed low removal during coagulation. The tetracycline group of compounds showed possible chelation with iron and aluminum. Only <10% of the initially spiked MPs with log Kow > 2.5 was being recycled with the recovered coagulant, thus alleviating the concern of accumulation of the MPs during recycle of the coagulants.
Collapse
Affiliation(s)
- Tulip Chakraborty
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | - Dharavi Balusani
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Lyne Sabourin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Mark Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Pun Á, Boltes K, Letón P, Esteve-Nuñez A. Detoxification of wastewater containing pharmaceuticals using horizontal flow bioelectrochemical filter. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Khan W, Nam JY, Woo H, Ryu H, Kim S, Maeng SK, Kim HC. A proof of concept study for wastewater reuse using bioelectrochemical processes combined with complementary post-treatment technologies. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2019; 5:1489-1498. [PMID: 32607247 PMCID: PMC7326288 DOI: 10.1039/c9ew00358d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article describes a proof-of-concept study designed for the reuse of wastewater using microbial electrochemical cells (MECs) combined with complementary post-treatment technologies. This study mainly focused on how the integrated approach works effectively for wastewater reuse. In this study, microalgae and ultraviolet C (UVC) light were used for advanced wastewater treatment to achieve site-specific treatment goals such as agricultural reuse and aquifer recharge. The bio-electrosynthesis of H2O2 in MECs was carried out based on a novel concept to integrate with UVC, especially for roust removal of trace organic compounds (TOrCs) resistant to biodegradation, and the algal treatment was configured for nutrient removal from MEC effluent. UVC irradiation has also proven to be an effective disinfectant for bacteria, protozoa, and viruses in water. The average energy consumption rate for MECs fed acetate-based synthetic wastewater was 0.28±0.01 kWh per kg of H2O2, which was significantly more efficient than are conventional electrochemical processes. MECs achieved 89±2% removal of carbonaceous organic matter (measured as chemical oxygen demand) in the wastewater (anolyte) and concurrent production of H2O2 up to 222±11 mg L-1 in the tapwater (catholyte). The nutrients (N and P) remaining after MECs were successfully removed by subsequent phycoremediation with microalgae when aerated (5% CO2, v/v) in the light. This complied with discharge permits that limit N to 20 mg L-1 and P to 0.5 mg L-1 in the effluent. H2O2 produced on site was used to mediate photolytic oxidation with UVC light for degradation of recalcitrant TOrCs in the algal-treated wastewater. Carbamazepine was used as a model compound and was almost completely removed with an added 10 mg L-1 of H2O2 at a UVC dose of 1000 mJ cm-2. These results should not be generalized, but critically discussed, because of the limitations of using synthetic wastewater.
Collapse
Affiliation(s)
- Waris Khan
- Department of Civil and Environmental Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-do 63357, Republic of Korea
| | - Hyoungmin Woo
- United States Environmental Protection Agency, Office Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office Research and Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Sungpyo Kim
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun-Chul Kim
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
13
|
Chouler J, Di Lorenzo M. Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2231-2241. [PMID: 31411577 DOI: 10.2166/wst.2019.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial fuel cell (MFC) technology holds enormous potential for inexpensive real-time and onsite testing of water sources. With the intent of defining optimal operational conditions, we investigated the effect of environmental factors (changes in temperature, pH and ionic strength), on the performance of a single chamber miniature MFC sensor. The pH of the influent had the greatest effect on the MFC performance, with a 0.531 ± 0.064 μA cm-2 current variation per unit change of pH. Within the range tested, temperature and ionic strength had only a minor impact (0.010 ± 0.001 μA °C-1 cm-2 and of 0.027 ± 0.003 μA mS-1 cm cm-2 respectively). Under controlled operational conditions, for the first time, we demonstrated the ability of this biosensor to detect one of the most commonly applied pesticides worldwide, atrazine. The sensitivity to atrazine was 1.39 ± 0.26 ppm-1 cm-2, with a detection range of 0.05-0.3 ppm. Guidelines for systematic studies of MFC biosensors for practical applications through a factorial design approach are also provided. Consequently, our work not only enforces the promise of miniature MFC biosensors for organic pollutants detection in waters, but it also provides important directions towards future investigations for infield applications.
Collapse
Affiliation(s)
- Jon Chouler
- Centre for Biosensors, Bioelectronics and Biodevices and Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK E-mail: ; Centre for Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Mirella Di Lorenzo
- Centre for Biosensors, Bioelectronics and Biodevices and Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK E-mail:
| |
Collapse
|
14
|
Wu Y, Jing X, Gao C, Huang Q, Cai P. Recent advances in microbial electrochemical system for soil bioremediation. CHEMOSPHERE 2018; 211:156-163. [PMID: 30071427 DOI: 10.1016/j.chemosphere.2018.07.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination poses a serious threat to ecosystem and human well-being. Compared to conventional physical and chemical treatment, the microbial electrochemical system (MES) offers a sustainable and environment-friendly solution for soil bioremediation. In principle, soil microbe degrades organic substrate and releases electron in anode region. The electron flows through electric circuit to the cathode and finally is accepted by oxygen or oxidized metals. With various inherent advantages, MES has been applied in petroleum hydrocarbon, chlorinated organics and heavy metals bioremediation in soils. This paper aims to review the recent advances of MES in soil bioremediation, including main mechanisms of contaminant removal with MES, configurations of soil MES and current development in bioremediation of soil contaminated by organic and inorganic pollutants. Moreover, challenges and future prospects of soil MES are discussed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jing
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources of Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Wang W, Lu Y, Luo H, Liu G, Zhang R, Jin S. A microbial electro-fenton cell for removing carbamazepine in wastewater with electricity output. WATER RESEARCH 2018; 139:58-65. [PMID: 29626730 DOI: 10.1016/j.watres.2018.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 05/20/2023]
Abstract
High electrical energy is required for the electro-Fenton process to remove pharmaceuticals and personal care products (PPCPs) in wastewater. The aim of this study was to develop a novel and more cost-effective process, specifically a microbial electro-Fenton cell (MeFC), for treating PPCPs in wastewater. Acetylene black was selected as the catalyst for H2O2 electrogeneration and Fe-Mn binary oxide for hydroxyl radical production. In addition to lowering energy needs, the MeFC produced a maximum power density of 112 ± 11 mW/m2 with 1 g/L acetate as a representative substrate and 10 mg/L carbamazepine (CBZ) as a typical PPCP. Comparing with electro-Fenton process, the CBZ removal in the MeFC was 38% higher within 24 h operation (90% vs. 62%). Furthermore, the CBZ removal rate in the MeFC was 10-100 times faster than that in other biological treatment processes. Such enhanced degradation of CBZ in the MeFC was attributed to the synergistic reactions between radical oxidation of CBZ and biodegradation of degradative intermediates. The MeFC provides a promising method to remove PPCPs from wastewater coupling with efficient removal of other biodegradable organics.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
16
|
Fabrication of polypyrrole/β-MnO 2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Santoro C, Mohidin AF, Grasso LL, Seviour T, Palanisamy K, Hinks J, Lauro FM, Marsili E. Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems. Bioelectrochemistry 2016; 112:173-7. [DOI: 10.1016/j.bioelechem.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
18
|
Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 2015; 33:317-34. [DOI: 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|