1
|
Li X, Zhai H, Luo J, Hou R. A new concern raised from algal bloom: Organic chloramines in chlorination. WATER RESEARCH 2024; 260:121894. [PMID: 38880013 DOI: 10.1016/j.watres.2024.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Algal blooms have become a significant challenge in water treatment all over the world. In chlorination of drinking water, algal organic matter (AOM) leads to the formation of organic chloramines. The objectives of this review are to comprehensively summarize and discuss the up-to-date researches on AOM-derived organic chloramines and their chemical activities and toxicity, thereby drawing attention to the potentially chemical and hygienic risks of organic chloramines. The predominant algal species in water sources varied with location and season. AOM from cyanobacteria, green algae, and diatoms are composed of diverse composition. AOM-derived amino acids take a low portion of the precursors of organic chloramines. Both experimental kinetic data and quantum chemical calculation demonstrate the preferential formation of organic chloramines in the chlorination of model compounds (amino acids and peptides). Organic chloramines are persistent in water and can transform into dichloro- and trichloro-organic chloramines, unknown low-molecular-weight organic chloramines, and nitrogenous disinfection byproducts with the excess of free chlorine. The active chlorine (Cl+) in organic chloramines can lead to the formation of chlorinated phenolic compounds. Organic chloramines influence the generation and species of radicals and subsequent products in UV disinfection. Theoretical predictions and toxicological tests suggest that organic chloramines may cause oxidative or toxic pressure to bacteria or cells. Overall, organic chloramines, as one group of high-molecular-weight disinfection byproducts, have relatively long lifetimes, moderate chemical activities, and high hygienic risks to the public. Future perspectives of organic chloramines are suggested in terms of quantitative detection methods, the precursors from various predominant algal species, chemical activities of organic chloramines, and toxicity/impact.
Collapse
Affiliation(s)
- Xinyu Li
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Jiacheng Luo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Ruixin Hou
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
2
|
Xu H, Yang A, Pang Y, Pei H. Advances and challenges in the technologies for cyanobacterial cells removal in drinking water treatment. CHEMOSPHERE 2024; 359:142338. [PMID: 38754486 DOI: 10.1016/j.chemosphere.2024.142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Harmful cyanobacteria in reservoirs pose a serious threat to drinking water safety due to the intracellular metabolites, such as toxins and unpleasant tastes & odours. Effective removal of harmful cyanobacteria with little to no cell damage is very important to ensure the safety of drinking water. This review first introduced development history of cyanobacterial removal technologies in drinking water treatment. Then, impacts of oxidation, coagulation and pre-oxidation enhanced coagulation processes on cyanobacterial removal and integrity of the cells were comprehensively evaluated and discussed. Oxidation can remove cyanobacteria, but high doses of oxidants can result in significant cell lysis and release of intracellular metabolites, especially when using chlorine or ozone. Although there is practically no cell damage during coagulation, the removal efficiency is low in many cases. Pre-oxidation may improve cyanobacterial removal by the subsequent solid-liquid separation processes, and moderate pre-oxidation with little to no cell lysis is very important. Mechanisms of interface interaction between pre-oxidants and cyanobacteria should be defined in future to ensure moderate pre-oxidation of algal cells. Fate of cyanobacterial cells in sludge is also reviewed because more and more waterworks return sludge supernatant to the inlet of plant. Damage to cyanobacterial cells in sludge depends mainly upon coagulant type and dosage, algal species, and cyanobacteria-containing sludge should be treated before cell lysis. Efficient techniques for harmless disposal of cyanobacteria-containing sludge should be developed in future. This paper will help to better understand the cyanobacterial removal processes and provide improved perspectives for future research in this field.
Collapse
Affiliation(s)
- Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Aonan Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yiming Pang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
3
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
4
|
Li X, Xian X, Chen S, Song W, Yu X, Yu CP. Comparative study about ozonation to treat Microcystis-laden source water at the development and maintenance stage. CHEMOSPHERE 2023; 341:140045. [PMID: 37683947 DOI: 10.1016/j.chemosphere.2023.140045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The outbreak of toxic cyanobacteria blooms is hazardous to water safety. Ozonation has been used to treat cyanobacteria-laden source water. Generally, cyanobacterial blooms enter into a long-term maintenance stage from the bloom development, but how the changed bloom stage affects ozonation is still unknow. Herein, influences of ozonation on cell inactivation and microcystin removal of Microcystis at the development and maintenance stage, were investigated. Then, ozonation-assisted coagulation for Microcystis removal at the two stages was compared. Results showed no significant difference in the photosynthetic inactivation of Microcystis at both stages. Microcystis at the maintenance stage exhibited a lower loss of membrane integrity (268-480 M-1 s-1) than that at the development stage (413-596 M-1 s-1). However, the extracellular microcystin increased by 30-410% at the maintenance stage at a lower ratio of [O3: DOC] (0.10-0.80) compared to the development stage (0.21-1.68), mainly ascribed to a decrease in the ozonation efficiency for microcystin removal. This finding might result from the elevated biomass and N-containing organics as competitors to reduce microcystin ozonation. Meanwhile, it was possible to generate fewer hydroxyl radicals to oxidize microcystin at the maintenance stage than that at the development stage. Besides, the removal ratio of Microcystis after ozonation-assisted coagulation, was reduced by 46-230% at the maintenance stage, due to the insufficient modification of cellular surface or elevated organics of 3-30 kDa. This work indicated that ozonation is effective to treat Microcystis at the development stage of a bloom whist pre-ozonation might be an inappropriate choice at the long-term maintenance stage.
Collapse
Affiliation(s)
- Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - XuanXuan Xian
- College of The Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Weijun Song
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Xin Yu
- College of The Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
5
|
Wang J, Tan Y, Shi X, Leng P, Zhang G. Simplifying network complexity of soil bacterial community exposed to short-term carbon dioxide and ozone enrichment in a paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116656. [PMID: 36375434 DOI: 10.1016/j.jenvman.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Global atmospheric changes are characterized by increases in carbon dioxide (CO2) and ozone (O3) concentrations, with important consequences for the soil microbial community. However, the influences of CO2 and O3 enrichment on the biomass, diversity, composition, and functioning of the soil bacterial community remain unclear. We investigated the effects of short-term factorial combinations of CO2 (by 200 ppm) and O3 (by 40 ppb) enrichment on the dynamics of soil bacterial community in paddy soils with two rice varieties (Japonica, Nangeng 5055 (NG5055) vs. Wuyujing 3 (WYJ3)) in an open top chamber facility. When averaged both varieties, CO2 and O3 enrichment showed no individual or combined effect on the abundance or diversity of soil bacterial community. Similarly, CO2 enrichment did not exert any significant effect on the relative abundance of bacterial phyla. However, O3 enrichment significantly reduced the relative abundance of Myxococcota phylum by a mean of 37.5%, which negatively correlated to root N content. Compared to ambient conditions, soil bacterial community composition was separated by CO2 enrichment in NG5055, and by both CO2 and O3 enrichment in WYJ3, with root N content identified as the most influential factor. These results indicated that root N was the top direct predictor for the community composition of soil bacteria. The COG (cluster of orthologous groups) protein of cell motility was significantly reduced by 5.8% under CO2 enrichment, and the COG protein of cytoskeleton was significantly decreased by 14.7% under O3 enrichment. Furthermore, the co-occurrence network analysis indicated that both CO2 and O3 enrichment decreased the network complexity of the soil bacterial community. Overall, our results highlight that continuous CO2 and O3 enrichment would potentially damage the health of paddy soils through adverse impacts on the associations and functional composition of soil microbial communities.
Collapse
Affiliation(s)
- Jianqing Wang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yunyan Tan
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Peng Leng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Li X, Song W, Chen S. Kinetics and mechanism of ozonation to treat Microcystis-laden source waters affected by cell-viability. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129604. [PMID: 35908396 DOI: 10.1016/j.jhazmat.2022.129604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Toxic cyanobacteria are challenging drinking water safety globally, and their cell-viability declines at decay stage of a succussive bloom. Ozone might be a more effective oxidant to treat both high- and low-viability cyanobacteria than other common oxidants (e.g., chlorine, potassium permanganate). However, previous studies only conducted ozonation experiments using high-viability cyanobacteria, and potential influences of cell-viability on ozonation process, remains unknown. In this study, kinetics of ozone decay, cell inactivation, membrane destruction, and cyanotoxin fate of high- and low-viability Microcystis (the most common genus), was investigated, and associated mechanism was discussed. Results showed that low-viability Microcystis exhibited a higher rate constant of membrane destruction (665-744 M-1 s-1) than high-viability Microcystis (364-600 M-1 s-1) by equal concentrations of ozone, ascribed to loosely gelatinous sheath comprised with fewer organic matters as oxidant scavengers. Meanwhile, a higher rate constant of photosynthetic inactivation induced by ozonation, was observed for low-viability Microcystis (312-364 M-1 s-1) than that for high-viability Microcystis (168-294 M-1 s-1). However, elevated aromatic organics competitively inhibited microcystin ozonation for low-viability Microcystis, and hydroxyl radicals for microcystin oxidation could be reduced by elevated organic loads and alkalinity. Moreover, elevated ozone exposure (>51 mg min L-1) did not totally oxidize microcystin with a residual of 30 μg L-1 for low-viability Microcystis. These findings suggested that elevated microcystin risk would be the great barrier to limit ozonation application for low-viability Microcystis, even with benefits of higher cell inactivation compared to high-viability Microcystis.
Collapse
Affiliation(s)
- Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Weijun Song
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China.
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Jalili F, Moradinejad S, Zamyadi A, Dorner S, Sauvé S, Prévost M. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins (Basel) 2022; 14:toxins14060410. [PMID: 35737071 PMCID: PMC9228313 DOI: 10.3390/toxins14060410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can enhance coagulation efficiency as it provides the first barrier against cyanobacteria and cyanotoxins and it decreases cell accumulation in DWTP sludge. This critical review aims to: (i) evaluate the state of the science of cyanobacteria and cyanotoxin management throughout DWTPs, as well as their associated sludge, and (ii) develop a decision framework to manage cyanobacteria and cyanotoxins in DWTPs and sludge. The review identified that lab-cultured-based pre-oxidation studies may not represent the real bloom pre-oxidation efficacy. Moreover, the application of a common exposure unit CT (residual concentration × contact time) provides a proper understanding of cyanobacteria pre-oxidation efficiency. Recently, reported challenges on cyanobacterial survival and growth in sludge alongside the cell lysis and cyanotoxin release raised health and technical concerns with regards to sludge storage and sludge supernatant recycling to the head of DWTPs. According to the review, oxidation has not been identified as a feasible option to handle cyanobacterial-laden sludge due to low cell and cyanotoxin removal efficacy. Based on the reviewed literature, a decision framework is proposed to manage cyanobacteria and cyanotoxins and their associated sludge in DWTPs.
Collapse
Affiliation(s)
- Farhad Jalili
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Saber Moradinejad
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
- Correspondence:
| | - Arash Zamyadi
- Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Sarah Dorner
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Michèle Prévost
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| |
Collapse
|
8
|
Xu H, Zhang J, Wang W, Li Y, Pei H. Moderate pre-ozonation coupled with a post-peroxone process remove filamentous cyanobacteria and 2-MIB efficiently: From bench to pilot-scale study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127530. [PMID: 34879521 DOI: 10.1016/j.jhazmat.2021.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The increasing frequency and intensity of taste- and odour-producing cyanobacteria in water sources is a growing global issue. Odour events caused by 2-methylisoborneol (2-MIB) mainly arising from filamentous cyanobacteria have been a very common problem in water supply. Removal rates of filamentous cyanobacteria and 2-MIB by conventional water treatment, such as coagulation, and disinfection treatment processes is low. Hence, a moderate pre-ozonation of cyanobacteria (with little cell damage) was proposed in this study as an enhanced coagulation step to remove filamentous cyanobacteria and intracellular 2-MIB effectively, while avoiding the release of intracellular 2-MIB. A post-peroxone (O3/H2O2) process was applied after sand filtration to degrade the residual dissolved 2-MIB. Results show that moderate pre-ozonation (0.2 mg/L O3 oxidation for 20 min) can substantially enhance the coagulation efficiency for algae, with low cell lysis and high cell viability. Furthermore, 2.0 mg/L O3 combined with 2.0 mg/L H2O2 can degrade the residual dissolved 2-MIB nearly 100% after 20 min reaction. Based on the optimal dosages, a 0.6 m3/h pilot system, including pre-ozonation, coagulation and sedimentation, sand filtration, and post-peroxone processes, was continuously run for 14 days, and it was found that the proposed process can effectively and stably remove filamentous cyanobacteria and 2-MIB.
Collapse
Affiliation(s)
- Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Jing Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenjuan Wang
- Gaomi Sunvim Water Co., Ltd., Gaomi 261500, China
| | - Yizhen Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| |
Collapse
|
9
|
Moradinejad S, Trigui H, Maldonado JFG, Shapiro BJ, Terrat Y, Sauvé S, Fortin N, Zamyadi A, Dorner S, Prévost M. Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis. Toxins (Basel) 2021; 13:toxins13090596. [PMID: 34564601 PMCID: PMC8473049 DOI: 10.3390/toxins13090596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits.
Collapse
|
11
|
Munoz M, Cirés S, de Pedro ZM, Colina JÁ, Velásquez-Figueroa Y, Carmona-Jiménez J, Caro-Borrero A, Salazar A, Santa María Fuster MC, Contreras D, Perona E, Quesada A, Casas JA. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143197. [PMID: 33160675 DOI: 10.1016/j.scitotenv.2020.143197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The increasing occurrence of cyanobacterial blooms worldwide represents an important threat for both the environment and public health. In this context, the development of risk analysis and management tools as well as sustainable and cost-effective treatment processes is essential. The research project TALGENTOX, funded by the Ibero-American Science and Technology Program for Development (CYTED-2019), aims to address this ambitious challenge in countries with different environmental and social conditions within the Ibero-American context. It is based on a multidisciplinary approach that combines ecology, water management and technology fields, and includes research groups from Chile, Colombia, Mexico, Peru and Spain. In this review, the occurrence of toxic cyanobacteria and cyanotoxins in freshwaters from these countries are summarized. The presence of cyanotoxins has been confirmed in all countries but the information is still scarce and further monitoring is required. In this regard, remote sensing or metagenomics are good alternatives at reasonable cost. The risk management of freshwaters from those countries considering the most frequent uses (consumption and recreation) has been also evaluated. Only Spain and Peru include cyanotoxins in its drinking water legislation (only MC-LR) and thus, there is a need for regulatory improvements. The development of preventive strategies like diminishing nutrient loads to aquatic systems is also required. In the same line, corrective measures are urgently needed especially in drinking waters. Advanced Oxidation Processes (AOPs) have the potential to play a major role in this scenario as they are effective for the elimination of most cyanotoxins classes. The research on the field of AOPs is herein summarized considering the cost-effectiveness, environmental character and technical applicability of such technologies. Fenton-based processes and photocatalysis using solar irradiation or LED light represent very promising alternatives given their high cost-efficiency. Further research should focus on developing stable long-term operation systems, addressing their scale-up.
Collapse
Affiliation(s)
- Macarena Munoz
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Samuel Cirés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Zahara M de Pedro
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Ángel Colina
- Departamento de Ingeniería Química, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Javier Carmona-Jiménez
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Angela Caro-Borrero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Salazar
- Centro de Investigación y Tecnología de Agua - CITA, Universidad de Ingeniería y Tecnología - UTEC, Lima, Peru
| | | | - David Contreras
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A Casas
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Moradinejad S, Trigui H, Guerra Maldonado JF, Shapiro J, Terrat Y, Zamyadi A, Dorner S, Prévost M. Diversity Assessment of Toxic Cyanobacterial Blooms during Oxidation. Toxins (Basel) 2020; 12:toxins12110728. [PMID: 33233813 PMCID: PMC7699887 DOI: 10.3390/toxins12110728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Fresh-water sources of drinking water are experiencing toxic cyanobacterial blooms more frequently. Chemical oxidation is a common approach to treat cyanobacteria and their toxins. This study systematically investigates the bacterial/cyanobacterial community following chemical oxidation (Cl2, KMnO4, O3, H2O2) using high throughput sequencing. Raw water results from high throughput sequencing show that Proteobacteria, Actinobacteria, Cyanobacteria and Bacteroidetes were the most abundant phyla. Dolichospermum, Synechococcus, Microcystis and Nostoc were the most dominant genera. In terms of species, Dolichospermum sp.90 and Microcystis aeruginosa were the most abundant species at the beginning and end of the sampling, respectively. A comparison between the results of high throughput sequencing and taxonomic cell counts highlighted the robustness of high throughput sequencing to thoroughly reveal a wide diversity of bacterial and cyanobacterial communities. Principal component analysis of the oxidation samples results showed a progressive shift in the composition of bacterial/cyanobacterial communities following soft-chlorination with increasing common exposure units (CTs) (0–3.8 mg·min/L). Close cyanobacterial community composition (Dolichospermum dominant genus) was observed following low chlorine and mid-KMnO4 (287.7 mg·min/L) exposure. Our results showed that some toxin producing species may persist after oxidation whether they were dominant species or not. Relative persistence of Dolichospermum sp.90 was observed following soft-chlorination (0.2–0.6 mg/L) and permanganate (5 mg/L) oxidation with increasing oxidant exposure. Pre-oxidation using H2O2 (10 mg/L and one day contact time) caused a clear decrease in the relative abundance of all the taxa and some species including the toxin producing taxa. These observations suggest selectivity of H2O2 to provide an efficient barrier against toxin producing cyanobacteria entering a water treatment plant.
Collapse
Affiliation(s)
- Saber Moradinejad
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
- Correspondence:
| | - Hana Trigui
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Juan Francisco Guerra Maldonado
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Jesse Shapiro
- Department of Biological Science, Université de Montréal, Montréal, QC H2V 0B3, Canada; (J.S.); (Y.T.)
| | - Yves Terrat
- Department of Biological Science, Université de Montréal, Montréal, QC H2V 0B3, Canada; (J.S.); (Y.T.)
| | - Arash Zamyadi
- Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
- BGA Innovation Hub and Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Sarah Dorner
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Michèle Prévost
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| |
Collapse
|
13
|
Greenstein KE, Zamyadi A, Glover CM, Adams C, Rosenfeldt E, Wert EC. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria. Toxins (Basel) 2020; 12:E335. [PMID: 32443714 PMCID: PMC7291037 DOI: 10.3390/toxins12050335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oxidation processes can provide an effective barrier to eliminate cyanotoxins by damaging cyanobacteria cell membranes, releasing intracellular cyanotoxins, and subsequently oxidizing these toxins (now in extracellular form) based on published reaction kinetics. In this work, cyanobacteria cells from two natural blooms (from the United States and Canada) and a laboratory-cultured Microcystis aeruginosa strain were treated with chlorine, monochloramine, chlorine dioxide, ozone, and potassium permanganate. The release of microcystin was measured immediately after oxidation (t ≤ 20 min), and following oxidant residual quenching (stagnation times = 96 or 168 h). Oxidant exposures (CT) were determined resulting in complete release of intracellular microcystin following chlorine (21 mg-min/L), chloramine (72 mg-min/L), chlorine dioxide (58 mg-min/L), ozone (4.1 mg-min/L), and permanganate (391 mg-min/L). Required oxidant exposures using indigenous cells were greater than lab-cultured Microcystis. Following partial oxidation of cells (oxidant exposures ≤ CT values cited above), additional intracellular microcystin and dissolved organic carbon (DOC) were released while the samples remained stagnant in the absence of an oxidant (>96 h after quenching). The delayed release of microcystin from partially oxidized cells has implications for drinking water treatment as these cells may be retained on a filter surface or in solids and continue to slowly release cyanotoxins and other metabolites into the finished water.
Collapse
Affiliation(s)
| | - Arash Zamyadi
- Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
- BGA Innovation Hub and Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Caitlin M. Glover
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Craig Adams
- Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;
| | | | - Eric C. Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA;
| |
Collapse
|
14
|
Impact of Hydrogen Peroxide and Copper Sulfate on the Delayed Release of Microcystin. WATER 2020. [DOI: 10.3390/w12041105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Algicides, like hydrogen peroxide and copper sulfate, are commonly applied to recreational waters and drinking water sources to mitigate cyanobacterial blooms. In this work, the effects of hydrogen peroxide and copper sulfate were evaluated in two natural bloom samples (collected from Canadian and American waterbodies) and one lab-cultured Microcystis aeruginosa suspended in Colorado River water. Five algicide to dissolved organic carbon (DOC) dose ratios were evaluated during an initial exposure period of 24 h. One dose ratio (0.4 H2O2:DOC or 0.25 CuSO4:DOC) was then evaluated during stagnation after quenching (hydrogen peroxide) or extended exposure (copper sulfate) for up to 96 or 168 h. During the initial hydrogen peroxide exposure, the CA bloom had no release of intracellular microcystins (MCs) and the USA bloom only released MC at 4 H2O2:DOC. The reverse occurred with copper sulfate, where the CA bloom released MCs at 0.6 CuSO4:DOC but the USA bloom had no detectable extracellular MCs. Extracellular MC was released from the lab-cultured Microcystis at the lowest hydrogen peroxide and copper sulfate doses. In the hydrogen peroxide stagnation experiment, intracellular MC decreased in the USA bloom after 168 h despite the low dose applied. Similarly, the extended copper sulfate exposure led to intracellular MC decreases in both bloom samples after 168 h, despite showing no impact during the initial 24 h monitoring period. The lab-cultured Microcystis was again less resistant to both algicides, with releases observed after less than 2 h of stagnation or exposure. The damage to cells as measured by pigments during these experiments did not match the MC data, indicating that blooms with depressed pigment levels can still be a risk to nearby drinking water sources or recreational activities. These results provide insight on the timeline (up to one week) required for monitoring the potential release of MCs after algicide application.
Collapse
|
15
|
Menezes C, Valério E, Botelho MJ, Dias E. Isolation and Characterization of Cylindrospermopsis raciborskii Strains from Finished Drinking Water. Toxins (Basel) 2020; 12:toxins12010040. [PMID: 31936211 PMCID: PMC7020411 DOI: 10.3390/toxins12010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the summer of 2015, an intense cyanobacterial bloom producing geosmin/2-methylisoborneol (MIB) occurred in the Roxo freshwater reservoir in Alentejo, Portugal. The drinking water supplied from the Roxo water treatment plant (WTP) exhibited an unpleasant odor/taste and a significant cyanobacteria density was detected in the finished water at the exit of the WTP. Cyanobacteria were not evaluated downstream of the WTP, namely, at the city reservoir. The aim of this work was to isolate and characterize viable cyanobacteria present in finished water (exit of the WTP and city reservoir) that withstand conventional water treatment. Treated water samples collected at both sites were inoculated in Z8 culture medium to provide the conditions for putative cyanobacterial growth. After 30 days, filamentous cyanobacteria were observed in cultures inoculated with samples from the exit point of the WTP. Viable trichomes were isolated and identified as Cylindrospermopsis raciborskii by morphometric and molecular analysis. None of the isolates were cylindrospermopsin/microcystin producers, as confirmed by ELISA and amplification of corresponding genes (PS/PKS and mcyA-cd/mcyAB/mcyB). ELISA results were positive for saxitoxin, but saxitoxin and derivatives were not detected by liquid chromatography with fluorescence detection (LC-FLD), nor were their related genes (sxtA/sxtA4/sxtB/sxtM/sxtPer/sxtI). To our knowledge, this is the first report on the establishment of cultures of C. raciborskii that resisted water treatment processes.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Maria João Botelho
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| | - Elsa Dias
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
- Centre for the Studies of Animal Science (CECA), Institute of Agrarian and Agri-Food Sciences and Technologies (ICETA), Oporto University, 4051-401 Oporto, Portugal
- Correspondence: ; Tel.: +35-1217519260
| |
Collapse
|
16
|
Mini-Hydrocyclone Separation of Cyanobacterial and Green Algae: Impact on Cell Viability and Chlorine Consumption. WATER 2019. [DOI: 10.3390/w11071473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The co-occurrence of non-toxic phytoplankton alongside cyanobacteria adds to the challenge of treating source waters with harmful algal blooms. The non-toxic species consume the oxidant and, thereby, reduce the efficacy of oxidation of both the extracellular and intracellular cyanotoxins. In this work, a 3D printed mini-hydrocyclone was used to separate a mixture of non-toxic green algae, Scenedesmus obliquus, from a toxic species of cyanobacteria, Microcystis aeruginosa. When water is pumped through the mini-hydrocyclone, cells exit through an overflow or underflow port depending on their size, shape, and density relative to the other cells and particles in the water matrix. The overflow port contains the cells that are smaller and less dense since these particles move toward the center of the hydrocyclone. In this work, the majority (>93%) of Microcystis cells were found in the overflow while the underflow contained primarily the Scenedesmus (>80%). This level of separation efficiency was maintained over the 30-min experiment and the majority of both cells (>86%) remained viable following the separation, which indicates that the pumping combined with forces exerted within the mini-hydrocyclone were not sufficient to cause cell death. The impact of free chlorine on the cells both pre-separation and post-separation was evaluated at two doses (1 and 2 mg/L). After separation, the overflow, which contained primarily Microcystis, had at least a 24% reduction in the free chlorine decay rate as compared to the feed water, which contained both species. This reduction in chlorine consumption shows that the cells separated via mini-hydrocyclone would likely require lower doses of oxidant to produce a similar level of degradation of the cyanotoxins present in either the extracellular or intracellular form. However, future work should be undertaken to evaluate this effect in natural bloom samples.
Collapse
|
17
|
Using Advanced Spectroscopy and Organic Matter Characterization to Evaluate the Impact of Oxidation on Cyanobacteria. Toxins (Basel) 2019; 11:toxins11050278. [PMID: 31108999 PMCID: PMC6563301 DOI: 10.3390/toxins11050278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
Drinking water treatment plants throughout the world are increasingly facing the presence of toxic cyanobacteria in their source waters. During treatment, the oxidation of cyanobacteria changes cell morphology and can potentially lyse cells, releasing intracellular metabolites. In this study, a combination of techniques was applied to better understand the effect of oxidation with chlorine, ozone, potassium permanganate, and hydrogen peroxide on two cell cultures (Microcystis, Dolichospermum) in Lake Champlain water. The discrepancy observed between flow cytometry cell viability and cell count numbers was more pronounced for hydrogen peroxide and potassium permanganate than ozone and chlorine. Liquid chromatography with organic carbon and nitrogen detection was applied to monitor the changes in dissolved organic matter fractions following oxidation. Increases in the biopolymer fraction after oxidation with chlorine and ozone were attributed to the release of intracellular algal organic matter and/or fragmentation of the cell membrane. A novel technique, Enhanced Darkfield Microscopy with Hyperspectral Imaging, was applied to chlorinated and ozonated samples. Significant changes in the peak maxima and number of peaks were observed for the cell walls post-oxidation, but this effect was muted for the cell-bound material, which remained relatively unaltered.
Collapse
|
18
|
Yasmin R, Aftab K, Kashif M. Removal of microcystin-LR from aqueous solution using Moringa oleifera Lam. seeds. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:104-113. [PMID: 30816867 DOI: 10.2166/wst.2019.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The removal of microcystin-LR from aqueous solution using native Moringa oleifera Lam. seeds powder (MSP) and chemically pretreated M. oleifera Lam. seed powder (PMSP) was investigated in terms of equilibrium and kinetics. Optimum sorption conditions were determined as a function of pH (2-7), adsorbent dosage (0.25-1.0 g/L), initial concentration of microcystin-LR (15-120 mg/L) and contact time (15-360 minutes). The high values of regression constant, 0.98 (MSP) and 0.99 (PMSP), revealed that sorption of microcystin-LR was best fitted by the pseudo second order kinetic model. The equilibrium study was best fitted by the Freundlich model with both the adsorbents. The maximum sorption capacity by MSP and PMSP for microcystin-LR was 85.5 ± 1.1 mg/g and 92.49 ± 2.4 mg/g respectively. Fourier transform infrared spectroscopy showed the major involvement of carboxyl and hydroxyl groups for microcystin-LR sequestration either by complexation or ion exchange mechanism. The contribution of the adsorption phenomenon was confirmed by scanning electron microscopic analysis of microcystin-LR loaded and unloaded PMSP. Thus, the HCl-pretreated M. oleifera Lam. seed powder proved to be the pre-eminent biosorbent for removal of microcystin-LR from the wastewater stream.
Collapse
Affiliation(s)
- Rabia Yasmin
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan E-mail:
| | - Kiran Aftab
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan E-mail:
| | - Muhammad Kashif
- Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
19
|
Dixit F, Barbeau B, Mohseni M. Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins. WATER RESEARCH 2018; 139:74-82. [PMID: 29627644 DOI: 10.1016/j.watres.2018.03.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Microcystins are the most commonly occurring cyanotoxins, and have been extensively studied across the globe. In the present study, a strongly basic anion exchange resin was employed to investigate the removal of Microcystin-LR (MCLR), one of the most toxic microcystin variants. Factors influencing the uptake behavior included the MCLR and resin concentrations, resin dosage, and natural organic matter (NOM) characteristics, specifically, the charge density and molecular weight distribution of source water NOM. Equivalent background concentration (EBC) was employed to evaluate the competitive uptake between NOM and MCLR. The experimental data were compared with different mathematical and physical models and pore diffusion was determined as the rate-limiting step. The resin dose/solute concentration ratio played a key role in the MCLR uptake process and MCLR removal was attributed primarily to electrostatic attractions. Charge density and molecular weight distribution of the background NOM fractions played a major role in MCLR removal at lower resin dosages (200 mg/L ∼ 1 mL/L and below), where a competitive uptake was observed due to the limited exchange sites. Further, evidences of pore blockage and site reduction were also observed in the presence of humics and larger molecular weight organic fractions, where a four-fold reduction in the MCLR uptake was observed. Comparable results were obtained for laboratory studies on synthetic laboratory water and surface water under similar conditions. Given their excellent performance and low cost, anion exchange resins are expected to present promising potentials for applications involving the removal of removal of algal toxins and NOM from surface waters.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Pandhal J, Siswanto A, Kuvshinov D, Zimmerman WB, Lawton L, Edwards C. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation. Front Microbiol 2018; 9:678. [PMID: 29675015 PMCID: PMC5895700 DOI: 10.3389/fmicb.2018.00678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD) reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min) destruction of two pure microcystins (MC-LR and MC-RR), together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR) removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L min−1. This lab-scale investigation demonstrates the potential of the novel plasma micro reactor with applications for in situ treatment of harmful algal blooms and cyanotoxins.
Collapse
Affiliation(s)
- Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Anggun Siswanto
- Vocational School, Diponegoro University, Semarang, Indonesia
| | - Dmitriy Kuvshinov
- School of Engineering and Computer Science, University of Hull, Kingston Upon Hull, United Kingdom
| | - William B Zimmerman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
21
|
Şengül AB, Ersan G, Tüfekçi N. Removal of intra- and extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:29-35. [PMID: 28938156 DOI: 10.1016/j.jhazmat.2017.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the performance of conventional (coagulation/flocculation→powdered activated carbon [PAC] adsorption) and advanced treatment (coagulation/flocculation→PAC adsorption→submerged ultrafiltration [UF] membrane) processes separately and sequentially for the removal of total (intra- and extracellular) microcystin. Results of the conventional treatment process demonstrated that coagulation/flocculation alone was not effective (up to 70%) for the removal of total microcystin, while the uptake of total microcystin was achieved up to 84% by PAC adsorption (PAC dose of 20mg/L). In addition, the adsorption kinetic mechanism of PAC was also examined using several kinetic models. Results showed that the pseudo-second order (PSOM) and Weber-Morris intraparticle diffusion model (IPDM) are the most suitable models for this study (r2>0.98 and p-values ≤0.05). On the other hand, up to 94% of microcystin was effectively removed when the coagulation/flocculation and PAC systems were combined with UF membranes. Also, the permeate concentration was found to be 0.3mg/L, which is below the World Health Organization (WHO) guideline value of 1μg/L. Overall results indicated that higher removal of microcystin occurred using the advanced treatment process. Therefore, this combined system appears to be a promising treatment technique for the removal of total microcystin.
Collapse
Affiliation(s)
- Ayşe Büşra Şengül
- Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260, USA.
| | - Gamze Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Neşe Tüfekçi
- Department of Environmental Engineering, Istanbul University, Istanbul, 34320, Turkey
| |
Collapse
|
22
|
Güyer GT, Kabashi F. WITHDRAWN: Removal of microcystins in water by ultrasound coupled advanced oxidation techniques. ULTRASONICS SONOCHEMISTRY 2017:S1350-4177(17)30213-4. [PMID: 28709850 DOI: 10.1016/j.ultsonch.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | - Fjolle Kabashi
- Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany
| |
Collapse
|
23
|
Zamyadi A, Choo F, Newcombe G, Stuetz R, Henderson RK. A review of monitoring technologies for real-time management of cyanobacteria: Recent advances and future direction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
He X, Wert EC. Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis. WATER RESEARCH 2016; 101:10-16. [PMID: 27240297 DOI: 10.1016/j.watres.2016.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Colonial cell disaggregation and release of intracellular microcystin were evaluated following chlorine treatment of naturally occurring Microcystis. Microscopic observations of water samples collected from Lake Mead, Nevada, USA, confirmed the presence of colonial Microcystis with cells protected by an outer sheath up to 30 μm thick. During chlorination, two stages of cell decomposition were observed, stage 1: colonial cell disaggregation, and stage 2: unicellular degradation. Following a [Cl2]0:DOC0 ratio of 0.15 (t = 20 min, pH = 8.2-8.5) in unfiltered Lake Havasu samples, total particle count increased from (1.0 ± 0.11) × 10(5) to 4.2 × 10(5) particles/mL and fluorescent particle count increased from (1.2 ± 0.50) × 10(4) to 1.2 × 10(5) particles/mL, illustrating colonial cell disaggregation. Although total and fluorescent particles increased, the concentration of chlorophyll-a (Chl-a) decreased from 81 μg/L to 72 μg/L, and continued to decrease at higher [Cl2]0:DOC0 ratios. The preliminary second order rate constant for the reaction between Microcystis and chlorine in natural waters was estimated using either Chl-a (k = 15 M(-1) s(-1)) or fluorescence particle count (k = 38 M(-1) s(-1)) as an indicator of cell damage following colonial disaggregation (i.e., at [Cl2]0:DOC0 ratio ≥0.15). Complete release of intracellular microcystin-LR (MC-LR) was observed in both Lake Havasu and Lake Mead samples when applying a [Cl2]0:DOC0 ratio of 0.30 (t = 20 min), which was equivalent to a chlorine exposure of 8 min-mg/L for Lake Havasu samples. With chlorination, DOC increased by 3-18% indicating release of either colony-bound or cell-bound DOC. The results demonstrated the ability of chlorine to disaggregate/inactivate natural Microcystis colonies, and identified oxidation conditions resulting in complete release of intracellular MC-LR.
Collapse
Affiliation(s)
- Xuexiang He
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
25
|
Identification of pesticide varieties by testing microalgae using Visible/Near Infrared Hyperspectral Imaging technology. Sci Rep 2016; 6:24221. [PMID: 27071456 PMCID: PMC4829843 DOI: 10.1038/srep24221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/22/2016] [Indexed: 01/10/2023] Open
Abstract
In our study, the feasibility of using visible/near infrared hyperspectral imaging technology to detect the changes of the internal components of Chlorella pyrenoidosa so as to determine the varieties of pesticides (such as butachlor, atrazine and glyphosate) at three concentrations (0.6 mg/L, 3 mg/L, 15 mg/L) was investigated. Three models (partial least squares discriminant analysis combined with full wavelengths, FW-PLSDA; partial least squares discriminant analysis combined with competitive adaptive reweighted sampling algorithm, CARS-PLSDA; linear discrimination analysis combined with regression coefficients, RC-LDA) were built by the hyperspectral data of Chlorella pyrenoidosa to find which model can produce the most optimal result. The RC-LDA model, which achieved an average correct classification rate of 97.0% was more superior than FW-PLSDA (72.2%) and CARS-PLSDA (84.0%), and it proved that visible/near infrared hyperspectral imaging could be a rapid and reliable technique to identify pesticide varieties. It also proved that microalgae can be a very promising medium to indicate characteristics of pesticides.
Collapse
|
26
|
Li X, Dreher TW, Li R. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. HARMFUL ALGAE 2016; 54:54-68. [PMID: 28073482 DOI: 10.1016/j.hal.2015.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 05/12/2023]
Abstract
The new genus name Dolichospermum, for most of the planktonic former members of the genus Anabaena, is one of the most ubiquitous bloom-forming cyanobacterial genera. Its dominance and persistence have increased in recent years, due to eutrophication from anthropogenic activities and global climate change. Blooms of Dolichospermum species, with their production of secondary metabolites that commonly include toxins, present a worldwide threat to environmental and public health. In this review, recent advances of the genus Dolichospermum are summarized, including taxonomy, genetics, bloom occurrence, and production of toxin and taste-and-odor compounds. The recent and continuing acquisition of genome sequences is ushering in new methods for monitoring and understanding the factors regulating bloom dynamics.
Collapse
Affiliation(s)
- Xiaochuang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
27
|
He X, Liu YL, Conklin A, Westrick J, Weavers LK, Dionysiou DD, Lenhart JJ, Mouser PJ, Szlag D, Walker HW. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. HARMFUL ALGAE 2016; 54:174-193. [PMID: 28073475 DOI: 10.1016/j.hal.2016.01.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators.
Collapse
Affiliation(s)
- Xuexiang He
- Southern Nevada Water Authority, PO Box 99954, Las Vegas, NV 89193, USA
| | - Yen-Ling Liu
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda Conklin
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Judy Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Linda K Weavers
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - John J Lenhart
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Paula J Mouser
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - David Szlag
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Harold W Walker
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|