1
|
Cicekalan B, Berenji NR, Aras MF, Guven H, Koyuncu I, Ersahin ME, Ozgun H. Impact of food waste addition in energy efficient municipal wastewater treatment by aerobic granular sludge process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29304-29320. [PMID: 38570432 PMCID: PMC11058935 DOI: 10.1007/s11356-024-32997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Recently, one of the main purposes of wastewater treatment plants is to achieve a neutral or positive energy balance while meeting the discharge criteria. Aerobic granular sludge (AGS) technology is a promising technology that has low energy and footprint requirements as well as high treatment performance. The effect of co-treatment of municipal wastewater and food waste (FW) on the treatment performance, granule morphology, and settling behavior of the granules was investigated in the study. A biochemical methane potential (BMP) test was also performed to assess the methane potential of mono- and co-digestion of the excess sludge from the AGS process. The addition of FW into wastewater enhanced the nutrient treatment efficiency in the AGS process. BMP of the excess sludge from the AGS process fed with the mixture of wastewater and FW (195 ± 17 mL CH4/g VS) was slightly higher than BMP of excess sludge from the AGS process fed with solely wastewater (173 ± 16 mL CH4/g VS). The highest methane yield was observed for co-digestion of excess sludge from the AGS process and FW, which was 312 ± 8 mL CH4/g VS. Integration of FW as a co-substrate in the AGS process would potentially enhance energy recovery and the quality of effluent in municipal wastewater treatment.
Collapse
Affiliation(s)
- Busra Cicekalan
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Nastaran Rahimzadeh Berenji
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Muhammed Furkan Aras
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Huseyin Guven
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- National Research Center On Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Mustafa Evren Ersahin
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- National Research Center On Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hale Ozgun
- Civil Engineering Faculty, Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- National Research Center On Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
2
|
Qu C, Yang S, Mortimer M, Zhang M, Chen J, Wu Y, Chen W, Cai P, Huang Q. Functional group diversity for the adsorption of lead(Pb) to bacterial cells and extracellular polymeric substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118651. [PMID: 34883144 DOI: 10.1016/j.envpol.2021.118651] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 12/05/2021] [Indexed: 05/26/2023]
Abstract
Bacteria and their secreted extracellular polymeric substances (EPS) are widely distributed in ecosystems and have high capacity for heavy metal immobilization. The knowledge about the molecular-level interactions with heavy metal ions is essential for predicting the behavior of heavy metals in natural and engineering systems. This comprehensive study using potentiometric titration, Fourier-transform infrared (FTIR) spectroscopy, isothermal titration calorimetry (ITC) and X-ray absorption fine structure (XAFS) was able to reveal the functional diversity and adsorption mechanisms for Pb onto bacteira and the EPS in greater detail than ever before. We identified mono-carboxylic, multi-carboxylic, phosphodiester, phosphonic and sulfhydryl sites and found the partitioning of Pb to these functional groups varied between gram-negative and gram-positive bacterial strains, the soluble and cell-bound EPS and Pb concentrations. The sulfhydryl and phosphodiester groups preferentially complexed with Pb in P. putida cells, while multifunctional carboxylic groups promoted Pb adsorption in B. subtilis cells and the protein fractions in EPS. Though the functional site diversity, the adsorption of Pb to organic ligands occurred spontaneously through a universal entropy increase and inner-sphere complexation mechanism. The functional group scale knowledge have implications for the modeling of heavy metal behavior in the environment and application of these biological resources.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzhao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Ibrar I, Yadav S, Ganbat N, Samal AK, Altaee A, Zhou JL, Nguyen TV. Feasibility of H 2O 2 cleaning for forward osmosis membrane treating landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113024. [PMID: 34139645 DOI: 10.1016/j.jenvman.2021.113024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study reports landfill leachate treatment by the forward osmosis (FO) process using hydrogen peroxide (H2O2) for membrane cleaning. Although chemical cleaning is an effective method for fouling control, it could compromise membrane integrity. Thus, understanding the impact of chemical cleaning on the forward osmosis membrane is essential to improving the membrane performance and lifespan. Preliminary results revealed a flux recovery of 98% in the AL-FS mode (active layer facing feed solution) and 90% in the AL-DS (draw solution faces active layer) using 30% H2O2 solution diluted to 3% by pure water. The experimental work investigated the effects of chemical cleaning on the polyamide active and polysulfone support layers since the FO membrane could operate in both orientations. Results revealed that polysulfone support layer was more sensitive to H2O2 damage than the polyamide active at a neutral pH. The extended exposure of thin-film composite (TFC) FO membrane to H2O2 was investigated, and the active layer tolerated H2O2 for 72 h, and the support layer for only 40 h. Extended operation of the TFC FO membrane in the AL-FS based on a combination of physical (hydraulic flushing with DI water) and H2O2 was reported, and chemical cleaning with H2O2 could still recover 92% of the flux.
Collapse
Affiliation(s)
- Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Namuun Ganbat
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Science (CNMS), Jain University, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Tien Vinh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| |
Collapse
|
4
|
Tang Y, Dai X, Dong B, Guo Y, Dai L. Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. WATER RESEARCH 2020; 175:115686. [PMID: 32199187 DOI: 10.1016/j.watres.2020.115686] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
High-solid anaerobic digestion (HAD) can directly treat dewatered sewage sludge (total solid content ≥15%) with superior volume efficiency. Sludge stabilization during HAD is expected to achieve by throughout organic degradation and conversion towards methane-rich biogas release and humic formation. Sewage sludge is the combination of microbial zoogleas and theirs adsorption of organic and inorganic matter, in which the extracellular polymeric substances (EPS) account 60-80% of total sludge organic matter, inevitably participating most extracellular metabolic pathways. The interactions between EPS transformation and genetically annotated metabolic pathways were found in this research. In brief, noticing the highly cross-linked structures in EPS with major active components of humic substances (HS) and protein (PN), as PN hydrolysis and decomposition in EPS were enhanced in the high-solid anaerobic condition, the exposure of aromatic groups and sites in HS were considerable. HS release was the main factor shifting the electron exchange capacity and activity, which aided in energy metabolism of sludge microorganisms involved in redox reactions, especially the methanogenesis, thus in turn facilitating the PN degradation; Then, the screened humic groups and active protein derives might act as the beneficial precursors to regenerate neo-humic structures, whose significant bridging effect and signal role on stimulating amino acid biosynthesis, member transport and metallic complexation could further contribute to proteolytic condensation and EPS reconstruction. Hence, the in-depth sludge stabilization mechanism during HAD process was established for developing enlightening strategies.
Collapse
Affiliation(s)
- Yanfei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiqun Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Qian Y, Zhang K, Jin H, Lei L, Zhang H, Gan H. Removal of acenaphthene from wastewater by Pseudomonas sp. in anaerobic conditions: the effects of extra and intracellular substances. ENVIRONMENTAL TECHNOLOGY 2020; 41:1298-1306. [PMID: 30284962 DOI: 10.1080/09593330.2018.1531940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sorption and degradation are considered two primary modes of pollutant removal by microorganisms, and extracellular polymeric substances (EPS) have been shown to play an important role in these biological processes. However, their role in removing refractory organic pollutants the effects of intracellular substances in microorganisms remain unclear. In this study, we investigated both the removal mechanism and intracellular substances involved in removing the pollutant acenaphthene (ACE) from Pseudomonas sp. bacteria in anaerobic conditions. The results indicated that the ACE was mainly adsorbed rather than degraded by bacteria. Moreover, ACE had little impact on EPS secretion at concentrations ranging 0-3 mg/L. Cell walls and membranes accounted for more than 70% of ACE adsorption, whereas intra-cellular substances accounted for about 10-25% and the effect of other components on ACE adsorption was not obvious. A possible mechanism of ACE removal by bacteria is proposed.
Collapse
Affiliation(s)
- Yongxing Qian
- Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, People's Republic of China
| | - Kefeng Zhang
- Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China
| | - Huixia Jin
- Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, People's Republic of China
| | - Huining Zhang
- Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China
| | - Huihui Gan
- Ningbo Institute of Technology, Zhejiang University, Ningbo, People's Republic of China
| |
Collapse
|
6
|
Isik O, Abdelrahman AM, Ozgun H, Ersahin ME, Demir I, Koyuncu I. Comparative evaluation of ultrafiltration and dynamic membranes in an aerobic membrane bioreactor for municipal wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32723-32733. [PMID: 30847818 DOI: 10.1007/s11356-019-04409-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the applicability of self-forming hollow fiber dynamic membrane (DM) as a low-cost alternative to ultrafiltration (UF) membrane. A hollow fiber polyester fabric was used as a support material to form the DM layer. Submerged DM and UF hollow fiber membrane were placed in the same reactor in order to compare the treatment and filtration performance of each membrane. Morphological analyses were also carried out for DM surface. The system was operated continuously at a flux of 5 L/m2 h for 85 days. High COD removal efficiency and total suspended solids (TSS) rejection were achieved by the DM. Transmembrane pressure (TMP) of the DM was higher in comparison to the UF membrane, which was related with the formation of cake layer in DM. DM technology can be used as an alternative to UF membrane for municipal wastewater treatment.
Collapse
Affiliation(s)
- Onur Isik
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Amr Mustafa Abdelrahman
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Hale Ozgun
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ibrahim Demir
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
7
|
Huang L, Fu XZ, Cui S, Liu HQ, Yu HQ, Li WW. Intracellular polymers production in anaerobic sludge under salt shock and batch fermentation conditions: Experimental and modelling study. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Juntawang C, Rongsayamanont C, Khan E. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure. CHEMOSPHERE 2017; 187:147-155. [PMID: 28846970 DOI: 10.1016/j.chemosphere.2017.08.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community.
Collapse
Affiliation(s)
- Chaipon Juntawang
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA.
| | - Chaiwat Rongsayamanont
- Research Center for Environmental Assessment and Technology for Hazardous Waste Management, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
9
|
Han X, Wang Z, Chen M, Zhang X, Tang CY, Wu Z. Acute Responses of Microorganisms from Membrane Bioreactors in the Presence of NaOCl: Protective Mechanisms of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3233-3241. [PMID: 28263585 DOI: 10.1021/acs.est.6b05475] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracellular polymeric substances (EPS) are key foulants in membrane bioreactors (MBRs). However, their positive functions of protecting microorganisms from environmental stresses, e.g., during in situ hypochlorite chemical cleaning of membranes, have not been adequately elucidated. In this work, we investigated the response of microorganisms in an MBR to various dosages of NaOCl, with a particular emphasis on the mechanistic roles of EPS. Results showed that functional groups in EPS such as the hydroxyl and amino groups were attacked by NaOCl, causing the oxidation of polysaccharides, denaturation of amino acids, damage to protein secondary structure, and transformation of tryptophan protein-like substances to condensed aromatic ring substances. The presence of EPS alleviated the negative impacts on catalase and superoxide dismutase, which in turn reduced the concentration of reactive oxygen species (ROS) in microbial cells. The direct extracellular reaction and the mitigated intracellular oxidative responses facilitated the maintenance of microbial metabolism, as indicated by the quantity of adenosine triphosphate and the activity of dehydrogenase. The reaction with NaOCl also led to the changes of cell integrity and adhesion properties of EPS, which promoted the release of organic matter into bulk solution. Our results systematically demonstrate the protective roles of EPS and the underlying mechanisms in resisting the environmental stress caused by NaOCl, which provides important implications for in situ chemical cleaning in MBRs.
Collapse
Affiliation(s)
- Xiaomeng Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd. , Shanghai 200082, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong , Pokfulam, Hong Kong China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
10
|
Sahinkaya E, Yurtsever A, Çınar Ö. Treatment of textile industry wastewater using dynamic membrane bioreactor: Impact of intermittent aeration on process performance. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yin C, Meng F, Meng Y, Chen GH. Differential ultraviolet-visible absorbance spectra for characterizing metal ions binding onto extracellular polymeric substances in different mixed microbial cultures. CHEMOSPHERE 2016; 159:267-274. [PMID: 27300774 DOI: 10.1016/j.chemosphere.2016.05.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Ultraviolet-visible (UV-vis) absorbance spectra was adopted to quantify the binding of major metal ions (e.g., Na(I), Ca((II)), Fe(III), Cu(II), and Pb(II)) on extracellular polymeric substances (EPSs) extracted from different mixed cultures. The results showed that the differential absorbance spectra (DAS) provided discernible features for revealing the changes in optical properties of EPSs induced by metals, i.e., the intensity of DAS increased largely with incrementally increased metal concentrations (Fe(III), Cu(II), and Pb(II)). It can be assumed attributable to the changes in the conformations and inter-chromophores of the EPS biomolecules. In addition, the changes in spectral parameters of DSlope325-375 (spectral slope in the range of wavelengths 325-375 nm) and DA300 (differential absorbance at 300 nm) were found to be closely related to the amounts of metals bound onto all extracted EPSs, particularly for Fe(III) and Cu(II). The decreased SR (the ratio of slope275-295 to slope350-400) of the EPS solutions after dosage of metals suggested increased molecular weight or size of the EPS biomolecules. Deconvolution of the DAS yielded six Gaussian bands, which were present in all of the EPS samples with various metals. Moreover, the relative contributions of different Gaussian bands in the DAS were determined by the nature of EPS-metal ions interactions good correlated with the covalent-bonding index. This study concluded that DAS and selected spectral parameters (DA300, DSlope325-375 and SR) can be used to successfully characterize the binding of metals onto EPS at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Cuiqin Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Guang-Hao Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China.
| |
Collapse
|
12
|
Liu J, Jia X, Gao B, Bo L, Wang L. Membrane fouling behavior in anaerobic baffled membrane bioreactor under static operating condition. BIORESOURCE TECHNOLOGY 2016; 214:582-588. [PMID: 27179954 DOI: 10.1016/j.biortech.2016.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
A novel AnMBR combined with ABR as the anaerobic baffled membrane bioreactor (ABMBR) was developed for membrane fouling mitigation without any turbulence intensifying strategy to reduce the energy consumption further. The filtration time of this system lasted 14-25days under stable condition only with back-flushing every 48h. The polysaccharide accounted for 6.85±3.1% amount of total filter cake and the protein accounted for 4.12±2.1%, which took 79.12% and 11.12% of total area in laser scanning confocal microscope (CLSM) image. After filtration, 83.72±10.97% of turbidity, 59.28±16.46% of polysaccharide, 16.51% of tryptophan and 37.61% of humic-like substrates were rejected, respectively. The total membrane resistance at the end of each cycle was (4.47±0.99)×10(13)m(-1). And the resistance from filter cake was (4.15±1.00)×10(13)m(-1), which accounted for of 92.6±3.4% of total membrane resistance.
Collapse
Affiliation(s)
- Jiadong Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China.
| | - Xiaolan Jia
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Bo Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Longli Bo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| |
Collapse
|
13
|
Yurtsever A, Çınar Ö, Sahinkaya E. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Thanh PM, Ketheesan B, Yan Z, Stuckey D. Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnol Adv 2016; 34:122-36. [DOI: 10.1016/j.biotechadv.2015.12.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
|
15
|
Effects of naturally occurring grit on the reactor performance and microbial community structure of membrane bioreactors. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|