Zeng J, Nakanishi T, Itoh S. Two-year Monitoring of Microbiological Water Quality in Small Water Supply Systems: Implications for Microbial Risk Management.
ENVIRONMENTAL MANAGEMENT 2024;
74:256-267. [PMID:
38767663 DOI:
10.1007/s00267-024-01988-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.
Collapse