1
|
Pulido Beltran L, Vrouwenvelder JS, Farhat N. Application of Online Flow Cytometry for Early Biofouling Detection in Reverse Osmosis Membrane Systems. MEMBRANES 2024; 14:185. [PMID: 39330526 PMCID: PMC11434271 DOI: 10.3390/membranes14090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Biofouling poses a significant challenge to reverse osmosis (RO) membrane systems, necessitating timely detection for effective control. This study evaluated the efficacy of flow cytometry (FCM) for early biofilm detection in comparison to conventional system performance indicators. Feed channel pressure drop and total cell concentration in the Membrane Fouling Simulator (MFS) flowcell cross-flow outlet water were monitored over time as early biofouling indicators. The results demonstrated the potential of increased bacterial cell concentration in cross-flow outlet water as a reliable indicator of biofouling development on the membrane. Water outlet monitoring enabled faster biofouling detection compared to feed channel pressure drop. Membrane autopsy confirmed biofilm presence prior to the pressure drop increase, highlighting the advantage of early detection in implementing corrective measures. Timely intervention reduces operational costs and energy consumption in membrane-based processes.
Collapse
Affiliation(s)
- Laura Pulido Beltran
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Nadia Farhat
- Environmental Science and Engineering, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Lin W, Wang Q, Sun L, Wang D, Cabrera J, Li D, Hu L, Jiang G, Wang XM, Huang X. The critical role of feed spacer channel porosity in membrane biofouling: Insights and implications. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Permeation Increases Biofilm Development in Nanofiltration Membranes Operated with Varying Feed Water Phosphorous Concentrations. MEMBRANES 2022; 12:membranes12030335. [PMID: 35323810 PMCID: PMC8950030 DOI: 10.3390/membranes12030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
Nutrient limitation has been proposed as a biofouling control strategy for membrane systems. However, the impact of permeation on biofilm development under phosphorus-limited and enriched conditions is poorly understood. This study analyzed biofilm development in membrane fouling simulators (MFSs) with and without permeation supplied with water varying dosed phosphorus concentrations (0 and 25 μg P·L−1). The MFSs operated under permeation conditions were run at a constant flux of 15.6 L·m2·h−1 for 4.7 days. Feed channel pressure drop, transmembrane pressure, and flux were used as performance indicators. Optical coherence tomography (OCT) images and biomass quantification were used to analyze the developed biofilms. The total phosphorus concentration that accumulated on the membrane and spacer was quantified by using microwave digestion and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results show that permeation impacts biofilm development depending on nutrient condition with a stronger impact at low P concentration (pressure drop increase: 282%; flux decline: 11%) compared to a higher P condition (pressure drop increase: 206%; flux decline: 2%). The biofilm that developed at 0 μg P·L−1 under permeation conditions resulted in a higher performance decline due to biofilm localization and spread in the MFS. A thicker biofilm developed on the membrane for biofilms grown at 0 μg P·L−1 under permeation conditions, causing a stronger effect on flux decline (11%) compared to non-permeation conditions (5%). The difference in the biofilm thickness on the membrane was attributed to a higher phosphorus concentration in the membrane biofilm under permeation conditions. Permeation has an impact on biofilm development and, therefore, should not be excluded in biofouling studies.
Collapse
|
4
|
Lin W, Zhang Y, Li D, Wang XM, Huang X. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. WATER RESEARCH 2021; 198:117146. [PMID: 33945947 DOI: 10.1016/j.watres.2021.117146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Membrane technologies have been widely applied in water treatment, wastewater reclamation and seawater desalination. Feed spacer present in spiral wound membrane (SWM) modules plays a pivotal role in creating flow channels, promoting fluid mixing and enhancing mass transfer. However, it induces the increase of feed channel pressure (FCP) drop and localized stagnant zones that provokes membrane fouling. For the first time, we comprehensively review the research evolvement on feed spacer in SWM modules for water treatment over the last 20 years, to reveal the impacts of feed spacer on the hydrodynamics and biofouling in the spacer-filled channel, and to discuss the potential approaches and current limitations for the modification of feed spacer. The research process can be divided into three phases, with research focus shifting from hydrodynamics in Phase Ⅰ (the year of 2001-2008), to biofouling in Phase Ⅱ (the year of 2009-2015), and then to novel spacer designs in Phase Ⅲ (the year of 2016-2020). The spacer configuration has a momentous impact on the hydraulic performance regarding flow velocity field, shear stress, mass transfer and FCP drop. Biofouling initially occurs on feed spacer, especially around spacer filaments and the contact zones with membrane surface, and ultimately degrades the overall membrane performance indicating the importance of controlling spacer biofouling. The modification of feed spacer is mainly achieved by altering surface chemistry or introducing novel configurations. However, the stability of spacer coating and the economy and practicality of 3D-printed spacer remain a predicament to be tackled. Future studies are suggested to focus on the standardization of testing conditions for spacer evaluation, the effect of hydrodynamics on membrane fouling control, the design and fabrication of novel feed spacer adaptable for SWM modules, the application of feed spacer for drinking water production, organic fouling control in spacer-filled channel and the role of permeate spacer on membrane performance.
Collapse
Affiliation(s)
- Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front Microbiol 2020; 11:547458. [PMID: 33281753 PMCID: PMC7705206 DOI: 10.3389/fmicb.2020.547458] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Viability and metabolic assays are commonly used as proxies to assess the overall metabolism of microorganisms. The variety of these assays combined with little information provided by some assay kits or online protocols often leads to mistakes or poor interpretation of the results. In addition, the use of some of these assays is restricted to simple systems (mostly pure cultures), and care must be taken in their application to environmental samples. In this review, the necessary data are compiled to understand the reactions or measurements performed in many of the assays commonly used in various aspects of microbiology. Also, their relationships to each other, as metabolism links many of these assays, resulting in correlations between measured values and parameters, are discussed. Finally, the limitations of these assays are discussed.
Collapse
Affiliation(s)
- Olivier Braissant
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | | | - Tuomas Waltimo
- Department Research, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
6
|
Lin WC, Shao RP, Wang XM, Huang X. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation. WATER RESEARCH 2020; 185:116251. [PMID: 32771564 DOI: 10.1016/j.watres.2020.116251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/05/2020] [Accepted: 07/28/2020] [Indexed: 05/26/2023]
Abstract
Feed spacer is universally used in spiral-wound nanofiltration (NF) and reverse osmosis (RO) membrane modules. It can separate membrane sheets, create flow channels, promote turbulence and enhance mass transfer. However, it also induces increased pressure drop across the flow channel, and generates dead zones for biofilm growth at specific locations. Optimization of feed spacer geometries is highly desirable for energy saving and biofouling control. In this study, four kinds of commercial feed spacers featured with non-uniform filaments were compared in terms of hydraulic and anti-fouling performances. Computational fluid dynamics (CFD) simulations were launched to give insights into the impacts of feed spacer characteristics on the flow field. Results show that the hydraulic performance was substantially affected by the number of filament layers (single or dual layer), the non-uniformity of filament diameter and the width of thinning zones. The design of single layer feed spacer of non-uniform filaments was not recommended due to high flow resistance and poor anti-fouling performance. The feed spacer structure of alternating filament diameter contributed to reducing dead zones and alleviating membrane fouling. The thinning zones located adjacent to the filament junctions achieved better anti-fouling performance, as it disturbed the dead zones and partially washed away the deposited foulants. This study demonstrates for the first time that the characteristics of non-uniform filament feed spacer had a crucial impact on the hydraulic and anti-fouling performances, and suggests that more emphasis should be laid on number of filament layers, variation of filament diameter and width and positioning of thinning zones for the optimization of feed spacer geometries in the future.
Collapse
Affiliation(s)
- Wei-Chen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rui-Peng Shao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Yu Y, Park KY, Jung J, Song W, Kim J, Ryu J, Lade H, Kweon J. Monitoring biofouling based on aerobic respiration in reverse osmosis system. J Environ Sci (China) 2019; 78:247-256. [PMID: 30665643 DOI: 10.1016/j.jes.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
A monitoring method of biofouling in reverse osmosis (RO) system was proposed based on the fluorescent signal of resorufin, which is reduced by nicotinamide adenine dinucleotide released from viable cells during aerobic respiration. The fluorescent signal of resorufin reduced by planktonic cells and microorganisms of biofilm showed linearity, indicating its feasibility to monitor biofouling in a RO system. For the application of the method to the lab-scale RO system, the injection concentration of resazurin and the injection flow rate were optimized. Biofilm on RO membranes continuously operated in a lab-scale RO system was estimated by resorufin fluorescence under optimized detection condition. As a result, resorufin fluorescence on RO membrane showed a significant increase in which the permeability of RO system decreased by 30.48%. Moreover, it represented the development of biofilm as much as conventional biofilm parameters such as adenosine triphosphate, extracellular polymeric substances, and biofilm thickness. The proposed method could be used as a sensitive and low-cost technology to monitor biofouling without autopsy of membranes.
Collapse
Affiliation(s)
- Youngjae Yu
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Keun-Young Park
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaehyun Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea
| | - Wonjung Song
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Jaehyeok Kim
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Junhee Ryu
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea
| | - Harshad Lade
- Department of Laboratory Medicine, Hallym University Medical Center, Seoul 07247, Korea
| | - Jihyang Kweon
- Department of Environmental Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol 2019; 10:173-195. [PMID: 30653351 DOI: 10.1146/annurev-food-032818-121805] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.
Collapse
Affiliation(s)
- Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain;
| | - Laura M Coughlan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,School of Microbiology, University College Cork, County Cork, Ireland
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350 France
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,APC Microbiome Ireland, Cork, County Cork, Ireland
| |
Collapse
|
9
|
Khan BK, Fortunato L, Leiknes T. Early biofouling detection using fluorescence-based extracellular enzyme activity. Enzyme Microb Technol 2019; 120:43-51. [DOI: 10.1016/j.enzmictec.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
|
10
|
Markwardt SD, Ronnie N, Camper AK. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes. BIOFOULING 2018; 34:740-752. [PMID: 30270657 DOI: 10.1080/08927014.2018.1493106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
This study determined economic non-destructive methods to assess biofouling in point of use reverse osmosis (RO) membrane treatment systems. Three parallel household RO membrane units were operated under controlled feed water conditions to promote biofouling, inorganic fouling and a combination of both. Operational and biological parameters were monitored throughout the systems' lifespan. Membrane autopsies assessed the degree and type of fouling. Statistical models determined statistically relevant parameters for fouling types that were validated with membrane autopsies. Permeate flow rates decreased differently with biofouling vs inorganic fouling. Large increases in permeate conductivity were noted in membranes suffering from biofouling and not in inorganically fouled membranes. The concentration of cell clumps from detached biofilm in the retentate increased in membranes experiencing biofouling and no increase was seen for inorganically fouled membranes. A combination of these methods could be used to conveniently assess the types of fouling experienced by RO systems.
Collapse
Affiliation(s)
- Stephen D Markwardt
- a Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
| | - Nirmala Ronnie
- b Safety and Environmental Assurance Centre , Unilever R&D , Bangalore , India
| | - Anne K Camper
- a Center for Biofilm Engineering , Montana State University , Bozeman , MT , USA
- c Department of Civil Engineering , Montana State University , Bozeman , MT , USA
| |
Collapse
|
11
|
Fluid Dynamics and Mass Transfer in Spacer-Filled Membrane Channels: Effect of Uniform Channel-Gap Reduction Due to Fouling. FLUIDS 2018. [DOI: 10.3390/fluids3010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. WATER RESEARCH 2017; 110:281-287. [PMID: 28027527 DOI: 10.1016/j.watres.2016.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.
Collapse
Affiliation(s)
- A Siddiqui
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - S Lehmann
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - Sz S Bucs
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - M Fresquet
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - L Fel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - E I E C Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - J Ogier
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - C Schellenberg
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - J C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| |
Collapse
|
13
|
Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.08.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Farhat NM, Vrouwenvelder JS, Van Loosdrecht MCM, Bucs SS, Staal M. Effect of water temperature on biofouling development in reverse osmosis membrane systems. WATER RESEARCH 2016; 103:149-159. [PMID: 27450353 DOI: 10.1016/j.watres.2016.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.
Collapse
Affiliation(s)
- N M Farhat
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - M C M Van Loosdrecht
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sz S Bucs
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - M Staal
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
15
|
Siddiqui A, Farhat N, Bucs SS, Linares RV, Picioreanu C, Kruithof JC, van Loosdrecht MCM, Kidwell J, Vrouwenvelder JS. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. WATER RESEARCH 2016; 91:55-67. [PMID: 26773488 DOI: 10.1016/j.watres.2015.12.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/19/2015] [Accepted: 12/30/2015] [Indexed: 05/26/2023]
Abstract
Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as the first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydrodynamic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydrodynamic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound NF and RO membrane systems. The proposed strategy may also be suitable to develop spacers in e.g. forward osmosis (FO), reverse electrodialysis (RED), membrane distillation (MD), and electrodeionisation (EDI) membrane systems.
Collapse
Affiliation(s)
- Amber Siddiqui
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nadia Farhat
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Szilárd S Bucs
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rodrigo Valladares Linares
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cristian Picioreanu
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Joop C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - James Kidwell
- Conwed Plastics, 2810 Weeks Ave SE, Minneapolis 55414, USA
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| |
Collapse
|
16
|
West S, Wagner M, Engelke C, Horn H. Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|