1
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Li Y, Miyani B, Childs KL, Shiu SH, Xagoraraki I. Effect of wastewater collection and concentration methods on assessment of viral diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168128. [PMID: 37918732 DOI: 10.1016/j.scitotenv.2023.168128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Monitoring of potentially pathogenic human viruses in wastewater is of crucial importance to understand disease trends in communities, predict potential outbreaks, and boost preparedness and response by public health departments. High throughput metagenomic sequencing opens an opportunity to expand the capabilities of wastewater surveillance. However, there are major bottlenecks in the metagenomic enabled wastewater surveillance, including the complexities in selecting appropriate sampling and concentration/virus enrichment methods as well as in bioinformatic analysis of complex samples with low human virus concentrations. To evaluate the abilities of two commonly used sampling and concentration methods in virus identification, virus communities concentrated with Virus Adsorption-Elution (VIRADEL) and PolyEthylene Glycol (PEG) precipitation were compared for three interceptor sites. Results indicated that more viral reads were obtained by the VIRADEL concentration method, with 2.84 ± 0.57 % viral reads in the sample. For samples concentrated with PEG, the average proportion of viral reads in the sample was 0.63 ± 0.19 %. In all wastewater samples, bacteriophage affiliated with the families Siphoviridae, Myoviridae and Podoviridae were found to be the abundant populations. Comparison against a custom Swiss-Prot human virus database indicated that the relatively abundant human viruses (average proportions in human virus community greater than 1.00 %) in samples concentrated with the VIRADEL method were Orthopoxvirus, Rhadinovirus, Parapoxvirus, Varicellovirus, Hepatovirus, Simplexvirus, Molluscipoxvirus, Parechovirus, Lymphocryptovirus, and Spumavirus. In samples concentrated with the PEG method, fewer human viruses were found to be relatively abundant. These were Orthopoxvirus, Rhadinovirus, Varicellovirus, Simplexvirus, Molluscipoxvirus, Lymphocryptovirus, and Betacoronavirus. Contigs of Betacoronavirus, which contains severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), were identified in VIRADEL and PEG samples. Our study demonstrates the feasibility of using metagenomics in wastewater surveillance as a first screening tool and the need for selecting the appropriate virus concentration methods and optimizing bioinformatic approaches in analyzing metagenomic data of wastewater samples.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States; Department of Energy (DOE) Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI, United States.
| |
Collapse
|
3
|
Li T, Zhang Y, Gan J, Yu X, Wang L. Superiority of UV222 radiation by in situ aquatic electrode KrCl excimer in disinfecting waterborne pathogens: Mechanism and efficacy. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131292. [PMID: 36989776 DOI: 10.1016/j.jhazmat.2023.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Microbial safety in water has always been the focus of attention, especially during the COVID-19 pandemic. Development of green, efficient and safe disinfection technology is the key to control the spread of pathogenic microorganisms. Here, an in situ aquatic electrode KrCl excimer radiation with main emission wavelength 222 nm (UV222) was designed and used to disinfect model waterborne virus and bacteria, i.e. phage MS2, E. coli and S. aureus. High inactivation efficacy and diversity of inactivation mechanisms of UV222 were proved by comparision with those of commercial UV254. UV222 could totally inactivate MS2, E. coli and S. aureus with initial concentrations of ∼107 PFU or CFU mL-1 within 20, 15, and 36 mJ/cm2, respectively. The UV dose required by UV254 to inactivate the same logarithmic pathogenic microorganism is at least twice that of UV222. The protein, genomic and cell membrane irreparable damage contributed to the microbial inactivation by UV222, but UV254 only act on nucleic acid of the target microorganisms. We found that UV222 damage nucleic acid with almost the same or even higher efficacy with UV254. In addition, free base damage of UV222 in similar ways with UV254(dimer and hydrate). But due to the quantum yield of free base degradation of UV222 was greater than UV254, the photolysis rates of UV222 to A, G, C and U four bases were 11.5, 1.2, 3.2 and 1 times as those of UV254, respectively. Excellent disinfection performance in UV222 irradiation was also achieved in real water matrices (WWTP and Lake). In addition, it was proved that coexisting HCO3- or HPO42 - in real and synthetic water matrices can produce • OH to promote UV222 disinfection. This study provided novel insight into the UV222 disinfection process and demonstrated its possibility to take place of the conventional ultraviolet mercury lamp in water purification.
Collapse
Affiliation(s)
- Ting Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Yizhan Zhang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Jiaming Gan
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Lei Wang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China.
| |
Collapse
|
4
|
Kuo HWD, Zure D, Lin CR. Occurrences of similar viral diversity in campus wastewater and reclaimed water of a university dormitory. CHEMOSPHERE 2023; 330:138713. [PMID: 37088208 DOI: 10.1016/j.chemosphere.2023.138713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Water reuse from wastewater sources still remain some critical safety concerns associated with treacherous contaminants like pathogenic viruses. In this study, viral diversities in campus wastewater (CWW) and its reclaimed water (RCW) recycled for toilet flushing and garden irrigation of a university dormitory were assessed using metagenomic sequencing for acquisition of more background data. Results suggested majority (>80%) of gene sequences within assembled contigs predicted by open reading frame (ORF) finder were no-hit yet believed to be novel/unrevealed viral genomic information whereas hits matched bacteriophages (i.e., mainly Myoviridae, Podoviridae, and Siphoviridae families) were predominant in both CWW and RCW samples. Moreover, few pathogenic viruses (<1%) related to infections of human skin (e.g., Molluscum contagiosum virus, MCV), digestion system (e.g., hepatitis C virus, HCV), and gastrointestinal tract (e.g., human norovirus, HuNoV) were also noticed raising safety concerns about application of reclaimed waters. Low-affinity interactions of particular viral exterior proteins (e.g., envelope glycoproteins or spike proteins) for disinfectant ligand (e.g., chlorite) elucidated treatment limitations of current sewage processing systems even with membrane bioreactor and disinfectant contactor. Revolutionary disinfection approaches together with routine monitoring and new regulations are prerequisite to secure pathogen-correlated water quality for safer reuse of reclaimed waters.
Collapse
Affiliation(s)
- Hsion-Wen David Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taiwan.
| | - Diaiti Zure
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| | - Chih-Rong Lin
- Department of Environmental Science and Engineering, Tunghai University, Taiwan
| |
Collapse
|
5
|
Lin X, Yang S, Gong Z, Ni R, Shi X, Song L. Viral community in landfill leachate: Occurrence, bacterial hosts, mediation antibiotic resistance gene dissemination, and function in municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158561. [PMID: 36087678 DOI: 10.1016/j.scitotenv.2022.158561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A municipal solid waste (MSW) landfill is a significant source of antibiotic resistance, pathogens and viruses and also a habitat for microbial consortia that perform MSW decomposition. Viruses are of great significance in ecological interactions such as MSW decomposition and antibiotic resistance gene (ARG) transmission. In this study, the viral community structure and the associated driver, the linkage of viruses and their bacterial hosts, the virus-associated ARG dissemination and virtual community function on MSW decomposition were investigated in landfill leachate from seven cities, China. The seven cities include four megacities, two large-scale cities and one small-scale city, representing the leachate characters of China. The results showed that the leachates were dominated by the phage families Siphoviridae, Myoviridae and Podoviridae (91.7 ± 3.6) %. Their putative hosts were the important MSW decomposers Lactobacillus, Pseudomonas, Clostridium, Proteiniphilum, and Bacteroides. The structure of the viral community was significantly affected by pH (P = 0.007, analyzed by RDA) and the bacterial community (R = 0.83, P < 0.001, analyzed by Mantel test). The relative abundance of ARGs showed a strong correlation (R > 0.8, P < 0.01) with viral family, suggesting that viruses play an important role in ARGs dissemination. Phage regulate bacterial population abundance through top-down effects, thus participating in MSW decomposition. These results demonstrate that viral community are involve in ARGs transmission and dissemination and mediate MSW decomposition in landfill.
Collapse
Affiliation(s)
- Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
6
|
Tang X, Fan C, Zeng G, Zhong L, Li C, Ren X, Song B, Liu X. Phage-host interactions: The neglected part of biological wastewater treatment. WATER RESEARCH 2022; 226:119183. [PMID: 36244146 DOI: 10.1016/j.watres.2022.119183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 05/25/2023]
Abstract
In wastewater treatment plants (WWTPs), the stable operation of biological wastewater treatment is strongly dependent on the stability of associated microbiota. Bacteriophages (phages), viruses that specifically infect bacteria and archaea, are highly abundant and diverse in WWTPs. Although phages do not have known metabolic functions for themselves, they can shape functional microbiota via various phage-host interactions to impact biological wastewater treatment. However, the developments of phage-host interaction in WWTPs and their impact on biological wastewater treatment are overlooked. Here, we review the current knowledge regarding the phage-host interactions in biological wastewater treatment, mainly focusing on the characteristics of different phage populations, the phage-driven changes in functional microbiota, and the potential driving factors of phage-host interactions. We also discuss the efforts required further to understand and manipulate the phage-host interactions in biological wastewater treatment. Overall, this review advocates more attention to the phage dynamics in WWTPs.
Collapse
Affiliation(s)
- Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China; Nova Skantek (Hunan) Environ Energy Co., Ltd., Changsha 410100, P.R. China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
7
|
Gu X, Yang Y, Mao F, Lee WL, Armas F, You F, Needham DM, Ng C, Chen H, Chandra F, Gin KY. A comparative study of flow cytometry-sorted communities and shotgun viral metagenomics in a Singapore municipal wastewater treatment plant. IMETA 2022; 1:e39. [PMID: 38868719 PMCID: PMC10989988 DOI: 10.1002/imt2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 06/19/2022] [Indexed: 06/14/2024]
Abstract
Traditional or "bulk" viral enrichment and amplification methods used in viral metagenomics introduce unavoidable bias in viral diversity. This bias is due to shortcomings in existing viral enrichment methods and overshadowing by the more abundant viral populations. To reduce the complexity and improve the resolution of viral diversity, we developed a strategy coupling fluorescence-activated cell sorting (FACS) with random amplification and compared this to bulk metagenomics. This strategy was validated on both influent and effluent samples from a municipal wastewater treatment plant using the Modified Ludzack-Ettinger (MLE) process as the treatment method. We found that DNA and RNA communities generated using bulk samples were mostly different from those derived following FACS for both treatments before and after MLE. Before MLE treatment, FACS identified five viral families and 512 viral annotated contigs. Up to 43% of mapped reads were not detected in bulk samples. Nucleo-cytoplasmic large DNA viral families were enriched to a greater extent in the FACS-coupled subpopulations compared with bulk samples. FACS-coupled viromes captured a single-contig viral genome associated with Anabaena phage, which was not observed in bulk samples or in FACS-sorted samples after MLE. These short metagenomic reads, which were assembled into a high-quality draft genome of 46 kbp, were found to be highly dominant in one of the pre-MLE FACS annotated virome fractions (57.4%). Using bulk metagenomics, we identified that between Primary Settling Tank and Secondary Settling Tank viromes, Virgaviridae, Astroviridae, Parvoviridae, Picobirnaviridae, Nodaviridae, and Iridoviridae were susceptible to MLE treatment. In all, bulk and FACS-coupled metagenomics are complementary approaches that enable a more thorough understanding of the community structure of DNA and RNA viruses in complex environmental samples, of which the latter is critical for increasing the sensitivity of detection of viral signatures that would otherwise be lost through bulk viral metagenomics.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Yi Yang
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| | - Feijian Mao
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Fang You
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - David M. Needham
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA
- GEOMAR Helmholtz Centre for Ocean ResearchOcean EcoSystems Biology UnitKielGermany
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Charmaine Ng
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Hongjie Chen
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Franciscus Chandra
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Karina Yew‐Hoong Gin
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
8
|
Miao X, Liu C, Liu M, Han X, Zhu L, Bai X. The role of pipe biofilms on dissemination of viral pathogens and virulence factor genes in a full-scale drinking water supply system. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128694. [PMID: 35316639 DOI: 10.1016/j.jhazmat.2022.128694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Water is an important medium for virus transmission and viral pathogens are increasingly appreciated as a significant water safety issue. However, the effect of pipe biofilms on viral pathogens remains unclear. This research aimed to investigate the dissemination of viruses in a full-scale drinking water supply system (DWSS) and the effect of pipe biofilms on viral pathogens in bulking water. Viral pathogens, pathogenic viral hosts, and viral virulence factors (VFs) were found to disseminate from source water to tap water. The proportion of virus and viral VFs in the biofilm was far less than that in water. The contribution of biofilms in pipe wall to viruses and viral VFs in bulking water was less than 4%, and viruses in the biofilm had no obvious effect on pathogenic viruses in water. Dominant viruses carrying VFs changed from Cyanobacteria virus to Mycobacterium virus after advanced water treatment. Mycobacterium and organics were identified as the key factors influencing composition and abundance of viral VFs, which could explain 41.1% of the variation in viral virulence in the water supply system. Host bacteria and organics may be used as the key targets to control the risk of viruses in DWSSs.
Collapse
Affiliation(s)
- Xiaocao Miao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chenxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingkun Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lingling Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
9
|
Jankowski P, Gan J, Le T, McKennitt M, Garcia A, Yanaç K, Yuan Q, Uyaguari-Diaz M. Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. ENVIRONMENTAL MICROBIOME 2022; 17:3. [PMID: 35033203 PMCID: PMC8760730 DOI: 10.1186/s40793-022-00398-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 104 gene copies/mL) followed by intI3 (4.97 × 103 gene copies/mL) while intI2 abundance remained low (6.4 × 101 gene copies/mL). CONCLUSIONS Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Paul Jankowski
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jaydon Gan
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Michaela McKennitt
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, MB, Canada
- Institute of the Environment, University of Ottawa, Ottawa, ON, Canada
| | - Audrey Garcia
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Miguel Uyaguari-Diaz
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
10
|
Saba B, Hasan SW, Kjellerup BV, Christy AD. Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100737. [PMID: 34179735 PMCID: PMC8216935 DOI: 10.1016/j.biteb.2021.100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
Water is one of many viral transmission routes, and the presence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in wastewater has brought attention to its treatment. SARS CoV-2 primarily transmits in the air but the persistence of the virus in the water possibly can serve as a secondary source even though current studies do not show this. In this paper, an evaluation of the current literature with regards to the treatment of SARS-CoV-2 in wastewater treatment plant (WWTP) effluents and biosolids is presented. Treatment efficiencies of WWTPs are compared for viral load reduction on the basis of publicly available data. The results of this evaluation indicate that existing WWTPs are effectively removing 1-6 log10 viable SARS-CoV-2. However, sludge and biosolids provide an umbrella of protection from treatment and inactivation to the virus. Hence, sludge treatment factors like high temperature, pH changes, and predatory microorganisms can effectively inactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
- Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - Ann D Christy
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Du B, Wang Q, Yang Q, Wang R, Yuan W, Yan L. Responses of bacterial and bacteriophage communities to long-term exposure to antimicrobial agents in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125486. [PMID: 33676244 DOI: 10.1016/j.jhazmat.2021.125486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of antibacterial agents has received increasing concern due to their possible threats to human health. However, the effects of antibacterial residues on the evolution and dynamics between bacteria and bacteriophages in wastewater treatment systems have seldom been researched. Especially for phages, little is known about their response to antimicrobial exposure. In this study, two identical anoxic-aerobic wastewater treatment systems were established to evaluate the responses of bacterial and phage communities to long-term exposure to antimicrobial agents. The results indicated simultaneous exposure to combined antimicrobials significantly inhibited (p < 0.05) the abundance of phages and bacteria. Metagenomic sequencing analysis indicated the community of bacteria and phages changed greatly at the genus level due to combined antibacterial exposure. Additionally, long-term exposure to antimicrobial agents promoted the attachment of receptor-binding protein genes to Klebsiella, Escherichia and Salmonella (which were all members of Enterobacteriaceae). Compared to that in the control system, the numbers of receptor-binding protein genes on their possible phages (such as Lambdalikevirus and P2likevirus) were also obviously higher when the microorganisms were exposed to antimicrobials. The results are helpful to understanding the microbial communities and tracking the relationship of phage-bacterial host systems, especially under the pressure of antimicrobial exposure.
Collapse
Affiliation(s)
- Bingbing Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China.
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Luyu Yan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Mohapatra S, Menon NG, Mohapatra G, Pisharody L, Pattnaik A, Menon NG, Bhukya PL, Srivastava M, Singh M, Barman MK, Gin KYH, Mukherji S. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142746. [PMID: 33092831 PMCID: PMC7536135 DOI: 10.1016/j.scitotenv.2020.142746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 04/14/2023]
Abstract
The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; NUS Environmental Research Institute, National University of Singapore (NUS), Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India; nEcoTox GmbH, An der Neümuhle 2, Annweiler am Trifels, Germany
| | | | - Lakshmi Pisharody
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln (UNL), USA
| | - N Gowri Menon
- Department of Veterinary Epidemiology and Preventive Medicine, Kerala Veterinary and Animal Sciences University (KVASU), Wayanad, Kerala, India
| | | | | | | | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore (NUS), Singapore.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India.
| |
Collapse
|
13
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 DOI: 10.1016/j.envre.2020.110309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
14
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 PMCID: PMC7546968 DOI: 10.1016/j.envres.2020.110309] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
15
|
Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F, Campiglia P, Belgiorno V, Korshin G, Naddeo V. Viruses in wastewater: occurrence, abundance and detection methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140910. [PMID: 32758747 PMCID: PMC7368910 DOI: 10.1016/j.scitotenv.2020.140910] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 04/14/2023]
Abstract
This paper presents an updated and comprehensive review on the different methods used for detection and quantification of viruses in wastewater treatment systems. The analysis of viability of viruses in wastewater and sludge is another thrust of this review. Recent studies have mostly focused on determining the abundance and diversity of viruses in wastewater influents, in samples from primary, secondary, and tertiary treatment stages, and in final effluents. A few studies have also examined the occurrence and diversity of viruses in raw and digested sludge samples. Recent efforts to improve efficiency of virus detection and quantification methods in the complex wastewater and sludge matrices are highlighted in this review. A summary and a detailed comparison of the pre-treatment methods that have been utilized for wastewater and sludge samples are also presented. The role of metagenomics or sequencing analysis in monitoring wastewater systems to predict disease outbreaks, to conduct public health surveillance, to assess the efficiency of existing treatment systems in virus removal, and to re-evaluate current regulations regarding pathogenic viruses in wastewater is discussed in this paper. Challenges and future perspectives in the detection of viruses, including emerging and newly emerged viruses such as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in wastewater systems are discussed in this review.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Giovanni Vigliotta
- Laboratory of Microbiology, University of Salerno, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| | - Gregory Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy; Inter-University Centre for Prediction and Prevention of Major Hazards (C.U.G.RI.), Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.
| |
Collapse
|
16
|
Miyani B, McCall C, Xagoraraki I. High abundance of human herpesvirus 8 in wastewater from a large urban area. J Appl Microbiol 2020; 130:1402-1411. [PMID: 33058412 DOI: 10.1111/jam.14895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
AIMS This study assesses the diversity and abundance of Human Herpesviruses (HHVs) in the influent of an urban wastewater treatment plant using shotgun sequencing, metagenomic analysis and qPCR. METHODS AND RESULTS Influent wastewater samples were collected from the three interceptors that serve the City of Detroit and Wayne, Macomb and Oakland counties between November 2017 to February 2018. The samples were subjected to a series of processes to concentrate viruses which were further sequenced and amplified using qPCR. All nine types of HHV were detected in wastewater. Human Herpesvirus 8 (HHV-8), known as Kaposi's sarcoma herpesvirus, which is only prevalent in 5-10% of USA population, was found to be the most abundant followed by HHV-3 or Varicella-zoster virus. CONCLUSIONS The high abundance of HHV-8 in the Detroit metropolitan area may be attributed to the HIV-AIDS outbreak that was ongoing in Detroit during the sampling period. SIGNIFICANCE AND IMPACT OF THE STUDY The approach described in this paper can be used to establish a baseline of viruses secreted by the community as a whole. Sudden changes in the baseline would identify changes in community health and immunity.
Collapse
Affiliation(s)
- B Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - C McCall
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - I Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Abstract
Numerous bacteriophages-viruses of bacteria, also known as phages-have been described for hundreds of bacterial species. The Gram-negative Shigella species are close relatives of Escherichia coli, yet relatively few previously described phages appear to exclusively infect this genus. Recent efforts to isolate Shigella phages have indicated these viruses are surprisingly abundant in the environment and have distinct genomic and structural properties. In addition, at least one model system used for experimental evolution studies has revealed a unique mechanism for developing faster infection cycles. Differences between these bacteriophages and other well-described model systems may mirror differences between their hosts' ecology and defense mechanisms. In this review, we discuss the history of Shigella phages and recent developments in their isolation and characterization and the structural information available for three model systems, Sf6, Sf14, and HRP29; we also provide an overview of potential selective pressures guiding both Shigella phage and host evolution.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sarah M Doore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
18
|
Profile of the Spatial Distribution Patterns of the Human and Bacteriophage Virome in a Wastewater Treatment Plant Located in the South of Spain. WATER 2020. [DOI: 10.3390/w12082316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In wastewater treatment plants, most microbial characterization has focused on bacterial, archaeal, and fungal populations. Due to the difficult isolation, quantification, and identification of viruses, only a limited number of virome studies associated with wastewater treatment plants have been carried out. However, the virus populations play an important role in the microbial dynamics in wastewater treatment systems and the biosafety of effluents. In this work, the viral members present in influent wastewater, mixed liquor (aerobic bioreactor), excess sludge, and effluent water of a conventional activated sludge system for the treatment of urban wastewater were identified. Viral members were observed by transmission electron microscopy and studied through next-generation sequencing studies. The results showed the dominance of bacteriophages in the viral community in all samples, with the dominant viral phylotype classified as Escherichia coli O157 typing phage 7. Moreover, different human viruses, such as Cynomolgus cytomegalovirus and Gammaherpesvirus, were also detected.
Collapse
|
19
|
Abstract
Many biological contaminants are disseminated through water, and their occurrence has potential detrimental impacts on public and environmental health. Conventional monitoring tools rely on cultivation and are not robust in addressing modern water quality concerns. This review proposes metagenomics as a means to provide a rapid, nontargeted assessment of biological contaminants in water. When further coupled with appropriate methods (e.g., quantitative PCR and flow cytometry) and bioinformatic tools, metagenomics can provide information concerning both the abundance and diversity of biological contaminants in reclaimed waters. Further correlation between the metagenomic-derived data of selected contaminants and the measurable parameters of water quality can also aid in devising strategies to alleviate undesirable water quality. Here, we review metagenomic approaches (i.e., both sequencing platforms and bioinformatic tools) and studies that demonstrated their use for reclaimed-water quality monitoring. We also provide recommendations on areas of improvement that will allow metagenomics to significantly impact how the water industry performs reclaimed-water quality monitoring in the future.
Collapse
Affiliation(s)
- Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Changzhi Wang
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Bačnik K, Kutnjak D, Pecman A, Mehle N, Tušek Žnidarič M, Gutiérrez Aguirre I, Ravnikar M. Viromics and infectivity analysis reveal the release of infective plant viruses from wastewater into the environment. WATER RESEARCH 2020; 177:115628. [PMID: 32299020 DOI: 10.1016/j.watres.2020.115628] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/06/2023]
Abstract
Viruses represent one of the most important threats to agriculture. Several viral families include highly stable pathogens, which remain infective and can be transported long distances in water. The diversity of plant viruses in wastewater remains understudied; however, their potential impact is increasing with the increased irrigation usage of reclaimed wastewater. To determine the abundance, diversity and biological relevance of plant viruses in wastewater influents and effluents we applied an optimized virus concentration method followed by high-throughput sequencing and infectivity assays. We detected representatives of 47 plant virus species, including emerging crop threats. We also demonstrated infectivity for pathogenic and economically relevant plant viruses from the genus Tobamovirus (family Virgaviridae), which remain infective even after conventional wastewater treatment. These results demonstrate the potential of metagenomics to capture the diversity of plant viruses circulating in the environment and expose the potential risk of the uncontrolled use of reclaimed water for irrigation.
Collapse
Affiliation(s)
- Katarina Bačnik
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Denis Kutnjak
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anja Pecman
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Nataša Mehle
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ion Gutiérrez Aguirre
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000, Ljubljana, Slovenia; University of Nova Gorica, Vipavska cesta, 5000, Nova Gorica, Slovenia.
| |
Collapse
|
21
|
Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101865] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Cheng X, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Smith GB, Nirmalakhandan N, Zhang Y. Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134435. [PMID: 31810689 PMCID: PMC6992497 DOI: 10.1016/j.scitotenv.2019.134435] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 05/04/2023]
Abstract
In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | - Geoffrey B Smith
- Biology Department, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
23
|
O'Brien E, Xagoraraki I. Understanding temporal and spatial variations of viral disease in the US: The need for a one-health-based data collection and analysis approach. One Health 2019; 8:100105. [PMID: 31709295 PMCID: PMC6831848 DOI: 10.1016/j.onehlt.2019.100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/05/2022] Open
Abstract
Viral diseases exhibit spatial and temporal variation, and there are many factors that can affect their occurrence. The identification of these factors is critical in the efforts to predict and lessen viral disease burden. Because viral infection is able to spread to humans from the environment, animals, and other humans, the One-Health framework can be used to investigate the critical pathways through which viruses are transported and transmitted. A holistic approach, incorporating publicly available clinical data for human, livestock, and wildlife disease occurrence, together with environmental data reported in federal and state databases such as parameters related to land use, environmental quality, and weather, can enhance the understanding of variations in disease patterns, leading to the design and implementation of surveillance systems. An example analysis approach is presented for Michigan, United States, which is a state with large urban centers as well as a sizeable rural and agricultural population. Analysis of publicly available data from 2017 indicates that gastrointestinal (GI) and influenza-associated illnesses in Michigan may have been related with agricultural land use to a higher extent than with developed land use during that year. Meanwhile, hepatitis A virus appears to be most closely related with developed land use in dense population areas. GI illnesses may be related to precipitation, and this relationship is strongest in the springtime, although GI illnesses are most common in the winter months. Integration of human-related clinical data, animal disease data, and environmental data can ultimately be used for prioritization of the most critical locations and times for viral outbreaks in both urban and rural environments.
Collapse
Affiliation(s)
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Abstract
The immense global burden of infectious disease outbreaks and the need to establish prediction and prevention systems have been recognized by the World Health Organization (WHO), the National Institutes of Health (NIH), the United States Agency of International Development (USAID), the Bill and Melinda Gates Foundation, and the international scientific community. Despite multiple efforts, this infectious burden is still increasing. For example, it has been reported that between 1.5 and 12 million people die each year from waterborne diseases and diarrheal diseases are listed within the top 15 leading causes of death worldwide. Rapid population growth, climate change, natural disasters, immigration, globalization, and the corresponding sanitation and waste management challenges are expected to intensify the problem in the years to come.
Collapse
|
25
|
Katz A, Peña S, Alimova A, Gottlieb P, Xu M, Block KA. Heteroaggregation of an enveloped bacteriophage with colloidal sediments and effect on virus viability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:104-111. [PMID: 29747115 PMCID: PMC7112063 DOI: 10.1016/j.scitotenv.2018.04.425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 04/14/2023]
Abstract
Four sediments in the colloidal size range: goethite, montmorillonite, illite, and kaolinite, were suspended with the bacteriophage φ6, a model enveloped virus, to determine relative rates of heteroaggregation and the effect of aggregation on virus viability. Turbidity was measured on combinations of virus and each sediment type at low concentration to determine aggregation rates. Aggregation of sediment with virus occurred regardless of mineral type, and larger fraction of virus is expected to aggregate with increasing sediment concentration leading to higher deposition rates. The negatively charged sediments, aggregated with φ6 (also negatively charged at neutral pH) at a faster rate than the positively charged sediments, yielding turbidity slopes of 4.94 × 10-3 s-1 and 7.50 × 10-4 s-1 for φ6-montmorillonite and φ6-illite aggregates, respectively, and 2.98 × 10-5 s-1 and 2.84 × 10-5 s-1, for φ6-goethite and φ6-kaolinite, respectively. This indicates that the interaction between sediments and virus is hydrophobic, rather than electrostatic. Large numbers of virions remained viable post-aggregation, despite the fragility of the viral envelope, indicating that small-sized aggregates, which may travel more readily through porous media, may pose an infection risk. The fraction of φ6 that remained viable varied with sediment type, with montmorillonite-φ6 aggregates experiencing the greatest reduction in infectivity at 35%. TEM analyses reveal that in all sediment-φ6 combinations, infectivity loss was likely due to disassembly of the viral envelope as a result of aggregation.
Collapse
Affiliation(s)
- Al Katz
- Department of Physics Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Stephanie Peña
- Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Alexandra Alimova
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Paul Gottlieb
- Sophie Davis School of Biomedical Education, The City College of New York, 160 Convent Ave., New York, NY 10031, United States
| | - Min Xu
- Department of Physics, Fairfield University, Fairfield, CT 06824, United States
| | - Karin A Block
- Department of Earth and Atmospheric Science, The City College of New York, 160 Convent Ave., New York, NY 10031, United States.
| |
Collapse
|
26
|
Shigella Phages Isolated during a Dysentery Outbreak Reveal Uncommon Structures and Broad Species Diversity. J Virol 2018; 92:JVI.02117-17. [PMID: 29437962 DOI: 10.1128/jvi.02117-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
In 2016, Michigan experienced the largest outbreak of shigellosis, a type of bacillary dysentery caused by Shigella spp., since 1988. Following this outbreak, we isolated 16 novel Shigella-infecting bacteriophages (viruses that infect bacteria) from environmental water sources. Most well-known bacteriophages infect the common laboratory species Escherichia coli and Salmonella enterica, and these phages have built the foundation of molecular and bacteriophage biology. Until now, comparatively few bacteriophages were known to infect Shigella spp., which are close relatives of E. coli We present a comprehensive analysis of these phages' host ranges, genomes, and structures, revealing genome sizes and capsid properties that are shared by very few previously described phages. After sequencing, a majority of the Shigella phages were found to have genomes of an uncommon size, shared by only 2% of all reported phage genomes. To investigate the structural implications of this unusual genome size, we used cryo-electron microscopy to resolve their capsid structures. We determined that these bacteriophage capsids have similarly uncommon geometry. Only two other viruses with this capsid structure have been described. Since most well-known bacteriophages infect Escherichia or Salmonella, our understanding of bacteriophages has been limited to a subset of well-described systems. Continuing to isolate phages using nontraditional strains of bacteria can fill gaps that currently exist in bacteriophage biology. In addition, the prevalence of Shigella phages during a shigellosis outbreak may suggest a potential impact of human health epidemics on local microbial communities.IMPORTANCEShigella spp. bacteria are causative agents of dysentery and affect more than 164 million people worldwide every year. Despite the need to combat antibiotic-resistant Shigella strains, relatively few Shigella-infecting bacteriophages have been described. By specifically looking for Shigella-infecting phages, this work has identified new isolates that (i) may be useful to combat Shigella infections and (ii) fill gaps in our knowledge of bacteriophage biology. The rare qualities of these new isolates emphasize the importance of isolating phages on "nontraditional" laboratory strains of bacteria to more fully understand both the basic biology and diversity of bacteriophages.
Collapse
|
27
|
O'Brien E, Nakyazze J, Wu H, Kiwanuka N, Cunningham W, Kaneene JB, Xagoraraki I. Viral diversity and abundance in polluted waters in Kampala, Uganda. WATER RESEARCH 2017; 127:41-49. [PMID: 29031798 DOI: 10.1016/j.watres.2017.09.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 05/02/2023]
Abstract
Waterborne viruses are a significant cause of human disease, especially in developing countries such as Uganda. A total of 15 virus-selective samples were collected at five sites (Bugolobi Wastewater Treatment Plant (WWTP) influent and effluent, Nakivubo Channel upstream and downstream of the WWTP, and Nakivubo Swamp) in July and August 2016. Quantitative PCR and quantitative RT-PCR was performed to determine the concentrations of four human viruses (adenovirus, enterovirus, rotavirus, and hepatitis A virus) in the samples. Adenovirus (1.53*105-1.98*107 copies/L) and enterovirus (3.17*105-8.13*107 copies/L) were found to have the highest concentrations in the samples compared to rotavirus (5.79*101-3.77*103 copies/L) and hepatitis A virus (9.93*102-1.11*104 copies/L). In addition, next-generation sequencing and metagenomic analyses were performed to assess viral diversity, and several human and vertebrate viruses were detected, including Herpesvirales, Iridoviridae, Poxviridae, Circoviridae, Parvoviridae, Bunyaviridae and others. Effluent from the wastewater treatment plant appears to impact surface water, as samples taken from surface water downstream of the treatment plant had higher viral concentrations than samples taken upstream. Temporal fluctuations in viral abundance and diversity were also observed. Continuous monitoring of wastewater may contribute to assessing viral disease patterns at a population level and provide early warning of potential outbreaks using wastewater-based epidemiology methods.
Collapse
Affiliation(s)
- Evan O'Brien
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Joyce Nakyazze
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Huiyun Wu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Noah Kiwanuka
- Department of Epidemiology and Biostatistics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - William Cunningham
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - John B Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Kim Y, Van Bonn W, Aw TG, Rose JB. Aquarium Viromes: Viromes of Human-Managed Aquatic Systems. Front Microbiol 2017; 8:1231. [PMID: 28713358 PMCID: PMC5492393 DOI: 10.3389/fmicb.2017.01231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
An aquarium ecosystem is home to many animal species providing conditions similar to native aquatic habitats but under highly controlled management. With a growing interest in understanding the interaction of microbiomes and resident animal health within aquarium environments, we undertook a metagenomic survey of viromes in seven aquarium systems with differing physicochemical and resident animal profiles. Our results show that a diverse array of viruses was represented in aquarium viromes, many of which were widespread in different aquarium systems (27 common viral families in all of the aquarium systems). Most viromes were dominated by DNA phages of the order Caudovirales as commonly found in other aquatic environments with average relative abundance greater than 64%. The composition and structure of aquarium viromes were associated with controlled system parameters, including nitrate, salinity, and temperature as well as resident animal profiles, indicating the close interaction of viromes with aquarium management practices. Furthermore, finding human associated viruses in a touch exhibit suggested that exposure of aquarium systems to human contact may lead to introduction of human cutaneous viruses into aquaria. This is consistent with the high abundance of skin microflora on the palms of healthy individuals and their detection in recreational waters, such as swimming pools. Lastly, assessment of antibiotic resistance genes (ARGs) in aquarium viromes revealed a unique signature of ARGs in different aquarium systems with trimethoprim being the most common. This is the first study to provide vital information on viromes and their unique relationships with management practices in a human-built and controlled aquarium environment.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - William Van Bonn
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States.,A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, ChicagoIL, United States
| | - Tiong G Aw
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New OrleansLA, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East LansingMI, United States
| |
Collapse
|