1
|
Wu Y, Wang Y, Zhong D, Cui J, Sun W, Jiang Y. Enhancing and sustaining arsenic removal in a zerovalent iron-based magnetic flow-through water treatment system. WATER RESEARCH 2024; 263:122199. [PMID: 39128421 DOI: 10.1016/j.watres.2024.122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
In areas affected by arsenicosis, zerovalent iron (ZVI)/sand filters are extensively used by households to treat groundwater, but ZVI surface passivation and filter clogging limit their arsenic (As) removal performance. Here we present a magnetic confinement-enabled column reactor coupled with periodic ultrasonic depassivation (MCCR-PUD), which efficiently and sustainably removes As by reaction with continuously generated iron (oxyhydr)oxides from ZVI oxidative corrosion. In the MCCR, ZVI microparticles self-assemble into stable millimeter-scale wires in forest-like arrays in a parallel magnetic field (0.42-0.48 T, produced by two parallel permanent magnets), forming a highly porous structure (87 % porosity) with twice the accessible reactive surface area of a ZVI/sand mixture. For a feed concentration of 100 μg/L As(III), the MCCR-PUD, with a short empty bed contact time (1.6 min), treated ca. 7340 empty bed volume (EBV) of water at breakthrough (10 μg/L), 9.4 folds higher than that of a ZVI/sand filter. Due to the large interspace between ZVI wires, the MCCR-PUD effectively prevented column clogging that occurred in the ZVI/sand filter. The high water treatment capacity was attributed to the much enhanced ZVI reactivity in the magnetic field, sustained through rejuvenation by PUD. Furthermore, most of As was structurally incorporated into the produced iron (oxyhydr)oxides (mostly ferrihydrite) in the MCCR-PUD, as revealed by Mössbauer spectroscopy, X-ray absorption spectroscopy, and sequential extraction experiments. This finding evinced a different mechanism from the surface adsorption in the ZVI/sand filter. The structural incorporation of As also resulted in much less As remobilization from the produced corrosion products during aging in water, in total ∼1 % in 28 days. Furthermore, the MCCR-PUD exihibted robust performance when treating complex synthetic groundwater containing natural organic matter and common ions (∼3700 EBV at breakthrough). Taken together, our study demonstrates the potential of the magnetic confinement-enabled ZVI reactor as a promising decentralized As treatment platform.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuyan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Delai Zhong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Shukla PK, Deshpande V, Raychoudhury T. In-situ groundwater treatment for arsenic removal: laboratory pilot scale study with 3-D tank packed porous media as subsurface. ENVIRONMENTAL TECHNOLOGY 2024; 45:4860-4873. [PMID: 37953741 DOI: 10.1080/09593330.2023.2283404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The ex-situ treatment of arsenic is widely adopted; however, there are emerging concerns related to system maintenance, material replacement, and waste generation. There is a scope to explore in-situ arsenite [As (III)] remediation in the aquifers. The main objective of this study is to evaluate the performance of in-situ synthesised FeS in immobilising As (III) in the natural groundwater when transported through a three-dimensional (3-D) porous media system. In this study, a 3-D tank of 0.50 m × 0.30 m × 0.30 m (L × W × H) was packed with natural sand to represent the subsurface porous media system. The homogeneous packing and uniform flow were ensured before synthesising FeS in-situ, where a total of 1.5 pore volumes (PVs) of 20 mM sodium sulfide (Na2S) and 20 mM ferrous sulfate (FeSO4) reagent solutions were injected alternatively into the pre-saturated porous media. Finally, 300 ± 15 μg/L of As (III) spiked natural groundwater was passed through the porous media, and the samples were collected through several sampling ports for analysing for total As and Fe. The result suggests that the concentration of As (III) reaches below 11 μg/L within 644 min (4 PVs) of injection of reagents. Furthermore, almost 88.4% of As (III) get immobilised after passing 31 PVs of contaminated water. In brief, almost 406 L of As contaminated groundwater can be treated by injecting 21 L of reagents with a reagent-to-treated water ratio of 1:20.
Collapse
Affiliation(s)
- Preetam Kumar Shukla
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India
| | - Vishal Deshpande
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India
| | - Trishikhi Raychoudhury
- Department of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| |
Collapse
|
3
|
Liu K, Li F, Zhu Z, Fang L. Nanoconfined Fe(II) releaser for long-term arsenic immobilization and its sustainability assessment. WATER RESEARCH 2024; 260:121954. [PMID: 38909421 DOI: 10.1016/j.watres.2024.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.
Collapse
Affiliation(s)
- Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhenlong Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
4
|
Huang Y, Zhao X, Wang X, Gao B, Oyama K, Tokoro C, Zhou D, Gu X. Insights on the Contradiction between the Affinity and Capacity of Ferrihydrite toward As(III) and As(V): Surface Reaction Revisited. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39141599 DOI: 10.1021/acs.est.4c05795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferrihydrite is omnipresent in nature, and its adsorption of As(III/V) decides the migration of arsenic. Although As(III) is commonly recognized as the more mobile species of inorganic arsenic, it sometimes exhibits less mobility in ferrihydrite systems, which calls for further insights. In this study, we elucidated the adsorption behavior and mechanisms of As(III/V) on ferrihydrite under different loading levels (molar ratio As/Fe = 0-0.38), solution pH (3-10), and coexisting ions [P(V) and Ca(II)] based on batch adsorption experiments, surface complexation modeling, density functional theory calculations, and X-ray photoelectron spectroscopy. Our results show that As(III) exhibits weaker adsorption affinity but a larger capacity compared with that of As(V). On ferrihydrite, As(III) and As(V) are adsorbed mainly as bidentate mononuclear complexes at type-a sites [≡Fe(OH-0.5)2] and bidentate binuclear complexes at type-b sites (2≡FeOH-0.5), respectively. As the dosage increases, As(III) further forms mononuclear monodentate complexes at both surface sites, resulting in a higher site utilization efficiency, while As(V) does not due to repulsive electrostatic interaction. The difference in surface species of As(III/V) also leads to complex responses when coexisting with high concentrations of P(V) and Ca(II). This study helps us to understand environmental behavior of As(III/V) and develop remediation strategy in As(III/V) contaminated systems.
Collapse
Affiliation(s)
- Yuhong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaopeng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
6
|
Di Caprio F, Altimari P, Astolfi ML, Pagnanelli F. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: Effect of temperature and Fe concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119834. [PMID: 38128206 DOI: 10.1016/j.jenvman.2023.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Arsenic-contaminated water is a global concern that demands the development of cost-effective treatments to ensure a safe drinking water supply for people worldwide. In this paper, we report the optimization of a two-phase synthesis for producing a hydrochar core from olive pomace to serve as support for the deposition of Fe-hydroxide, which is the active component in As(V) removal. The operating conditions considered were the initial concentration of Fe in solution in the hydrothermal treatment (phase I) and the temperature of Fe precipitation (phase II). The obtained samples were characterized for their elemental composition, solid yield, mineral content (Fe and K), phenol release, As(V) sorption capacity, and sorbent stability. Correlation analysis revealed that higher Fe concentrations (26.8 g/L) ensured better carbonization during hydrothermal treatment, increased arsenic removal, reduced concentrations of phenols in the final liquid, and improved stability of the sorbent composite. On the other hand, the temperature during Fe precipitation (phase II) can be maintained at lower levels (25-80 °C) since higher temperatures yielded lower adsorption capacity. Regression analysis demonstrated the significance of the main effects of the parameters on sorption capacity and provided a model for selecting operating conditions (Fe concentration and phase II temperature) to obtain composite sorbents with tailored sorption properties.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Pietro Altimari
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CIABC, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Fan X, Zhang H, Peng Q, Zheng Y, Shi K, Xia X. Arsenic Removal via the Biomineralization of Iron-Oxidizing Bacteria Pseudarthrobacter sp. Fe7. Microorganisms 2023; 11:2860. [PMID: 38138004 PMCID: PMC10746119 DOI: 10.3390/microorganisms11122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Arsenic (As) is a highly toxic metalloid, and its widespread contamination of water is a serious threat to human health. This study explored As removal using Fe(II)-oxidizing bacteria. The strain Fe7 isolated from iron mine soil was classified as the genus Pseudarthrobacter based on 16S rRNA gene sequence similarities and phylogenetic analyses. The strain Fe7 was identified as a strain of Gram-positive, rod-shaped, aerobic bacteria that can oxidize Fe(II) and produce iron mineral precipitates. X-ray diffraction, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy patterns showed that the iron mineral precipitates with poor crystallinity consisted of Fe(III) and numerous biological impurities. In the co-cultivation of the strain Fe7 with arsenite (As(III)), 100% of the total Fe and 99.9% of the total As were removed after 72 h. During the co-cultivation of the strain Fe7 with arsenate (As(V)), 98.4% of the total Fe and 96.9% of the total As were removed after 72 h. Additionally, the iron precipitates produced by the strain Fe7 removed 100% of the total As after 3 h in both the As(III) and As(V) pollution systems. Furthermore, enzyme activity experiments revealed that the strain Fe7 oxidized Fe(II) by producing extracellular enzymes. When 2% (v/v) extracellular enzyme liquid of the strain Fe7 was added to the As(III) or As(V) pollution system, the total As removal rates were 98.6% and 99.4%, respectively, after 2 h, which increased to 100% when 5% (v/v) and 10% (v/v) extracellular enzyme liquid of the strain Fe7 were, respectively, added to the As(III) and As(V) pollution systems. Therefore, iron biomineralized using a co-culture of the strain Fe7 and As, iron precipitates produced by the strain Fe7, and the extracellular enzymes of the strain Fe7 could remove As(III) and As(V) efficiently. This study provides new insights and strategies for the efficient remediation of arsenic pollution in aquatic environments.
Collapse
Affiliation(s)
- Xia Fan
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (X.F.); (H.Z.); (Q.P.); (Y.Z.)
| | - Hanxiao Zhang
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (X.F.); (H.Z.); (Q.P.); (Y.Z.)
| | - Qian Peng
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (X.F.); (H.Z.); (Q.P.); (Y.Z.)
| | - Yongliang Zheng
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (X.F.); (H.Z.); (Q.P.); (Y.Z.)
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, College of Life Science, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
8
|
Ivy N, Mukherjee T, Bhattacharya S, Ghosh A, Sharma P. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1261-1287. [PMID: 35841495 DOI: 10.1007/s10653-022-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | | | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India.
| |
Collapse
|
9
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Liu Y, Cai L, Wang X, Chen Z, Yang W. Efficient adsorption of arsenic in groundwater by hydrated iron oxide and ferromanganese oxide chitosan gel beads. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Polyacrylonitrile support impregnated with amine-functionalized graphitic carbon nitride/magnetite composite nanofibers towards enhanced arsenic remediation: A mechanistic approach. J Colloid Interface Sci 2023; 640:890-907. [PMID: 36907149 DOI: 10.1016/j.jcis.2023.02.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Recently, novel composite materials are rapidly being explored for water treatment applications. However, their physicochemical behavior and mechanistic investigations are still a mystery. Therefore, our key prospect is to develop a highly stable mixed-matrix adsorbent system using polyacrylonitrile (PAN) support impregnated with amine-functionalized graphitic carbon nitride/magnetite (gCN-NH2/Fe3O4) composite nanofibers (PAN/gCN-NH2/Fe3O4: PCNFe) by simple electrospinning techniques. Various instrumental techniques were used to explore the structural, physicochemical, and mechanical behavior of the synthesized nanofiber. The developed PCNFe with a specific surface area of 39.0 m2/g was found to be non-aggregated and to have outstanding water dispersibility, abundant surface functionality, greater hydrophilicity, superior magnetic property, and higher thermal & mechanical characteristics making it favorable for rapid As removal. Based on the experimental findings from the batch study, 97.0 and 99.0 % of arsenite (As(III)) and arsenate (As(V)), respectively, could be adsorbed by utilizing0.02 g of adsorbent dosage within 60 min of contact time at pH 7 and 4, with an initial concentration of 10 mg/L. Adsorption of As(III) and As(V) followed the pseudo-second-order kinetic and Langmuir isotherm models with an sorption capacities of 32.26 and 33.22 mg/g, respectively, at ambient temperature. The adsorption was endothermic and spontaneous, in accordance with the thermodynamic study. Furthermore, the addition of co-anions in a competitive environment did not affect As adsorption except for PO43-. Moreover, PCNFe preserves its adsorption efficiency above 80 % after five regeneration cycles. The combined results of FTIR and XPS after adsorption further support the adsorption mechanism. Also, the composite nanostructures retain their morphological and structural integrity after the adsorption process. The facile synthesis protocol, high As adsorption capacity, and enhanced mechanical integrity of PCNFe foreshadow its huge prospects for real wastewater treatment.
Collapse
|
12
|
Huang X, Li T, Yang G. Immobilization of As(III) by gibbsite and catalytic oxidation to As(V): Profound impacts of doping and unraveling of associated mechanisms. CHEMOSPHERE 2023; 313:137583. [PMID: 36529173 DOI: 10.1016/j.chemosphere.2022.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
As(III) is highly toxic, and its adsorption and oxidation to As(V) by minerals represent two effective approaches to remediate As(III)-contaminated sites. Gibbsite, one of the most abundant natural minerals, shows decent adsorption for As(III), and in this study, mechanisms of As(III) immobilization and oxidation by gibbsite with different dopants (M = Fe(III), Mn(III), Mn(IV)) are addressed by periodic DFT calculations. Influences of Fe(III) content and Mn oxidation state are also inspected. Although a majority remain structurally similar to those of pristine gibbsite, new adsorption configurations emerge due to doping: Inner-sphere complexes with M - As bonds for all doping, bidentate binuclear complexes for double Fe(III) doping, and physisorption with weak OMn-As interactions for Mn(IV) doping. As(III) adsorption affinities are significantly altered by doping and rely on dopants, while inner-sphere complexes with M-OAs bonds are always lowest-energy except doping Mn(III) that prefers trigonal bipyramidal coordination and impedes As(III) chemisorption. Doping causes strong M-3d and OAs-2p orbital interactions that facilitate As(III) adsorption whereas disappear for pristine gibbsite. Double Fe(III)- and Mn(IV)-doped gibbsite materials are effective for As(III) oxidation to As(V), and mechanisms differ significantly although all are characterized by dual electron transfers. Activation barriers for the most favorable reaction paths amount to 1.02 and 1.26-1.31 eV, respectively. Physisorbed and outer-sphere As(III) complexes exhibit comparable reactivities as chemisorbed complexes that become focus of literature reports, and may also be involved during interfacial and environmental reactions. Results rationalize experimental observations available, and provide significantly new insights that conduce to manage As-associated pollution and design efficient As(III) scavengers and oxidation catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tingting Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Gang Yang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Liu Y, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Zhang K, Guo F, Graham N, Yu W. Engineering of 3D graphene hydrogel-supported MnO 2-FeOOH nanoparticles with synergistic effect of oxidation and adsorption toward highly efficient removal of arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120735. [PMID: 36464113 DOI: 10.1016/j.envpol.2022.120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Iron-manganese-based adsorbent has been regarded as a promising candidate for arsenic purification from water, especially the inorganic As(III), due to its inherent advantage of low cost and large-scale producibility. However, the nanoparticle aggregation, metal leaching and insufficient removal efficiency remain the main challenges in the practical applications of the granular adsorbents. In this work, we develop a universal strategy for the fabrication of an active Fe(III) oxyhydroxide-Mn(IV) oxide/3D graphene oxide (GO) gel composite via a simple hydrothermal reaction. The successful immobilization of Fe-Mn oxyhydroxide/oxides on the interconnected GO gels was intuitively confirmed by the transmission electron microscopy and atomic force microscopy. The combinative characterizations of the X-ray absorption near edge structure and X-ray photoelectron spectroscopy clearly reveal the electron transfer from Fe atoms to Mn atoms. The optimized Fe-Mn/GO composites possess the superior performance with the removal efficiency of over 90% for As(III) at pH 7.0 and ∼97% for As(V) at pH 5.0 and the As(III, V) levels (100 μg l-1) are reduced to below the WHO guideline of 10 μg l-1. The sorption isotherm and kinetic experiments on the As removal were also carried out. The post characterizations are employed to better unveil the oxidation-adsorption mechanism. Notably, the application of Fe-Mn/GO composites in the treatment of As-simulated natural water demonstrated a stable and continuous operation for over 20 days and an effluent concentration of arsenic as low as the 10 μg l-1 in a specially designed flow reactor.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fengchen Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
15
|
Chen M, Hu H, Chen M, Wang C, Wang Q, Zeng C, Shi Q, Song W, Li X, Zhang Q. In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129884. [PMID: 36084465 DOI: 10.1016/j.jhazmat.2022.129884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/28/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The removal of trivalent arsenic (As (III)) from water has received extensive attention from researchers. Iron electrocoagulation (Fe-EC) is an efficient technology for arsenic removal. However, electrode passivation hinders the development and application of Fe-EC. In this work, an innovative Fe-EC route was developed to remove As (III) through an electrochemical-siderite packed column (ESC). Ferrous ions were produced from siderite near the anode, and hydroxide was generated near the cathode during the electrochemical decomposition of siderite. As a result, an effect of Fe-EC-like was obtained. The results showed that an excellent removal performance of As (III) (>99%) was obtained by adjusting the parameters (As (III) concentration at 10 mg/L, pH at 7, Na2SO4 at 10 mM and the hydraulic retention time at 30 min) and the oxidation rate of As (III) reached 84.12%. The mechanism analysis indicated that As (III) was oxidized to As (Ⅴ) by the produced active oxide species and electrode, and then was removed by capturing on the iron oxide precipitates. As (III) was likely to be oxidized in two ways, one by the reactive oxygen species (possibly •OH, Fe(IV) and •O2- species), and another directly by the anode. The long-term effectiveness of arsenic removal demonstrated that ESC process based on the electrochemical-siderite packed column was an appropriate candidate for treating As (III) pollution.
Collapse
Affiliation(s)
- Mengfei Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Qian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Chaocheng Zeng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Qing Shi
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China
| | - Weijie Song
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Xuewei Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China.
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, PR China.
| |
Collapse
|
16
|
Yang N, Qi X, Li Y, Li G, Duan X. Highly effective remediation of high arsenic-bearing wastewater using aluminum-containing waste residue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116417. [PMID: 36257224 DOI: 10.1016/j.jenvman.2022.116417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Wastewater from non-ferrous metal smelting is known as one of the most dangerous sources of arsenic (As) due to its high acidity and high arsenic content. Herein, we propose a new environmental protection process for the efficient purification and removal of arsenic from wastewater by the formation of an AlAsO4@silicate core-shell structure based on the characteristics of aluminum-containing waste residue (AWR). At room temperature, the investigation with AWR almost achieved 100% As removal efficiency from wastewater, reducing the arsenic concentration from 5500 mg/L to 52 μg/L. With Al/As molar ratio of 3.5, the structural properties of AWR provided good adsorption sites for arsenic adsorption, leading to the formation of arsenate and insoluble aluminum arsenate with As. As-containing AWR silicate shells were produced under alkaline conditions, resulting in an arsenic leaching concentration of 1.32 mg/L in the TCLP test. AWR, as an efficient As removal and fixation agent, shows great potential in the treatment of copper smelting wastewater, and is expected to achieve large-scale industrial As removal.
Collapse
Affiliation(s)
- Nina Yang
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xianjin Qi
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yongkui Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Guohua Li
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xiaoxu Duan
- Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
17
|
Yu J, Zhang K, Duan X, Zhao C, Wei X, Guo Q, Yuan CG. Simultaneous removal of arsenate and arsenite in water using a novel functional halloysite nanotube composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77131-77144. [PMID: 35676577 DOI: 10.1007/s11356-022-20261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
This work aims at exploring a novel environment-friendly nanomaterial based on natural clay minerals for arsenic removal in aqueous samples. Halloysite nanotubes (HNTs) were selected as the substrate with Mn oxides loaded on the surface to enhance its arsenic adsorption ability and then grafted onto the SiO2-coated Fe3O4 microsphere to get a just enough magnetic performance facilitating the material's post-treatment. The prepared composite (Fe3O4@SiO2@Mn-HNTs) was extensively characterized by various instruments including Fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TG), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscope (XPS), and X-ray diffraction (XRD). Batch experiments were carried out to get the optimum test conditions for arsenic adsorption by the composite, including pH, loading amount of Mn oxides, adsorbent dosage, and the co-existing ions. The adsorption of AsIII and AsV on Fe3O4@SiO2@Mn-HNTs were both well fitted with the pseudo-second-order kinetic model as well as the Langmuir adsorption isotherm model revealing the chemisorption between arsenic and Fe3O4@SiO2@Mn-HNTs. The adsorption process of AsIII and AsV were both endothermic and spontaneous displayed by the thermodynamic study. The capacities of the prepared composite are 3.28 mg g-1 for AsIII and 3.52 mg g-1 for AsV, respectively, which are comparable or better than those of many reported materials in the references. Toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) tests were carried out to access the secondary environmental risk of the composite and showed that it was quite environmentally stable and can be safely disposed. The composite was successfully applied in environmental water samples indicating its great potential applicability in future.
Collapse
Affiliation(s)
- Jiexuan Yu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Kegang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Xuelei Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Changxian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Xiaoyang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Qi Guo
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China.
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China.
| |
Collapse
|
18
|
Zhang M, Liu L, Li A, Zhang T, Qiu G. UV-induced highly efficient removal of As(III) through synergistic photo-oxidation in the presence of Fe(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71583-71592. [PMID: 35604606 DOI: 10.1007/s11356-022-20931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
In polluted waters, arsenic (As) poses substantial risks to the environment and human health. Inorganic As mainly exists as As(V) and As(III), and As(III) usually shows higher mobility and toxicity and is more difficult to be removed by coagulation. The oxidation of coexisting Fe(II) can accelerate As(III) oxidation and removal by promoting the generation of reactive intermediates and Fe(III) coagulant in the presence of dissolved oxygen. However, the removal efficiency of As from acidic wastewaters is far from satisfactory due to the low Fe(II) oxidation rate by dissolved oxygen. Herein, UV irradiation was applied to stimulate the synergistic oxidation of Fe(II)/As(III), and the effects of coexisting Fe(II) concentration and pH were also evaluated. The synergistic oxidation of Fe(II)/As(III) significantly enhanced the removal of As from acidic waters. Under UV irradiation, Fe(II) significantly promoted the generation of reactive oxygen species (ROS), thereby facilitating As(III) oxidation. In addition, the formation of ferric arsenate and amorphous ferric (hydr)oxides contributed much to As removal. In the As(III)-containing solution with 200 μmol L-1 Fe(II) at initial pH 4.0, the total arsenic (As(T)) concentration decreased from 67.0 to 1.3 and 0.5 μmol L-1, respectively, at 25 and 120 min under UV irradiation. The As(T) removal rate increased with increasing Fe(II) concentration, and first increased and then decreased with increasing initial pH from 2.0 to 6.0. This study clarifies the mechanism for the synergistic photo-oxidation of Fe(II)/As(III) under UV irradiation, and proposes a new strategy for highly efficient As(III) removal from acidic industrial and mining wastewaters.
Collapse
Affiliation(s)
- Mingzhe Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
19
|
Li Y, Qi X, Li G, Duan X, Yang N. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral. CHEMOSPHERE 2022; 301:134736. [PMID: 35500627 DOI: 10.1016/j.chemosphere.2022.134736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/03/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
High-arsenic wastewater has long been considered a major threat to ecological balance and human health because of its strong toxicity and high mobility. Herein, an environmentally friendly process was proposed for As removal and fixation in the form of As-stabilized mineral, using Lead-Zinc smelting (LZS) slag as the in situ Fe donor, neutralizer, and crystal seed. The slag was dissolved in the wastewater and released Fe and Ca ions, while simultaneously increasing the pH value of the solution to help scorodite synthesis. The dissolved Ca2+ ion preferentially reacted with SO42- ion in the form of CaSO4·2H2O precipitate as in situ "seeds" for As precipitation. The dissolved Fe(II) and As(III) ions were oxidized to Fe(III) and As(V) ions by H2O2, and later reacted with each other to generated amorphous ferric arsenate on the surface of CaSO4·2H2O, and then evolved into scorodite crystals with high stability. With a Fe/As molar ratio of 2, a reaction temperature of 90 °C, and a reaction time of 12 h, 98.42% of As was effectively precipitated from the wastewater with an initial As concentration of 7530.00 mg/L. Moreover, the leached As concentration of the As-bearing precipitate in the TCLP test was 3.46 mg/L. The concentration of the residual As and heavy metals ions in the final filtrate was lower than local wastewater discharge standards, successfully realizing the treatment of smelting wastewater. In summary, a prospective process successfully shows a great potential for co-treatment of LZS wastewater and slag, which could advance the large-scale disposal of LZS plants.
Collapse
Affiliation(s)
- Yongkui Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Xianjin Qi
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Guohua Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xiaoxu Duan
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Nina Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
20
|
Oshima K, Kondo H, Konishi E, Yamamoto T, Tsuge Y, Watanabe T, Kishida M. As(iii) removal through catalytic oxidation and Fe(iii) precipitation. RSC Adv 2022; 12:16843-16846. [PMID: 35754909 PMCID: PMC9171746 DOI: 10.1039/d2ra02537j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
To remove arsenite (As(iii)) from wastewater effectively, the catalytic oxidation of As(iii) to arsenate (As(v)) and As(v) precipitation with iron ions (Fe(iii)) was investigated. The Pt/SiO2 catalyst functioned as a reaction site for As(iii) with oxygen in the atmosphere. The combination of the Pt/SiO2 catalyst and Fe(iii) precipitant improved the removal of As(iii) in the precipitate; Pt/SiO2 worked as both an As(iii) oxidation site and precipitation site with Fe(iii) precipitant. A Pt/SiO2 catalyst promoted an oxidative reaction of arsenite to arsenate with air, and it also functioned as a nucleation site of its precipitate with iron precipitant, achieving high removal efficiency from water.![]()
Collapse
Affiliation(s)
- Kazumasa Oshima
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiromichi Kondo
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Eriko Konishi
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Tsuyoshi Yamamoto
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshifumi Tsuge
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Takayuki Watanabe
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Masahiro Kishida
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
21
|
Thomas B, Vinka C, Pawan L, David S. Sustainable groundwater treatment technologies for underserved rural communities in emerging economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152633. [PMID: 34963585 DOI: 10.1016/j.scitotenv.2021.152633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Worldwide, about one out of two people depend on groundwater resources to satisfy their drinking water needs. While groundwater typically is of higher quality than surface water, pollution and geologic conditions may require treating groundwater to meet safe water quality criteria. Herein, a critical overview is presented of water treatment technologies for rural and underserved communities in emerging economies that depend on groundwater. Given that small to medium sized rural communities in emerging economies often lack the financial resources to support technologically complex and expensive centralized public water treatment systems, the focus is on proven technologies that are sustainable and acceptable by the rural population. After an overview of the underlying treatment mechanisms and the principal groundwater contaminants targeted by the traditional, advanced, and experimental water treatment technologies, we identify the groundwater quality parameters that may impact or interfere with the technology performance. We also introduce enabling environmental factors that might govern the implementation of water treatment technologies in the target communities and a brief discussion of safe storage of water after treatment to underline the importance of protecting the water from re-contamination. Our overview is further supported by tabulated summaries of the principal (dis)advantages of each technology covered herein, including cost considerations and social acceptance. Overall, our review suggests that underserved rural communities have sustainable and affordable options for cases where the quality of local groundwater resources requires treatment.
Collapse
Affiliation(s)
- Boving Thomas
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Craver Vinka
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Labhasetwar Pawan
- Water Technology and Management Division, CSIR-NEERI, Nehru Marg, Nagpur 440020, India
| | - Sabatini David
- School of Civil Engineering and Environmental Science and WaTER Center, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
22
|
Mohajeri A, Mahmoudi Dehkohneh S. Application of chromium-silicon cluster for selective removal of arsenic and sulfide from wastewater. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
23
|
Sanna Angotzi M, Mameli V, Fantasia A, Cara C, Secci F, Enzo S, Gerina M, Cannas C. As (III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between Sorbent Surface Chemistry and Arsenic Equilibria. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:326. [PMID: 35159671 PMCID: PMC8840107 DOI: 10.3390/nano12030326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023]
Abstract
Iron oxides/oxyhydroxides, namely maghemite, iron oxide-silica composite, akaganeite, and ferrihydrite, are studied for AsV and AsIII removal from water in the pH range 2-8. All sorbents were characterized for their structural, morphological, textural, and surface charge properties. The same experimental conditions for the batch tests permitted a direct comparison among the sorbents, particularly between the oxyhydroxides, known to be among the most promising As-removers but hardly compared in the literature. The tests revealed akaganeite to perform better in the whole pH range for AsV (max 89 mg g-1 at pH0 3) but to be also efficient toward AsIII (max 91 mg g-1 at pH0 3-8), for which the best sorbent was ferrihydrite (max 144 mg g-1 at pH0 8). Moreover, the study of the sorbents' surface chemistry under contact with arsenic and arsenic-free solutions allowed the understanding of its role in the arsenic uptake through electrophoretic light scattering and pH measurements. Indeed, the sorbent's ability to modify the starting pH was a crucial step in determining the removal of performances. The AsV initial concentration, contact time, ionic strength, and presence of competitors were also studied for akaganeite, the most promising remover, at pH0 3 and 8 to deepen the uptake mechanism.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Alessandra Fantasia
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Fausto Secci
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Stefano Enzo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Marianna Gerina
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic;
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
24
|
Cai G, Tian Y, Li D, Zhang J, Li L, Wang Q, Sun H, Zhang H, Wang P. Self-enhanced and efficient removal of As(III) from water using Fe-Cu-Mn composite oxide under visible-light irradiation: Synergistic oxidation and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126908. [PMID: 34418837 DOI: 10.1016/j.jhazmat.2021.126908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Here, we prepared a novel nanostructured Fe-Cu-Mn composite oxide (FCMOx) adsorbent using an ultrasonic coprecipitation method. The maximum adsorption capacity of As(III) and As(V) reached 158.5 and 115.2 mg/g under neutral conditions, respectively. The effects of several environmental factors (coexisting ions, solution pH, etc.) on the removal of inorganic arsenic using FCMOx were studied through batch experiments. The results showed that except for PO43- and high initial pH, it was not significantly affected by ionic strength and other existing anions, implying a higher selectivity and adaptability. Combined with EPR, FTIR, and XPS analysis, we concluded that the Cu component and the reactive oxygen species (ROS) it generates played a decisive role in maintaining the stability of the redox cycle between Mn(IV)/Mn(III)/Mn(II) and enhancing the oxidation efficiency of As(III). Meanwhile, the adsorption mechanism of As(V) was mainly through the replacement of the FCMOx surface -OH to form stable inner-sphere arsenic complexes, while the removal mechanism of As(III) may involve the process of synergistic oxidation and chemisorption coupling. Additionally, the effective removal of As from the simulated As-contaminated water and its satisfactory reuse performance make FCMOx adsorbents favorable candidates for the removal of As-contaminated water in the future.
Collapse
Affiliation(s)
- Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Daikun Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huihang Sun
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Pu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Neural Network and Random Forest-Based Analyses of the Performance of Community Drinking Water Arsenic Treatment Plants. WATER 2021. [DOI: 10.3390/w13243507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A plethora of technologies has been developed over decades of extensive research on arsenic remediation, although the technical and financial perspective of arsenic removal plants in the field requires critical evaluation. In the present study, focusing on some of the pronounced arsenic-affected areas in West Bengal, India, we assessed the implementation and operation of different arsenic removal technologies using a dataset of 4000 spatio-temporal data collected from an in-depth field survey of 136 arsenic removal plants engaged in the public water supply. Our statistical analysis of this dataset indicates a 120% rise in the average cumulative capacity of the plants during 2014–2021. The majorities of the plants are based on the activated alumina with FeCl3 technology and serve about 49% of the population in the study area. The average cost of water production for the activated alumina with FeCl3 technology was found to be ₹7.56/m3 (USD $1 ≈ INR ₹70), while the lowest was ₹0.39/m3 for granular ferric hydroxide technology. A machine learning-based framework was employed to analyze the impact of water quality and treatment plant parameters on the removal efficiency, capital, and operational cost of the plants. The artificial neural network model exhibited adequate statistical significance, with a high F-value and R2 of 5830.94 and 0.72 for the capital cost model, 136,954, and 0.98 for the operational cost model, respectively. The relative importance of the process variables was identified through random forest models. The models indicated that flow rate, media, and chemicals are the predominant costs, while contaminant loading in influent water and a coagulating agent was important for removal efficiency. The established framework may be instrumental as a decision-making tool for water providers to assess the expected performance and financial involvement for proposed or ongoing arsenic removal plants concerning various design and quality parameters.
Collapse
|
26
|
Wang L, Lin Z, Chang L, Chen J, Huang S, Yi X, Luo M, Wang Y. Effects of anode/cathode electroactive microorganisms on arsenic removal with organic/inorganic carbon supplied. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149356. [PMID: 34375251 DOI: 10.1016/j.scitotenv.2021.149356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This study reports the effects of an external voltage (0 V, 0.4 V and 0.9 V) on soil arsenic (As) release and sequestration when amended with organic carbon (NaAc) and inorganic carbon (NaHCO3), respectively, in a soil bioelectrochemistry system (BES). The results demonstrated that although an external voltage had no effect on the As removal capacity in an oligotrophic environment fueled with NaHCO3, 93.6% of As(III) in the supernatant was removed at 0.9 V with an NaAc amendment. Interestingly, the content of As detected on the electrodes was higher than that removed from the supernatant, implying a continuous release of soil As under external voltages and rapid adsorption onto the electrodes, especially the cathode. In addition, the species of As on the cathode were similar to those in the supernatant (the As(III)/As(V) ratio was approximately 3:1), indicating that the removal capacity was independent of preoxidation. From the viewpoint of electroactive microorganisms (EABs), the relative abundances of the arrA gene and Geobacter genus were specifically enriched at the anode, thus signifying stimulation of the reduction and release of soil As in the anode region. By comparison, Bacillus was particularly abundant at the cathode, which could contribute to the oxidation and sequestration of As in the cathode region. Additionally, specific extracellular polymeric substances (EPSs) secreted by EABs could combine with As, which was followed by electrostatic attraction to the cathode under the effect of an electric field. Furthermore, the formation of secondary minerals and coprecipitation in the presence of iron (Fe) may have also contributed to As removal from solution. The insights from this study will enable us to further understand the biogeochemical cycle of soil As and to explore the feasibility of in situ As bioremediation techniques, combining the aspects of microbial and physicochemical processes in soil bioelectrochemical systems.
Collapse
Affiliation(s)
- Liuying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Chang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Junjie Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Shenhua Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Xiaofeng Yi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Mingyu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| |
Collapse
|
27
|
Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, Azamathulla HM. Effects of wastewater type on stability and operating conditions control strategy in relation to the formation of aerobic granular sludge - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2113-2130. [PMID: 34810301 DOI: 10.2166/wst.2021.415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
Collapse
Affiliation(s)
- N A Hamiruddin
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - N A Awang
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - S N Mohd Shahpudin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - N S Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
| | - M A M Said
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - B Chaplot
- Department of Geography, M.J.K College, Bettiah, a constituent unit of B.R.A., Bihar University, Bettiah, Muzaffarpur, India
| | - H M Azamathulla
- Faculty of Engineering, The University of the West Indies, St. Augustine, Trinidad
| |
Collapse
|
28
|
Sanna Angotzi M, Mameli V, Cara C, Borchert KBL, Steinbach C, Boldt R, Schwarz D, Cannas C. Meso- and macroporous silica-based arsenic adsorbents: effect of pore size, nature of the active phase, and silicon release. NANOSCALE ADVANCES 2021; 3:6100-6113. [PMID: 36133949 PMCID: PMC9417704 DOI: 10.1039/d1na00487e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/22/2021] [Indexed: 05/21/2023]
Abstract
Arsenic pollution in ground and drinking water is a major problem worldwide due to the natural abundance of arsenic by dissolution from ground sediment or mining activities from anthropogenic activities. To overcome this issue, iron oxides as low-cost and non-toxic materials, have been widely studied as efficient adsorbents for arsenic removal, including when dispersed within porous silica supports. In this study, two head-to-head comparisons were developed to highlight the As(v)-adsorptive ability of meso- and macrostructured silica-based adsorbents. First, the role of the textural properties of a meso-(SBA15) and macrostructured (MOSF) silica support in affecting the structural-morphological features and the adsorption capacity of the active phase (Fe2O3) have been studied. Secondly, a comparison of the arsenic removal ability of inorganic (Fe2O3) and organic (amino groups) active phases was carried out on SBA15. Finally, since silica supports are commonly proposed for both environmental and biomedical applications as active phase carriers, we have investigated secondary silicon and iron pollution. The batch tests at different pH revealed better performance from both Fe2O3-composites at pH 3. The values of q m of 7.9 mg g-1 (53 mg gact -1) and 5.5 mg g-1 (37 mg gact -1) were obtained for SBA15 and MOSF, respectively (gact stands for mass of the active phase). The results suggest that mesostructured materials are more suitable for dispersing active phases as adsorbents for water treatment, due to the obtainment of very small Fe2O3 NPs (about 5 nm). Besides studying the influence of the pore size of SBA15 and MOSF on the adsorption process, the impact of the functionalization was analyzed on SBA15 as the most promising sample for As(v)-removal. The amino-functionalized SBA15 adsorbent (3-aminopropyltriethoxysilane, APTES) exhibited a q m of 12.4 mg g-1 and faster kinetics. Furthermore, issues associated with the release of iron and silicon during the sorption process, causing secondary pollution, were evaluated and critically discussed.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | | | - Christine Steinbach
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Regine Boldt
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|
29
|
Tang Y, Zhang M, Zhang J, Lyu T, Cooper M, Pan G. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation. WATER RESEARCH 2021; 205:117657. [PMID: 34547699 DOI: 10.1016/j.watres.2021.117657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The arsenic (As)-bearing eutrophic waters may suffer from the dual conditions of harmful algal blooms and release of As, driven by algal-induced hypoxia/anoxia. Here, we investigate the use of interfacial oxygen (O2) nanobubble technology to combat the hypoxia and control As exposure in simulated mesocosm experiments. It was observed that remediation of algal-induced hypoxia at the sediment-water interfaces (SWI) by application of O2 nanobubbles reduced the level of dissolved As from 23.2 μg L-1 to <10 μg L-1 and stimulated the conversion of As(III) to the less toxic As(V) (65-75%) and methylated As (10-15%) species. More than half of the oxidation and all the methylation of As(III) resulted from the manipulation by O2 nanobubbles of microbes responsible for As(III) oxidation and methylation. Hydroxyl radicals were generated during the oxidation of reductive substances at the SWI in darkness, and should be dominant contributors to As(III) abiotic oxidation. X-ray absorption near-edge structure (XANES) spectroscopic analysis demonstrated that surface sediments changed from being sources to acting as sinks of As, due to the formation of Fe-(hydr)oxide. Overall, this study suggests that interfacial O2 nanobubble technology could be a potential method for remediation of sediment As pollution through the manipulation of O2-related microbial and geochemical reactions.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, Department of Soil Science, College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Meiyi Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jing Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Tao Lyu
- Cranfield Water Science Institute, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Mick Cooper
- Integrated Water-Energy-Food Facility (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG25 0QF, United Kingdom
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Integrated Water-Energy-Food Facility (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Nottinghamshire NG25 0QF, United Kingdom.
| |
Collapse
|
30
|
Zhang DR, Chen HR, Xia JL, Nie ZY, Zhang RY, Schippers A, Shu WS, Qian LX. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. WATER RESEARCH 2021; 203:117539. [PMID: 34407485 DOI: 10.1016/j.watres.2021.117539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Red mud (RM) as waste of industrial aluminum production is piling up in huge ponds. RM could be a cost-effective adsorbent for heavy metals, but adsorption is vulnerable to pH changes, metal ions speciation and the occurrence of iron bearing minerals. In this study, the precipitation and elemental speciation transformation relevant to arsenic fate in responding to the addition of RM during arsenopyrite bio-oxidation by Sulfobacillus thermosulfidooxidans was investigated. The results show that the addition of RM significantly changed the arsenic precipitation and the solution chemistry and thus affected the arsenopyrite bio-oxidation and arsenic fate. An addition of a small amount (≤ 4 g/L) of RM substantially promoted arsenopyrite bio-oxidation with formation of SiO2 @ (As, Fe, Al, Si) spherical nanoparticles that can enhance the stability of the immobilized arsenic. The SiO2-based spherical nanoparticles precipitate was mainly composed of jarosites, amorphous ferric arsenate and crystalline scorodite, and its formation were controlled by Fe3+ concentration and solution pH. An addition of increased amount of RM (≥ 6 g/L) resulted in a significant increase of the solution pH and a decrease in the Fe2+ bio-oxidation activity, and spherical nanoparticles were not formed. Consequently, the dissolution of arsenopyrite was inhibited and the release of arsenic was blocked. This study suggests the applicability of RM in mitigation of arsenic pollution from bio-oxidation of As-bearing sulfide minerals.
Collapse
Affiliation(s)
- Duo-Rui Zhang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hong-Rui Chen
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Rui-Yong Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover 30655, Germany
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li-Xiong Qian
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Zahir MH, Irshad K, Rahman MM, Shaikh MN, Rahman MM. Efficient Capture of Heavy Metal Ions and Arsenic with a CaY-Carbonate Layered Double-Hydroxide Nanosheet. ACS OMEGA 2021; 6:22909-22921. [PMID: 34514262 PMCID: PMC8427793 DOI: 10.1021/acsomega.1c03294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosheets consisting of two-dimensional (2-D) nanomaterials made up of Ca2+ (Ca), and Y3+ (Y) cations and carbonate [CO3 2-] anions in the interlayer with a uniform thickness and lengths of around 10 μm have been successfully synthesized in a hydrotalcite layer structure, otherwise known as a layered double hydroxide, using a facile hydrothermal method. The resulting CaY-CO3 2- layered double-hydroxide (LDH) materials demonstrate outstanding affinity and selectivity for toxic transition metal ions such as Cr3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, and Hg2+ as well as metalloid As3+. The adsorption of all of the highly toxic metal ions from the aqueous solution was found to be exceptionally rapid and highly selective, with more than 95% removal achieved within 30 min. For AsO3, a strong adsorption potential of 452 mg/g was observed at pH 7.0, which is better than most values previously reported. The distribution coefficient K d values can exceed ∼106 mL/g for Cr3+, Pb2+, and As3+, which are highly toxic. The fabricated materials have excellent chemical stability: they retain their well-defined lamellar shapes even under mildly acidic conditions.
Collapse
Affiliation(s)
- Md. Hasan Zahir
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum
& Minerals, (KFUPM), Dhahran 31261, Saudi Arabia
| | - Kashif Irshad
- Interdisciplinary
Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum
& Minerals, (KFUPM), Dhahran 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary
Research Center for Advanced Materials, KFUPM, Dhahran 31261, Saudi Arabia
| | - M. Nasiruzzaman Shaikh
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), KFUPM, Dhahran 31261, Saudi Arabia
| | - Mohammad Mominur Rahman
- Department
of Electrical Engineering, King Saud University, Riyadh 11495, P.O. Code 11362, Saudi Arabia
| |
Collapse
|
32
|
Lyonga FN, Hong SH, Cho EJ, Kang JK, Lee CG, Park SJ. As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3303-3321. [PMID: 33034807 DOI: 10.1007/s10653-020-00739-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3- above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.
Collapse
Affiliation(s)
- Fritz Ndumbe Lyonga
- Department of Chemical Engineering, Hankyong National University, 327 Jungang-ro, Anseong, 17579, Republic of Korea
| | - Seung-Hee Hong
- Department of Integrated Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Gwanak-gu, 08826, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon-si, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
33
|
Huang T, Zhang SW, Xie J, Zhou L, Liu LF. Effective adsorption of quadrivalent cerium by synthesized laurylsulfonate green rust in a central composite design. J Environ Sci (China) 2021; 107:14-25. [PMID: 34412777 DOI: 10.1016/j.jes.2021.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
The layered laurylsulfonate intercalated green rust (lauryl-S GR) was synthesized to evaluate the influence of synthesis parameters and aqueous conditions on the adsorption of CeIV. The maximum adsorption capacity of 305.58 mg/g by lauryl-S GR was predictably obtained. The pseudo-first-order kinetic model was appropriate in fitting the whole uptake process in a weak acid environment. Three isotherm models including Langmuir, Freundlich, and Tempkin were all reliable in depicting the isotherm adsorption process. The maximum monolayer adsorption capacity of lauryl-S GR towards CeIV was 315.46 mg/g. Ce species including CeO and Ce2O3 besides CeO2 were matched in the XPS distribution, directly indicating the reduction reaction brought by FeII in the GR occurred to hydrated CeIV ions during the adsorption. Nano-sized Ce particles attached to the lauryl-S GRs after the adsorption experiments were observed in the morphological characterization. Flocculated materials were formed on the surface of the lauryl-S GR at a pH of 7, which further reduced the active sites and disrupted the continuous uptake of CeIV to the lauryl-S GR. This study expands the application of GRs and supplies an ideal iron-based material for the construction of the affiliated recovery pathway to the traditional separation of Ce.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, Hengyang 421001, China
| | - Juan Xie
- School of Textile, Garment, and Design, Changshu Institute of Technology, 215500, China.
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Long-Fei Liu
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
34
|
Adsorptive Removal of Arsenic and Lead by Stone Powder/Chitosan/Maghemite Composite Beads. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168808. [PMID: 34444552 PMCID: PMC8391415 DOI: 10.3390/ijerph18168808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
Arsenic (As) and lead (Pb) contamination in groundwater is a serious problem in countries that use groundwater as drinking water. In this study, composite beads, called SCM beads, synthesized using stone powder (SP), chitosan (Ch), and maghemite (Mag) with different weight ratios (1/1/0.1, 1/1/0.3, and 1/1/0.5 for SP/Ch/Mag) were prepared, characterized and used as adsorbents for the removal of As and Pb from artificially contaminated water samples. Adsorption isotherm experiments of As and Pb onto the beads were conducted and single-solute adsorption isotherm models such as the Langmuir, Freundlich, Dubinin–Radushkevich (DR), and dual mode (DM) models were fitted to the experimental data to analyze the adsorption characteristics. The maximum adsorption capacities of the SCM beads were 75.7 and 232.8 mmol/kg for As and Pb, respectively, which were 40 and 5.6 times higher than that of SP according to the Langmuir model analyses. However, the DM model had the highest determinant coefficient (R2) values for both As and Pb adsorption, indicating that the beads had heterogenous adsorption sites with different adsorption affinities. These magnetic beads could be utilized to treat contaminated groundwater.
Collapse
|
35
|
Ye Y, Zhang T, Lv L, Chen Y, Tang W, Tang S. Functionalization of chitosan by grafting sulfhydryl groups to intensify the adsorption of arsenite from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Zhong D, Ren S, Dong X, Yang X, Wang L, Chen J, Zhao Z, Zhang Y, Tsang DCW, Crittenden JC. Rice husk-derived biochar can aggravate arsenic mobility in ferrous-rich groundwater during oxygenation. WATER RESEARCH 2021; 200:117264. [PMID: 34082262 DOI: 10.1016/j.watres.2021.117264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Elevated As(III) and Fe(II) in shallow reducing groundwater can be frequently re-oxidized by introducing O2 due to natural/anthropogenic processes, thus leading to oxidative precipitation of As as well as Fe. Nevertheless, the geochemical process may be impacted by co-existing engineered black carbon due to its considerable applications, which remains poorly understood. Taking rice husk-derived biochar prepared at 500 °C as an example, we explored its impact on the process particularly for the As(III) oxidation and (im)mobilization during the oxygenation. The presence of the biochar had a negligible effect on the As(III) oxidation and immobilization extents within 1 d, while accelerating their rates. However, the immobilized As(III) was significantly liberated from the formed Fe(III) minerals afterward within 21 d, which was 2.2-fold higher than that in the absence of the biochar. The enhanced As(III) liberation was attributed to the presence of the surface silicon-carbon structure, consisting of the outer silicon and inner carbon layers, of the rice husk-derived biochar. The outer silicon components, particularly for the dissolved silicate primarily promoted the As(III) release via ligand exchange, while significantly impeding the transformation of ferrihydrite to lepidocrocite and goethite still resulted secondarily in the As(III) release. Our findings reveal the possible impact of biochar on the environmental behavior and fate of As(III) in the Fe(II)-rich groundwater during the oxygenation. This work highlights that biochar, particularly for its structural features should be a concern in re-mobilizing As in such scenarios when the oxygenation time reaches several days or weeks.
Collapse
Affiliation(s)
- Delai Zhong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shupeng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuelin Dong
- Key Laboratory of Rare Mineral, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zezhou Zhao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - John C Crittenden
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
37
|
Wang Z, Fu Y, Wang L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125488. [PMID: 33676246 DOI: 10.1016/j.jhazmat.2021.125488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Abiotic oxidation of toxic As(III) to As(V) is being deemed as a necessary step for the overall arsenic decontamination in both natural and engineered systems. Direct oxidation of As(III) by chemical oxidants, such as ozone, permanganate, ferrate, chlorine and chloramine, or naturally occurring minerals like Mn, Fe oxides, seems straightforward. Both O2 and H2O2 are ineffective for arsenite oxidation, but they can be activated by reducing substances like Fe2+, Fe0 to increase the oxidation rates. Photo-induced oxidation of As(III) has been demonstrated effective in Fe complexes or minerals, NO3-/NO2-, dissolved organic matter (DOM), peroxygens and TiO2 systems. Although a variety of oxidation methods have been developed over the past two decades, there remain many scientific and technical challenges that must be overcome before the rapid progress in basic knowledge can be translated into environmental benefits. To better understand the trends in the existing data and to identify the knowledge gaps, this review describes in detail the complicated mechanisms for As(III) oxidation by various methods and emphasizes on the conflicting data and explanation. Some prevailing concerns and challenges in the sphere of As(III) oxidation are also pointed out so as to appeal to researchers for further investigations.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
38
|
Cañas Kurz EE, Hellriegel U, Figoli A, Gabriele B, Bundschuh J, Hoinkis J. Small-scale membrane-based arsenic removal for decentralized applications-Developing a conceptual approach for future utilization. WATER RESEARCH 2021; 196:116978. [PMID: 33770678 DOI: 10.1016/j.watres.2021.116978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Various technologies are used for the treatment of arsenic (As) contaminated water, but only a few seem to be suitable for small-scale applications; these are mostly used in rural communities where the access to potable water is the most vulnerable. In this review paper, the salient advantages and most notable challenges of membrane-based technologies for the removal of arsenate As(V) and arsenite As(III) are evaluated and systematically compared to alternative technologies such as e.g. adsorption. A comparison of different scientific papers, case studies and pilot trials is used to discuss the most important aspects when evaluating As mitigation technologies, including the ability to comply with the stringent WHO drinking water guideline limit value of 10 µg/L As and the safe disposal of produced As-laden waste. The use of renewable energies such as solar power in small-scale (<10 m³/day) membrane applications is evaluated. Finally, a conceptual approach for holistic As mitigation is proposed as an important approach to prevent exposure to As by providing a safe water supply.
Collapse
Affiliation(s)
- Edgardo E Cañas Kurz
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy; Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende, CS, Italy; Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Ulrich Hellriegel
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy; Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende, CS, Italy; Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
| | - Alberto Figoli
- Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende, CS, Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, CS, Italy; Institute on Membrane Technology, National Research Council (CNR-ITM), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende, CS, Italy
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia
| | - Jan Hoinkis
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany.
| |
Collapse
|
39
|
Maity JP, Chen CY, Bhattacharya P, Sharma RK, Ahmad A, Patnaik S, Bundschuh J. Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123885. [PMID: 33183836 DOI: 10.1016/j.jhazmat.2020.123885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 05/04/2023]
Abstract
Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
Collapse
Affiliation(s)
- Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; School of Applied Science, KIIT University, Bhubaneswar, 751024, India
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168 University Road, Min- Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Arslan Ahmad
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; KWR Water Research Institute, Groningenhaven 7 3433 PE Nieuwegein, The Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, The Netherlands; SIBELCO Ankerpoort NV, Op de Bos 300, 6223 EP Maastricht, The Netherlands
| | - Sneha Patnaik
- School of Public Health, KIMS Medical College, KIIT University, Bhubaneswar, 751024, India
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
40
|
Razzak A, Shafiquzzaman M, Haider H, Alresheedi M. Arsenic removal by iron-oxidizing bacteria in a fixed-bed coconut husk column: Experimental study and numerical modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115977. [PMID: 33172698 DOI: 10.1016/j.envpol.2020.115977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Groundwater in several parts of the world, particularly in developing countries, has been contaminated with Arsenic (As). In search of low-cost As removal methods, the biological oxidation of As(III) and Fe(II) followed by co-precipitation requires detailed investigation for the practical implementation of this technology. The present study investigated the biological oxidation of As(III) and Fe(II) through a combination of laboratory experiments and reactive transport modeling. Batch experiments were conducted to evaluate the As(III) oxidation by Fe-oxidizing bacteria, mainly Leptothrix spp. A fixed-bed down-flow biological column containing inexpensive and readily available coconut husk support media was used to evaluate the combined removal of As(III) and Fe(II) from synthetic groundwater. Oxidation and co-precipitation processes effectively reduced the concentration of As(III) from 500 μg/L to < 10 μg/L with a hydraulic retention time of 120 min. A one-dimensional reactive transport model was developed based on the microbially mediated biochemical reactions of As(III) and Fe(II). The model successfully reproduced the observed As(III) and Fe(II) removal trends in the column experiments. The modeling results showed that the top 20 cm aerobic layer of the column played a primary role in the microbial oxidation of Fe(II) and As(III). The model calibration identified the hydraulic residence time as the most significant process parameter for the removal of Fe and As in the column. The developed model can effectively predict As concentrations in the effluent and provide design guidelines for the biological treatment of As. The model would also be useful for understanding the biogeochemical behavior of Fe and As under aerobic conditions.
Collapse
Affiliation(s)
- Abdur Razzak
- Department of Environmental Engineering, Pusan National University, 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735, South Korea; Transportation Engineering Branch, Highways and Public Works, Government of Yukon, 461 Range Road, Whitehorse, Y1A 3A4, Canada
| | - Md Shafiquzzaman
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Husnain Haider
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Mohammad Alresheedi
- Department of Civil Engineering, College of Engineering, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
41
|
Herrera C, Moraga R, Bustamante B, Vilo C, Aguayo P, Valenzuela C, Smith CT, Yáñez J, Guzmán-Fierro V, Roeckel M, Campos VL. Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile. Microorganisms 2021; 9:microorganisms9030483. [PMID: 33668956 PMCID: PMC7996500 DOI: 10.3390/microorganisms9030483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.
Collapse
Affiliation(s)
- Constanza Herrera
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Ruben Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
- Correspondence: (R.M.); (V.L.C.)
| | - Brian Bustamante
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Claudia Vilo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Paulina Aguayo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N°1160, Concepcion 4090940, Chile
| | - Cristian Valenzuela
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Carlos T. Smith
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Jorge Yáñez
- Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile;
| | - Victor Guzmán-Fierro
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Marlene Roeckel
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Correspondence: (R.M.); (V.L.C.)
| |
Collapse
|
42
|
Liu L, Qiao Q, Tan W, Sun X, Liu C, Dang Z, Qiu G. Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123912. [PMID: 33264965 DOI: 10.1016/j.jhazmat.2020.123912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Iron-manganese binary oxides are characterized by high oxidation and adsorption capability and widely applied to arsenic (As) detoxification in contaminated waters. Despite of their lower preparation cost relative to synthesized iron-manganese binary oxides, the low adsorption capacity of natural iron-manganese oxides largely hinders their application. Here, electrochemically controlled redox was employed to improve the As(III,V) removal performance of iron-manganese nodules in a symmetric electrode system, and the removal mechanism and electrode reusability were also examined. Experimental results showed that both the electrochemical reduction and oxidation of birnessite in iron-manganese nodules contributed much to As(III,V) removal. Higher cell voltage facilitated a higher removal efficiency of total As within 0-1.2 V, which reached 94.7% at 1.2 V for actual As-containing wastewater (4068 μg L-1). The efficiency was obviously higher than that at open circuit (81.4%). Under electrode polarity reversal, the alternating reduction dissolution and oxidation recrystallization of birnessite in iron-manganese nodules promoted their contact with As, enhancing the total As removal efficiency from 75.6% to 91.8% after five times of repeated adsorption. This research clarifies the effect of electrochemical redox on As(III,V) detoxification by iron-manganese oxides, and expands the application of natural iron-manganese nodules in the treatment of As-contaminated wastewaters.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qi Qiao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
43
|
Wu F, Zhao C, Qu G, Yan Z, Zeng Y, Chen B, Hu Y, Ji W, Li Y, Tang H. Adsorption of arsenic from aqueous solution using a zero-valent iron material modified by the ionic liquid [Hmim]SbF 6. RSC Adv 2021; 11:6577-6585. [PMID: 35423198 PMCID: PMC8694885 DOI: 10.1039/d0ra09339d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
The environmental and health impacts caused by arsenic (As) in wastewater make it necessary to carefully manage As wastes. In the present work, a composite of the ionic liquid [Hmim]SbF6 and nano-iron (H/Fe) was used as an adsorbent to remove As(v) from aqueous solution. To better understand the removal effect of H/Fe on As(v) in aqueous solution, the reaction parameters of pH, reaction temperature, time and H/Fe dosage were systematically analyzed in detail. The results show that H/Fe has significant removal efficiency toward As(v), and that the adsorption of As(v) by 0.5 g H/Fe reaches its maximum adsorption capacity within 2 h. The adsorption of As(v) on H/Fe is a non-linear, time-varying process. The initial adsorption reaction is fast; however, unlike at the beginning, the later reaction involves sustained slow absorption, resulting in a distinct two-phase adsorption characteristic. Redox reaction may be one of the mechanisms responsible for the slow adsorption of As(v) on H/Fe. At the same time, the As(v) removal effect of H/Fe is greatly restricted by the pH. Electrostatic adsorption, adsorption co-precipitation and redox reactions act together on H/Fe in the As(v) removal process. This study provides a basis for further clarifying the adsorption, adsorption rules and mechanism of As(v) on H/Fe and a feasible method for the improvement of As(v) removal efficiency of zero-valent iron materials.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Zhoupeng Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingda Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Wei Ji
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Yingli Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| | - Huimin Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 Yunnan People's Republic of China .,National Regional Engineering Research Center-NCW Kunming 650500 Yunnan People's Republic of China
| |
Collapse
|
44
|
Fang Z, Li Z, Zhang X, Pan S, Wu M, Pan B. Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite. WATER RESEARCH 2021; 189:116673. [PMID: 33276212 DOI: 10.1016/j.watres.2020.116673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The efficient removal of arsenite [As(III)] from groundwater remains a great challenge. Nanoscale oxides of Fe(III), Zr(IV), and Al(III) can selectively remove arsenic from groundwater through inner-sphere complexation. However, owing to polysilicate coatings formation on nanoparticles surface, the ubiquitous silicate exerts remarkably adverse effects on As(III) removal. Herein, we propose a new strategy to enhance silicate resistance of nanoscale oxides by embedding them inside the redox polymer host. As a proof-of-concept, the nanocomposite HFO@PS-Cl was employed to remove As(III) from silicate-containing water. The polymer host (PS-Cl) contains active chlorine to oxidize As(III) into arsenate [As(V)], and the embedded Fe(III) oxides enabling specific adsorption toward arsenic. Silicate exerts negligible effects on As(III) removal by HFO@PS-Cl in pH 3-7, but increasing the residual arsenic concentration from 49 µg/L to 166 µg/L for the solutions treated by HFO@PS-N, i.e., the nanoscale Fe(III) oxides embedded inside the polymer host without active chlorine. During the six cyclic decontamination-regeneration assays, HFO@PS-Cl steadily reduces As(III) below 10 µg/L. As for HFO@PS-N, however, the residual arsenic increases to ~57 µg/L in the sixth run. In column mode, HFO@PS-Cl column generates >3200-bed volume (BV) clean water ([As]<10 µg/L) from the simulated As(III)-contaminated groundwater. In contrast, the values for As(V)-contaminated water and HFO@PS-N column are only ~650 BV and ~608 BV, respectively. The stoichiometric assays, XPS, and in-situ ATR-FTIR analysis demonstrate that silicate polymerization is intensively suppressed by the protons produced during As(III) oxidation, thus rendering HFO@PS-Cl with excellent silicate resistant properties.
Collapse
Affiliation(s)
- Zhuoyao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhixian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| | - Siyuan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mengfei Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Barraqué F, Montes ML, Fernández MA, Candal R, Torres Sánchez RM, Marco-Brown JL. Arsenate removal from aqueous solution by montmorillonite and organo-montmorillonite magnetic materials. ENVIRONMENTAL RESEARCH 2021; 192:110247. [PMID: 32980304 DOI: 10.1016/j.envres.2020.110247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Magnetic-clay (MtMag) and magnetic-organoclay (O100MtMag) nanocomposites were synthesized, characterized and evaluated for arsenic adsorption. Batch arsenic adsorption experiments were performed varying pH conditions and initial As(V) concentration, while successive adsorption cycles were made in order to evaluate the materials reuse. The highest As(V) removal efficiency (9 ± 1 mg g-1 and 7.8 ± 0.8 mg g-1 for MtMag and O100MtMag, respectively) was found at pH 4.0, decreasing at neutral and alkaline conditions. From As(V) adsorption isotherm, two adsorption processes or two different surface sites were distinguished. Nanocomposites resulted composed by montmorillonite or organo-montmorillonite and magnetite as the principal iron oxide, with saturation magnetization of 8.5 ± 0.5 Am2 Kg-1 (MtMag) and 20.3 ± 0.5 Am2 Kg-1 (O100MtMag). Thus, both materials could be separated and recovered from aqueous solutions using external magnetic fields. Both materials allowed achieving arsenic concentrations lower than the World Health Organization (WHO) recommended concentration limit after two consecutive adsorption cycles (2.25 and 4.5 μg L-1 for MtMag and O100MtMag, respectively).
Collapse
Affiliation(s)
- Facundo Barraqué
- CETMIC, CICPBA, CONICET CCT-La Plata, Camino Centenario y 506, B1897ZCA, M. B. Gonnet, Argentina
| | - María L Montes
- IFLP, Instituto de Física La Plata, CONICET CCT-La Plata, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela A Fernández
- CETMIC, CICPBA, CONICET CCT-La Plata, Camino Centenario y 506, B1897ZCA, M. B. Gonnet, Argentina
| | - Roberto Candal
- Instituto de Investigación e Ingeniería Ambiental IIIA, Universidad Nacional de San Martín, CONICET, UNSAM, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Rosa M Torres Sánchez
- CETMIC, CICPBA, CONICET CCT-La Plata, Camino Centenario y 506, B1897ZCA, M. B. Gonnet, Argentina
| | - Jose L Marco-Brown
- Instituto de Investigación e Ingeniería Ambiental IIIA, Universidad Nacional de San Martín, CONICET, UNSAM, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Weerasundara L, Ok YS, Bundschuh J. Selective removal of arsenic in water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115668. [PMID: 33017746 DOI: 10.1016/j.envpol.2020.115668] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 05/28/2023]
Abstract
Selective removal of arsenic (As) is the key challenge for any of As removal mechanisms as this not only increases the efficiency of removal of the main As species (neutral As(III) and As(V) hydroxyl-anions) but also allows for a significant reduction of waste as it does not co-remove other solutes. Selective removal has a number of benefits: it increases the capacity and lifetime of units while lowering the cost of the process. Therefore, a sustainable selective mitigation method should be considered concerning the economic resources available, the ability of infrastructure to sustain water treatment, and the options for reuse and/or safe disposal of treatment residuals. Several methods of selective As removal have been developed, such as precipitation, adsorption and modified iron and ligand exchange. The biggest challenge in selective removal of As is the presence of phosphate in water which is chemically comparable with As(V). There are two types of mechanisms involved with As removal: Coulombic or ion exchange; and Lewis acid-base interaction. Solution pH is one of the major controlling factors limiting removal efficiency since most of the above-mentioned methods depend on complexation through electrostatic effects. The different features of two different As species make the selective removal process more difficult, especially under natural conditions. Most of the selective As removal methods involve hydrated Fe(III) oxides through Lewis acid-base interaction. Microbiological methods have been studied recently for selective removal of As, and although there have been only a small number of studies, the method shows remarkable results and indicates positive prospects for the future.
Collapse
Affiliation(s)
- Lakshika Weerasundara
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| | - Yong-Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
47
|
Song X, Wang Y, Zhou L, Luo X, Liu J. Halloysite nanotubes stabilized polyurethane foam carbon coupled with iron oxide for high-efficient and fast treatment of arsenic(III/V) wastewater. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
|
49
|
Ying C, Lanson B, Wang C, Wang X, Yin H, Yan Y, Tan W, Liu F, Feng X. Highly enhanced oxidation of arsenite at the surface of birnessite in the presence of pyrophosphate and the underlying reaction mechanisms. WATER RESEARCH 2020; 187:116420. [PMID: 32977187 DOI: 10.1016/j.watres.2020.116420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Manganese(IV) oxides, and more especially birnessite, rank among the most efficient metal oxides for As(III) oxidation and subsequent sorption, and thus for arsenic immobilization. Efficiency is limited however by the precipitation of low valence Mn (hydr)oxides at the birnessite surface that leads to its passivation. The present work investigates experimentally the influence of chelating agents on this oxidative process. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite was investigated using batch experiments and different arsenic concentrations at circum-neutral pH. In the absence of PP, Mn(II/III) species are continuously generated during As(III) oxidation and adsorbed to the mineral surface. Field emission-scanning electron microscopy, synchrotron-based X-ray diffraction and Fourier transform infrared spectroscopy indicate that manganite is formed, passivating birnessite surface and thus hampering the oxidative process. In the presence of PP, generated Mn(II/III) species form soluble complexes, thus inhibiting surface passivation and promoting As(III) conversion to As(V) with PP. Enhancement of As(III) oxidation by Mn oxides strongly depends on the affinity of the chelating agent for Mn(III) and from the induced stability of Mn(III) complexes. Compared to PP, the positive influence of oxalate, for example, on the oxidative process is more limited. The present study thus provides new insights into the possible optimization of arsenic removal from water using Mn oxides, and on the possible environmental control of arsenic contamination by these ubiquitous nontoxic mineral species.
Collapse
Affiliation(s)
- Chaoyun Ying
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bruno Lanson
- University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France
| | - Cheng Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Cañas Kurz EE, Luong VT, Hellriegel U, Leidinger F, Luu TL, Bundschuh J, Hoinkis J. Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam. WATER RESEARCH 2020; 181:115929. [PMID: 32505884 DOI: 10.1016/j.watres.2020.115929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The principle of subsurface arsenic removal (SAR) from groundwater is based on oxidation and adsorption reactions by infiltrating oxygen into the anoxic aquifer and the immobilization of arsenic (As) onto freshly formed iron (Fe)-(hydr)oxides. In this study, a pilot-scale plant for SAR has been subject to long term testing in the Mekong Delta, Vietnam. Initial concentrations of Fe (8.4 ± 1.3 mg L-1) and As (81 ± 8 μg L-1) in the exploited groundwater were successfully lowered to below the WHO guideline value limits for drinking water of 0.3 mg L-1 and 10 μg L-1, respectively. Adsorption and co-precipitation of As with Fe-(hydr)oxides could be identified as the principal mechanism responsible for the As removal from groundwater, demonstrating the feasibility of SAR as a low-cost and zero-waste solution over a period of two years. However, naturally occurring geochemical reducing conditions and high ammonium levels in the groundwater delayed the removal of manganese (Mn). An additional post-treatment filtration for Mn-removal was temporarily used to comply with the Vietnamese drinking water standard until a Mn-mitigation was achieved by the SAR process. In contrast to most As-remediation technologies, SAR appears to be a long-term, sustainable treatment option with the salient advantage of negligible production of toxic waste, which with ex-situ processes require additionally management costs.
Collapse
Affiliation(s)
- Edgardo E Cañas Kurz
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133, Karlsruhe, Germany; Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di Rende, CS, Italy; Institute on Membrane Technology, National Research Council (ITM-CNR), Via Pietro Bucci 17/C, 87036, Arcavacata di Rende, CS, Italy
| | - Vu T Luong
- Department of Mechatronics and Sensor Systems Technology, Vietnamese-German University, Le Lai Street, 822096, Binh Duong Province, Viet Nam; Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland
| | - Ulrich Hellriegel
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133, Karlsruhe, Germany; Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036, Arcavacata di Rende, CS, Italy; Institute on Membrane Technology, National Research Council (ITM-CNR), Via Pietro Bucci 17/C, 87036, Arcavacata di Rende, CS, Italy
| | - Felix Leidinger
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133, Karlsruhe, Germany
| | - Tran L Luu
- Department of Mechatronics and Sensor Systems Technology, Vietnamese-German University, Le Lai Street, 822096, Binh Duong Province, Viet Nam
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jan Hoinkis
- Center of Applied Research, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133, Karlsruhe, Germany; School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| |
Collapse
|