1
|
Kang Y, Lian J, Zhu Y, Liu Z, Li W, Dong H, Wang Y, Zeng J, Qiang Z. Interactions between H 2O 2 and dissolved organic matter during granular activated carbon-based residual H 2O 2 quenching from the upstream UV/H 2O 2 process. J Environ Sci (China) 2023; 128:139-149. [PMID: 36801030 DOI: 10.1016/j.jes.2022.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/18/2023]
Abstract
Granular activated carbon (GAC) filtration can be employed to synchronously quench residual H2O2 from the upstream UV/H2O2 process and further degrade dissolved organic matter (DOM). In this study, rapid small-scale column tests (RSSCTs) were performed to clarify the mechanisms underlying the interactions between H2O2 and DOM during the GAC-based H2O2 quenching process. It was observed that GAC can catalytically decompose H2O2, with a long-lasting high efficiency (>80% for approximately 50,000 empty-bed volumes). DOM inhibited GAC-based H2O2 quenching via a pore-blocking effect, especially at high concentrations (10 mg/L), with the adsorbed DOM molecules being oxidized by the continuously generated ·OH; this further deteriorated the H2O2 quenching efficiency. In batch experiments, H2O2 could enhance DOM adsorption by GAC; however, in RSSCTs, it deteriorated DOM removal. This observation could be attributed to the different ·OH exposure in these two systems. It was also observed that aging with H2O2 and DOM altered the morphology, specific surface area, pore volume, and the surface functional groups of GAC, owing to the oxidation effect of H2O2 and ·OH on the GAC surface as well as the effect of DOM. Additionally, the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes. This work contributes to enhancing understanding regarding the UV/H2O2-GAC filtration scheme, and promoting the application in drinking water treatment.
Collapse
Affiliation(s)
- Yaoyao Kang
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Junfeng Lian
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Yichun Zhu
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zuwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; Ganzhou Key Laboratory of Basin Pollution Simulation and Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyue Wang
- CECEP Environmental Protection Investment Development (Jiangxi) Co. Ltd., Nanchang 330006, China
| | - Jinfeng Zeng
- Hydrology and Water Resources Monitoring Center for Ganjiang Upstream Watershed, Ganzhou 341000, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Loganathan P, Vigneswaran S, Kandasamy J, Cuprys AK, Maletskyi Z, Ratnaweera H. Treatment Trends and Combined Methods in Removing Pharmaceuticals and Personal Care Products from Wastewater-A Review. MEMBRANES 2023; 13:158. [PMID: 36837661 PMCID: PMC9960457 DOI: 10.3390/membranes13020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms' exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies. This report critically reviews these methods and suggests improvements to removal strategies. Biological, physical, and chemical methods such as biological degradation, adsorption, membrane filtration, and advanced electrical and chemical oxidation are the common methods used. However, these processes were not integrated into most studies to take advantage of the different mechanisms specific to each process and are synergistic in the removal of the PPCPs that differ in their physical and chemical characteristics (charge, molecular weight, hydrophobicity, hydrogen bonding, structure). In the review articles published to date, very little information is available on the use of such integrated methods for removing PPCPs. This report attempts to fill this gap with our knowledge.
Collapse
Affiliation(s)
- Paripurnanda Loganathan
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007, Australia
| | - Agnieszka Katarzyna Cuprys
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Zakhar Maletskyi
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
3
|
Lima JP, Costa A, Rosso S, Lopes TJ, Quadri M, Quadri M. Scale-up and mass transfer of the adsorption/desorption process of anthocyanins in amorphous silica. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Bevilacqua RC, Preigschadt IA, Netto MS, Georgin J, Franco DSP, Mallmann ES, Silva LFO, Pinto D, Foletto EL, Dotto GL. One step acid modification of the residual bark from Campomanesia guazumifolia using H 2SO 4 and application in the removal of 2,4-dichlorophenoxyacetic from aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:995-1006. [PMID: 34727841 DOI: 10.1080/03601234.2021.1997283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The residual bark of the tree species Campomanesia guazumifolia was successfully modified with H2SO4 and applied to remove the toxic herbicide 2.4-dichlorophenoxyacetic (2.4-D) from aqueous solutions. The characterization techniques made it possible to observe that the material maintained its amorphous structure; however, a new FTIR band emerged, indicating the interaction of the lignocellulosic matrix with sulfuric acid. Micrographs showed that the material maintained its irregular shape; however, new spaces and cavities appeared after the acidic modification. Regardless of the herbicide concentration, the system tended to equilibrium after 120 min. Using the best statistical coefficients, the Elovich model was the one that best fitted the kinetic data. The temperature increase in the system negatively influenced the adsorption of 2.4-D, reaching a maximum capacity of 312.81 mg g-1 at 298 K. The equilibrium curves showed a better fit to the Tóth model. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -59.86 kJ mol-1). As a residue obtained from urban pruning, the bark of Campomanesia guazumifolia treated with sulfuric acid is a promising and highly efficient alternative for removing the widely used and toxic 2.4-D herbicide from aqueous solutions.
Collapse
Affiliation(s)
- Raíssa C Bevilacqua
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Isadora A Preigschadt
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Evandro S Mallmann
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de La Costa, Barranquilla, Colombia
- Universidad de Lima, Lima, Peru
| | - Diana Pinto
- Department of Civil and Environmental Engineering, Universidad de La Costa, Barranquilla, Colombia
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
5
|
Dlamini ML, Bhaumik M, Pillay K, Maity A. Polyaniline nanofibers, a nanostructured conducting polymer for the remediation of Methyl orange dye from aqueous solutions in fixed-bed column studies. Heliyon 2021; 7:e08180. [PMID: 34765762 PMCID: PMC8570955 DOI: 10.1016/j.heliyon.2021.e08180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
Polyaniline nanofibers (PANI NFs) were synthesized and employed as potential adsorbents in a continuous flow fixed-bed column adsorption study for an organic dye, Methyl Orange (MO) removal from water. These nanostructured adsorbents were characterized using ATR-FTIR, FE-SEM, HR-TEM, TGA, BET, XRD, XPS, and the Zeta-sizer. Morphological representations from SEM and TEM analyses showed that the fibers were nanosized with diameters lower than 80 nm and an interconnected network possessing a smooth surface. The SBET of the PANI NFs was found to be 35.80 m2/g. The impact of column design parameters for instance; influent concentration, flow rate, and bed mass was investigated using pH 4 influent MO solutions optimized through batch studies. The best influent concentration, bed length, and flow rate for this study were determined as 25 mg/L, 9 cm (6 g), and 3 mL/min, respectively. The column information was fitted in Thomas, Yoon-Nelson, and Bohart-Adams models. It appeared that the Thomas and Yoon-Nelson models described the data satisfactorily. The PANI NFs were able to treat 29.16 L of 25 mg/L MO solution at 9 cm bed length. A sulfate peak in a de-convoluted sulfur spectrum using XPS verified the successful adsorption of Methyl Orange.
Collapse
Affiliation(s)
- Mbongiseni Lungelo Dlamini
- Department of Applied Chemistry, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Madhumita Bhaumik
- Department of Physics, University of South Africa, Johannesburg, 1710, South Africa
| | - Kriveshini Pillay
- Department of Applied Chemistry, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Arjun Maity
- Department of Applied Chemistry, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, 1-Meiring Naude Road, Pretoria, 0001, South Africa
| |
Collapse
|
6
|
Removal and Release of the 2,4,5-Trichlorophenoxyacetic Acid Herbicide from Wastewater by Layered Double Hydroxides. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Jamil S, Loganathan P, Kandasamy J, Listowski A, McDonald JA, Khan SJ, Vigneswaran S. Removal of organic matter from wastewater reverse osmosis concentrate using granular activated carbon and anion exchange resin adsorbent columns in sequence. CHEMOSPHERE 2020; 261:127549. [PMID: 32707322 DOI: 10.1016/j.chemosphere.2020.127549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Reverse osmosis concentrate (ROC) generated as a waste stream during reverse osmosis treatment of reclaimed wastewater, presents significant disposal challenges. This is because it causes environmental pollution when it is disposed to lands and natural water bodies. A long-term dynamic adsorption experiment was conducted by passing ROC from a wastewater reclamation plant, firstly through a granular activated carbon (GAC) column, and subsequently through an anion exchange resin (Purolite) column, for the removal of two major ROC pollutants, namely dissolved organic carbon (DOC) and microorganic pollutants (MOP). GAC removed most of the smaller-sized low molecular weight neutrals and building block fractions as well as the hydrophobic fraction of DOC with much less removal by the subsequent Purolite column. In contrast, the humics fraction was less well removed by the GAC column; however, Purolite column removed all that was remaining of this fraction. This study demonstrated that combining adsorbents having different affinities towards a variety of DOC fractions constitute an effective method of taking advantage of their different properties and achieving larger DOC removals. Almost 100% of all 17 MOPs were removed by the GAC column, even after 2880 bed volumes of continuous use. This contrasted with the DOC fractions' removal which was much lower.
Collapse
Affiliation(s)
- Shahzad Jamil
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia
| | - Paripurnanda Loganathan
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia
| | - Jaya Kandasamy
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia
| | - Andrzej Listowski
- Sydney Olympic Park Authority, 8, Australia Avenue, Sydney Olympic Park, NSW, Australia
| | - James A McDonald
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW, 2052, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW, 2052, Australia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW, 2127, Australia.
| |
Collapse
|
8
|
Metformin Removal from Water Using Fixed-bed Column of Silica-Alumina Composite. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lian Q, Yao L, Uddin Ahmad Z, Gang DD, Konggidinata MI, Gallo AA, Zappi ME. Enhanced Pb(II) adsorption onto functionalized ordered mesoporous carbon (OMC) from aqueous solutions: the important role of surface property and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23616-23630. [PMID: 32291646 DOI: 10.1007/s11356-020-08487-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Functionalized ordered mesoporous carbon (MOMC-NP) was synthesized by chemical modification using HNO3 and H3PO4 to enhance Pb(II) adsorption. The phosphate functional group represented by P-O-C bonding onto the surface of OMC was verified by FT-IR and XPS. Batch adsorption experiments revealed the improvement of adsorption capacity by 39 times over the virgin OMC. Moreover, the Pb(II) adsorption results provided excellent fits to Langmuir model and pseudo-second-order kinetic model. The adsorption mechanism of Pb(II) onto MOMC-NP revealed the formation of metal complexes with carboxyl, hydroxyl, and phosphate groups through ion exchange reactions and hydrogen bondings. The calculated activation energy was 22.09 kJ/mol, suggesting that Pb(II) adsorption was a chemisorption. At pH>pHpzc, the main Pb(II) existing species of Pb(II) and Pb(OH)+ combine with the carboxyl, hydroxyl, and phosphate functional groups via electrostatic interactions and hydrogen bonding. All these findings demonstrated that MOMC-NP could be a useful and potential adsorbent for adsorptive removal of Pb(II). Graphical abstract.
Collapse
Affiliation(s)
- Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, People's Republic of China
| | - Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA
- Wastewater Infrastructure Planning, Houston Water, Houston Public Works, 611 Walker Street (18th Floor), Houston, TX, 77002, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA.
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mas Iwan Konggidinata
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - August A Gallo
- Department of Chemistry, University of Louisiana at Lafayette, P. O. Box 43700, Lafayette, LA, 70504, USA
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA
- Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| |
Collapse
|
10
|
Piai L, Blokland M, van der Wal A, Langenhoff A. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122028. [PMID: 31955023 DOI: 10.1016/j.jhazmat.2020.122028] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
The presence of micropollutants in surface water is a potential threat for the production of high quality and safe drinking water. Adsorption of micropollutants onto granular activated carbon (GAC) in fixed-bed filters is often applied as a polishing step in the production of drinking water. Activated carbon can act as a carrier material for biofilm, hence biodegradation can be an additional removal mechanism for micropollutants in GAC filters. To assess the potential of biofilm to biodegrade micropollutants, it is necessary to distinguish adsorption from biodegradation as a removal mechanism. We performed experiments at 5 °C and 20 °C with biologically active and autoclaved GAC to assess the biodegradation of micropollutants by the biofilm grown on the GAC surface. Ten micropollutants were selected as model compounds. Three of them, iopromide, iopamidol and metformin, were biodegraded by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption, depending on the micropollutant studied. Finally, we compared the adsorption capacity of GAC used for more than 100,000 bed volumes and fresh GAC. We demonstrated that used GAC shows a higher adsorption capacity for guanylurea, metformin and hexamethylenetetramine and only a limited reduction in adsorption capacity for diclofenac and benzotriazole compared to fresh GAC.
Collapse
Affiliation(s)
- Laura Piai
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research - Wageningen University & Research, P.O. Box 230, 6708 WB, Wageningen, the Netherlands
| | - Albert van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Evides Water Company, PO Box 4472, 3006 AL, Rotterdam, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
11
|
Yao C, Zhu C. A new method of characterizing mass transfer controlling mechanism in pollutant adsorption from aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Hernández-Abreu AB, Álvarez-Torrellas S, Águeda VI, Larriba M, Delgado JA, Calvo PA, García J. New insights from modelling and estimation of mass transfer parameters in fixed-bed adsorption of Bisphenol A onto carbon materials. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 228:103566. [PMID: 31740007 DOI: 10.1016/j.jconhyd.2019.103566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The removal of Bisphenol A, 2,2-bis (4-hydroxyphenyl) propane (BPA) in fixed-bed columns was investigated by breakthrough adsorption tests at different operation conditions and further prediction by a mathematical model to describe the adsorption-diffusion process onto two synthesized carbon porous materials. In this study, a xerogel (RFX) prepared by an optimized conventional sol-gel method and a lignin-based activated carbon (KLP) obtained via chemical activation were used in batch and fixed-bed adsorption experiments. The materials were fully characterized and their adsorptive properties were compared to those obtained with a commercial activated carbon (F400). RFX and KLP materials reached the equilibrium adsorption in only 24 h, whereas F400 activated carbon required 48 h. In addition, F400 and KLP adsorbents showed higher equilibrium adsorption capacity values (qe = 0.40 and 0.22 kg/kg, for F400 and KLP, respectively) than that obtained for the xerogel (qe = 0.08 kg/kg). Both synthesized carbon-adsorbents were studied in fixed-bed adsorption tests, exploring the effect of the operation conditions, e.g., initial BPA concentration (0.005-0.04 kg/m3), weight of adsorbent (0.01-0.05 g) and volumetric flow rate (0.2 to 1.0 mL/min), on the adsorption performance of the column. All the tested adsorption columns reached the equilibrium in a very short time, due to the efficient dimensionless of the bed. Additionally, the regeneration of the exhausted adsorbent was studied, achieving the total reuse of the solids after three consecutive cycles using methanol as regeneration agent. Finally, a mathematical model based on mass conservation equations was proposed, allowing to efficiently fit the experimental BPA breakthrough curves and estimate the external and adsorbed-phase mass transfer coefficients with a high accuracy.
Collapse
Affiliation(s)
- A B Hernández-Abreu
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - S Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| | - V I Águeda
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| | - M Larriba
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - J A Delgado
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain
| | - P A Calvo
- I+D+i Biocombustibles, ENCE, Energía y Celulosa, C/ Lourizán s/n, Pontevedra 36153, Spain
| | - J García
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Chemistry Sciences Faculty, Complutense University, Avda. Complutense s/n, Madrid 28040, Spain.
| |
Collapse
|
13
|
Calisto JS, Pacheco IS, Freitas LL, Santana LK, Fagundes WS, Amaral FA, Canobre SC. Adsorption kinetic and thermodynamic studies of the 2, 4 - dichlorophenoxyacetate (2,4-D) by the [Co-Al-Cl] layered double hydroxide. Heliyon 2019; 5:e02553. [PMID: 31872095 PMCID: PMC6911883 DOI: 10.1016/j.heliyon.2019.e02553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/12/2019] [Accepted: 09/27/2019] [Indexed: 11/27/2022] Open
Abstract
[Co-Al-Cl] layered double hydroxide (LDH) obtained by co-precipitation at constant pH 8 presented a single phase in a hexagonal unit cell parameters similar to the hydrotalcite (JCPDS 14-191) belonging to the rhombohedral crystal system and space group R (-3)m . The adsorption kinetics of 2,4-D onto [Co-Al-Cl] LDH was better described by the Pseudo Second-Order (best adjust R2 = 0.9998 for 60 mg L-1 2,4-D adsorption). Intra-particle diffusion model was not the sole rate-controlling factor, indicating the adsorption of 2,4-D by the [Co-Al-Cl] LDH is a complex process for the experimental conditions performed, involving both boundary layer and intra-particle diffusion. The adsorption isotherm adjusted better to the Freundlich model (R2 = 0.9845) and the ΔH° value of - 51.18 kJ mol-1 indicated the predominance of the physical adsorption. The FT-IR spectrum of LDH after adsorption presented 2,4-D bands together with those of LDH and XRD showed an increase in the interlamellar distance (d 003) due to the intercalation of 2,4-D in the interlayer structure of the [Co-Al-Cl] LDH, corroborating inter and intra-particle adsorption data. Thus, [Co-Al-Cl] LDH, commonly used as electrodes in supercapacitors, can be effectively used as an adsorbent for the removal of 2,4-D from contaminated waters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheila C. Canobre
- LAETE - Laboratório de Armazenamento de Energia e Tratamento de Efluentes, Institute of Chemistry, UFU- Uberlândia Federal University, João Naves de Ávila Avenue, 2121, 38400-902, Uberlândia- Minas Gerais, Brazil
| |
Collapse
|
14
|
Gupta KN. Modelling, simulation, and experimental validation for toluene removal from gas phase in a fixed bed adsorption column. Chem Ind 2019. [DOI: 10.1080/00194506.2019.1650668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kaushal Naresh Gupta
- Department of Chemical Engineering, Jaypee University of Engineering & Technology, Guna, India
| |
Collapse
|