1
|
Yin WX, Lv JQ, Liu S, Chen JJ, Wei J, Ding C, Yuan Y, Bao HX, Wang HC, Wang AJ. Microbial-Guided prediction of methane and sulfide production in Sewers: Integrating mechanistic models with Machine learning. BIORESOURCE TECHNOLOGY 2024; 415:131640. [PMID: 39414164 DOI: 10.1016/j.biortech.2024.131640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Accurate modeling of methane (CH4) and sulfide (H2S) production in sewer systems was constrained by insufficient consideration of microbial processes under dynamic environmental conditions. This study introduces a microbial-guided machine learning (ML) framework (Micro-ML), which integrates microbial process representations from mechanistic models (microbial information) with ML models. Results indicate that Micro-ML model enhanced predictions of CH4 and H2S production, where microbial information provides more information for model optimization. The feature importance of microbial information performed comparable weightings for 58.12 % and 55.16 %, respectively, but their relative significance in influencing Micro-ML model performance varies considerably. The application of Micro-ML performed great potential in reducing CH4 and H2S production (decreased ∼ 80 % and 90 %). The integrated model not only improves the accuracy of CH4 and H2S predictions but also offers a valuable tool for effective management strategies for sewer systems.
Collapse
Affiliation(s)
- Wan-Xin Yin
- College of the Environment, Liaoning University, Shenyang 110036, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jia-Qiang Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Shuai Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Jia-Ji Chen
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jun Wei
- PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, PR China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang 110036, PR China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| |
Collapse
|
2
|
Xie J, Lin R, Min B, Zhu J, Wang W, Liu M, Xie L. Deciphering Fe@C amendment on long-term anaerobic digestion of sulfate and propionate rich wastewater: Driving microbial community succession and propionate metabolism. BIORESOURCE TECHNOLOGY 2024; 406:130968. [PMID: 38876277 DOI: 10.1016/j.biortech.2024.130968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO42- ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - RuJing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bolin Min
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenbiao Wang
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Guo ZC, Cui MH, Yang CX, Dai HL, Yang TY, Zhai LZ, Chen Y, Liu WZ, Wang AJ. Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100410. [PMID: 38572083 PMCID: PMC10987894 DOI: 10.1016/j.ese.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.
Collapse
Affiliation(s)
- Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Hong-Liang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tong-Yi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lin-Zhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Du M, Liu J, Bi L, Wang F, Ma C, Song M, Jiang G. Effects of oilfield-produced water discharge on the spatial patterns of microbial communities in arid soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170333. [PMID: 38278269 DOI: 10.1016/j.scitotenv.2024.170333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Recently intensified oil exploitation has resulted in the discharge of large amounts of wastewater containing high concentrations of organic matter and nutrients into the receiving aquatic and soil environments; however, the effects of oilfield-produced water on the soil microbiota are poorly understood. In this study, we conducted a comprehensive analysis to reveal the composition and diversity of the microbial community at horizontal and vertical scales in a typical arid soil receiving oilfield-produced water in Northwest China. Oilfield-produced water caused an increase in microbial diversity at the horizontal scale, and the communities in the topsoil were more variable than those in the subsoil. Additionally, the microbial taxonomic composition differed significantly between the near- and far-producing water soils, with Proteobacteria and Halobacterota dominating the water-affected and reference soil communities, respectively. Soil property analysis revealed that pH, salt, and total organic content influenced the bacterial communities. Furthermore, the oil-produced water promoted the complexity and modularity of distance-associated microbial networks, indicating positive interactions for soil ecosystem function, but not for irrigation or livestock watering. This is the first detailed examination of the microbial communities in soil receiving oilfield-produced water, providing new insights for understanding the microbial spatial distributions in receiving arid soils.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Welz PJ, De Jonge N, Lilly M, Kaira W, Mpofu AB. Integrated biological system for remediation and valorization of tannery wastewater: Focus on microbial communities responsible for methanogenesis and sulfidogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130411. [PMID: 38309670 DOI: 10.1016/j.biortech.2024.130411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities in hybrid linear flow channel reactors and anaerobic sequencing batch reactors operated in series for remediation and beneficiation of tannery wastewater were assessed. Despite concurrent sulfidogenesis, more intensive pre-treatment in hybrid linear flow channel reactors reduced methanogenic inhibition usually associated with anaerobic digestion of tannery effluent and promoted efficiency (max 321 mLCH4/gCODconsumed, 59% biogas CH4). Nitrification and biological sulfate reduction were key metabolic pathways involved in overall and sulfate reducing bacterial community selection, respectively, during pre-treatment. Taxonomic selection could be explained by the proteinaceous and saline character of tannery effluent, with dominant genera being protein and/or amino acid degrading, halotolerant and/or ammonia tolerant. Complete oxidizers dominated the sulfidogenic populations during pre-treatment, while aceticlastic genera dominated the methanogenic populations during anaerobic digestion. With more intensive pre-treatment, the system shows promise for remediation and recovery of biogas and sulfur from tannery wastewater in support of a bio-circular economy.
Collapse
Affiliation(s)
- P J Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - N De Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers vej 7H, Aalborg DK-9220, Denmark.
| | - M Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| | - W Kaira
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa
| | - A B Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Symphony way, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
6
|
Gao S, Chen Z, Zhu S, Yu J, Wen X. Enhancement of medium-chain fatty acids production from sludge anaerobic fermentation liquid under moderate sulfate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120459. [PMID: 38402788 DOI: 10.1016/j.jenvman.2024.120459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.
Collapse
Affiliation(s)
- Shan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shihui Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinlan Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Zhao Q, Wu QL, Wang HZ, Si QS, Sun LS, Li DN, Ren NQ, Guo WQ. Attenuation effects of ZVI/PDS pretreatment on propagation of antibiotic resistance genes in bioreactors: Driven by antibiotic residues and sulfate assimilation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132054. [PMID: 37473569 DOI: 10.1016/j.jhazmat.2023.132054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi-Shi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu-Shi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - De-Nian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161193. [PMID: 36581268 DOI: 10.1016/j.scitotenv.2022.161193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is an economical and environment-friendly technology for treating organic solid wastes (OSWs). OSWs with high sulfur can lead to the accumulation of toxic and harmful hydrogen sulfide (H2S) during AD, so a considerable amount of studies have focused on removing H2S emissions. However, current studies have found that sulfide induces phosphate release from the sludge containing iron‑phosphorus compounds (FePs) and the feasibility of recovering elemental sulfur (S0) during AD. To tap the full potential of sulfur in OSWs resource recovery, deciphering the sulfur transformation pathway and its influencing factors is required. Therefore, in this review, the sulfur species and distributions in OSWs and the pathway of sulfur transformation during AD were systematically summarized. Then, the relationship between iron (ferric compounds and zero-valent iron), phosphorus (FePs) and sulfur were analyzed. It was found that the reaction of iron with sulfide during AD drove the conversion of sulfide to S0 and iron sulfide compounds (FeSx), and consequently iron was applied in sulfide abatement. In particular, ferric (hydr)oxide granules offer possibilities to improve the economic viability of hydrogen sulfide control by recovering S0. Sulfide is an interesting strategy to release phosphate from the sludge containing FePs for phosphorus recovery. Critical factors affecting sulfur transformation, including the carbon source, free ammonia and pretreatment methods, were summarized and discussed. Carbon source and free ammonia affected sulfur-related microbial diversity and enzyme activity and different sulfur transformation pathways in response to varying pretreatment methods. The study on S0 recovery, organic sulfur conversion, and phosphate release mechanism triggered by sulfur deserves further investigation. This review is expected to enrich our knowledge of the role of sulfur during AD and inspire new ideas for recovering phosphorus and sulfur resources from OSWs.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
9
|
de Menezes CA, de Souza Almeida P, Camargo FP, Delforno TP, de Oliveira VM, Sakamoto IK, Varesche MBA, Silva EL. Two problems in one shot: Vinasse and glycerol co-digestion in a thermophilic high-rate reactor to improve process stability even at high sulfate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160823. [PMID: 36521617 DOI: 10.1016/j.scitotenv.2022.160823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic co-digestion (AcoD) of sugarcane vinasse and glycerol can be profitable because of the destination of two biofuel wastes produced in large quantities in Brazil (ethanol and biodiesel, respectively) and the complementary properties of these substrates. Thus, the objective of this study was to assess the effect of increasing the organic loading rate (OLR) from 2 to 20 kg COD m-3 d-1 on the AcoD of vinasse and glycerol (50 %:50 % on a COD basis) in a thermophilic (55 °C) anaerobic fluidized bed reactor (AFBR). The highest methane production rate was observed at 20 kg COD m-3 d-1 (8.83 L CH4 d-1 L-1), while the methane yield remained stable at around 265 NmL CH4 g-1 CODrem in all conditions, even when influent vinasse reached 1811 mg SO42- L-1 (10 kg COD m-3 d-1). Sulfate was not detected in the effluent. Bacterial genera related to sulfate removal, such as Desulfovibrio and Desulfomicrobium, were observed by means of shotgun metagenomic sequencing at 10 kg COD m-3 d-1, as well as the acetoclastic archaea Methanosaeta and prevalence of genes encoding enzymes related to acetoclastic methanogenesis. It was concluded that process efficiency and methane production occurred even in higher sulfate concentrations due to glycerol addition.
Collapse
Affiliation(s)
- Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Tiago Palladino Delforno
- SENAI Innovation Institute for Biotechnology, Rua Anhaia, 1321, Bom Retiro - São Paulo, 01130-000, São Paulo, SP, Brazil
| | - Valeria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), State University of Campinas, Campinas, SP CEP 13081-970, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Xue J, Yao Y, Li W, Shi K, Ma G, Qiao Y, Cheng D, Jiang Q. Insights into the effects of operating parameters on sulfate reduction performance and microbial pathways in the anaerobic sequencing batch reactor. CHEMOSPHERE 2023; 311:137134. [PMID: 36343737 DOI: 10.1016/j.chemosphere.2022.137134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Sulfate-reducing bacteria (SRB)-based anaerobic process has aroused wide concern in the treatment of sulfate-containing wastewater. Chemical oxygen demand-to-sulfate ratio (COD/SO42-) and HRT are two key factors that affect not only the anaerobic treatment performance but also the activity of SRB. In this study, an anaerobic sequencing batch reactor was constructed, and the effects of different operating parameters (COD/SO42-, HRT) on the relationship of sulfate (SO42-) reduction performance, microbial communities, and metabolic pathways were comprehensively investigated. The results indicated that the SO42- removal rates could achieve above 95% under different operating parameters. Bioinformatics analysis revealed that microbial community changed with reactor operation. At the genus level, the enrichment of Propionicclava and Peptoclostridium contributed to the establishment of a homotrophic relationship with Desulfobulbus, the dominant SRB in the reactor, which indicated that they took vital part in maintaining the structural and functional stability of the bacterial community under different operating parameters. In particular, an increasing trend of the relative abundance of functional genes encoding dissimilatory sulfate reduction was detected with the increase of COD/SO42-, which indicated high SO42- reduction potentials. This knowledge will help to reveal the mechanism of the effect of operating parameters on the anaerobic sulfate removal process, thus providing effective guidance for the targeted regulation of anaerobic sequencing batch bioreactors treating SO42--containing wastewater.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Yuehong Yao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weisi Li
- Shandong Ecological Environment Monitoring Center, Jinan, Shandong, 250102, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Guanbao Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China.
| |
Collapse
|
11
|
Takemura Y, Aoki M, Danshita T, Iguchi A, Ikeda S, Miyaoka Y, Sumino H, Syutsubo K. Effects of sulfate concentration on anaerobic treatment of wastewater containing monoethanolamine using an up-flow anaerobic sludge blanket reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129764. [PMID: 35986941 DOI: 10.1016/j.jhazmat.2022.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Monoethanolamine (MEA), a toxic organic chemical, is widely used in industries and is found in their wastewater. Anaerobic MEA degradation is an appropriate strategy to reduce energy and cost for treatment. Industry wastewaters also contain sulfate, but information on the effects of sulfate on MEA degradation is limited. Here, an up-flow anaerobic sludge blanket (UASB) for MEA-containing wastewater treatment was operated under psychrophilic conditions (18-20 ºC) to investigate the effects of sulfate on the microbial characteristics of the retained sludge. To acclimatize the sludge, the proportion of MEA in the influent (containing sucrose, acetate, and propionate) was increased from 15% to 100% of total COD (1500 mg L-1); sulfate was then added to the influent. The COD removal efficiency remained above 95% despite the increase in MEA and sulfate. However, granular sludge disintegration was observed when sulfate was increased from 20 to 330 mg L-1. Batch tests revealed that propionate and acetate were produced as the metabolites of MEA degradation. In response to sulfate acclimation, methane-producing activities for propionate and hydrogen declined, while sulfate-reducing activities for MEA, propionate, and hydrogen increased. Accordingly, acclimation and changes in dominant microbial groups promoted the acetogenic reaction of propionate by sulfate reduction.
Collapse
Affiliation(s)
- Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tsuyoshi Danshita
- Department of Civil Engineering and Architecture, National Institute for Technology, Tokuyama College, 3538 Gakuendai, Shunan, Yamaguchi 745-8585, Japan
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Akihaku, Niigata 956-8603, Japan
| | - Shoji Ikeda
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinko, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Yuma Miyaoka
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Haruhiko Sumino
- Department of Civil Engineering, National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
12
|
Xie J, Xu J, Zhu J, Zhu C, He R, Wang W, Xie L. Roles of Fe-C amendment on sulfate-containing pharmaceutical wastewater anaerobic treatment: Microbial community and sulfur metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155868. [PMID: 35561916 DOI: 10.1016/j.scitotenv.2022.155868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The effects of multiple two-phase anaerobic treatment involving acidification coupling Fe-C on sulfate-containing chemical synthesis-based pharmaceutical wastewater treatment were investigated. Fe-C was added as a filler with 25% vol. to acidogenic reactors for semi-continuous operation. The results suggested that Fe-C amendment promoted sulfate removal efficiency by 47.5% and shortened the reaction time by 50% in the acidogenic phase. With mitigation of sulfate inhibition, SCOD removal efficiency and methane production were further increased by 24.6% and 398% compared to direct raw wastewater anaerobic digestion, respectively, in methanogenic phase. The results of sulfate removal kinetics confirmed a 150% increase of removal rate in acidogenic phase. However, the apparent kinetic microbial sulfate removal constant without Fe-C amendment was maintained at approximately 0.06 h-1. The Fe-C amendment not only increased the relative abundance of Methanothrix and Desulfovibrio for sulfate reduction but also enriched unclassified_p__Chloroflexi and unclassified_c__Deltaproteobacteria for acidification. Metagenomic results indicated that Fe-C enhanced dissimilatory sulfate reduction and PAPS synthesis of assimilatory step. The hydrogen sulfide production through the 3-mercaptopyruvate to pyruvate pathways was also enhanced. Butyrate-oxidizing genes were increased synchronously to convert butyrate to acetate.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Chenghui Zhu
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Rong He
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Wenbiao Wang
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Zhang H, Zhang X, Chen Z, Liu S, Nai C, Ma Y, Zhang H. Sulfate affects the anaerobic digestion process treating nitrogenous fertilizer wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Feng L, Zhao W, Liu Y, Chen Y, He S, Ding J, Zhao Q, Wei L. Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Alex Kibangou V, Lilly M, Busani Mpofu A, de Jonge N, Oyekola OO, Jean Welz P. Sulfate-reducing and methanogenic microbial community responses during anaerobic digestion of tannery effluent. BIORESOURCE TECHNOLOGY 2022; 347:126308. [PMID: 34767906 DOI: 10.1016/j.biortech.2021.126308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities were monitored in terms of structure, function and response to physicochemical variables during anaerobic digestion of tannery and associated slaughterhouse effluent in: (i) 2 L biochemical methane potential batch reactors at different inoculum to substrate ratios (2-5) and initial sulfate concentrations (665-2000 mg/L), and (ii) 20 L anaerobic sequencing batch reactors with different mixing regimes (continuous vs. intermittent). Methanogenic and sulfidogenic community compositions in the 2 L reactors evolved initially, but stabilised after the start of biogas generation, although significant (ANOSIM p < 0.05) changes in the physicochemical parameters indicated continued metabolic activity. Both hydrogenotrophic and acetoclastic archaeal genera were present in high relative abundances. Continuous stirring preferentially selected the metabolically versatile genus Methanosarcina, suggesting that higher specific methane generation in the continuously stirred system (168 vs. 19.5 mL methane per gram volatile solids per week) was related to the metabolic activities of members of this genus.
Collapse
Affiliation(s)
- Victoria Alex Kibangou
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Mariska Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Ashton Busani Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark; NIRAS A/S, Østre Havnegade 12, Aalborg DK-9000, Denmark
| | - Oluwaseun O Oyekola
- Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Pamela Jean Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa.
| |
Collapse
|
16
|
Piccolo N, Goel R, Snowling S, Kim Y. Modeling the anaerobic digestion of wastewater sludge under sulfate-rich conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2084-2096. [PMID: 33991363 DOI: 10.1002/wer.1583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a biological treatment process to stabilize organic solids and produce biogas. If present, sulfate is reduced to sulfide by anaerobic sulfate-reducing bacteria and the sulfide can be toxic to anaerobic microorganisms. Here, the effect of high initial sulfate concentration on AD of wastewater sludge was investigated using lab-scale batch experiments. Additionally, a systematic mathematical modeling approach was applied for insight into the experimental results. Cumulative biogas and methane production decreased with increasing initial sulfate doses (0-3.300 mg S L-1 ). The correlation between the sulfate dose and methane production was consistent with theoretical predictions and model results, indicating no toxic effect of sulfide on methane production. The carbon dioxide content in the biogas decreased linearly with the increasing sulfate dose, which is consistent with the model-predicted behavior of the bicarbonate and hydrogen sulfide buffering system. The examined high sulfate concentrations resulted in no clear negative effects on the COD removal or VSS destruction of the wastewater sludge, indicating negligible inhibition by sulfide toxicity. Even considering the possibility of ferrous sulfide precipitation and the low model estimates of residual sulfide concentration the residual sulfide concentration was higher than reported concentrations that trigger process inhibition. PRACTITIONER POINTS: The effect of sulfate loading on anaerobic digestion of waste activated sludge was characterized. The stoichiometry of sulfate reduction allows accurate prediction of CH4 loss. High sulfate levels (up to 3300 mg/L as S) did not affect COD/VSS removal. Sulfide formation increases effluent COD; often misinterpreted as sulfide toxicity. Correcting COD for sulfide's contributions is crucial for results interpretation.
Collapse
Affiliation(s)
- Nicholas Piccolo
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| | - Rajeev Goel
- Digital Water Solutions, Hatch, Oakville, ON, Canada
| | | | - Younggy Kim
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Atasoy M, Cetecioglu Z. Bioaugmented Mixed Culture by Clostridium aceticum to Manipulate Volatile Fatty Acids Composition From the Fermentation of Cheese Production Wastewater. Front Microbiol 2021; 12:658494. [PMID: 34539589 PMCID: PMC8446653 DOI: 10.3389/fmicb.2021.658494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Production of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by Clostridium aceticum was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater. The efficiency and stability of the bioaugmentation strategy were monitored using the production and composition of VFA, the quantity of C. aceticum (by qPCR), and bacterial community profile (16S rRNA Illumina Sequencing). The bioaugmented mixed culture significantly increased acetic acid concentration in the VFA mixture (from 1170 ± 18 to 122 ± 9 mgCOD/L) compared to the control reactor. Furthermore, the total VFA production (from 1254 ± 11 to 5493 ± 36 mgCOD/L) was also enhanced. Nevertheless, the bioaugmentation could not shift the propionic acid dominancy in the VFA mixture. The most significant effect of bioaugmentation on the bacterial community profile was seen in the relative abundance of the Thermoanaerobacterales Family III. Incertae sedis, its relative abundance increased simultaneously with the gene copy number of C. aceticum during bioaugmentation. These results suggest that there might be a syntropy between species of Thermoanaerobacterales Family III. Incertae sedis and C. aceticum. The cycle analysis showed that 6 h (instead of 24 h) was adequate retention time to achieve the same acetic acid and total VFA production efficiency. Biobased acetic acid production is widely applicable and economically competitive with petroleum-based production, and this study has the potential to enable a new approach as produced acetic acid dominant VFA can replace external carbon sources for different processes (such as denitrification) in WWTPs. In this way, the higher treatment efficiency for WWTPs can be obtained by recovered substrate from the waste streams that promote a circular economy approach.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
Zhou S, Wang J, Peng S, Chen T, Yue Z. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8498-8506. [PMID: 33067788 DOI: 10.1007/s11356-020-11207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was developed and constructed for the treatment of landfill leachate and acid mine drainage (AMD). The removal of chemical oxygen demand (COD), sulfate, and metal ions was studied. The maximum COD and sulfate removal efficiency reached 75% and 69%, respectively, during the start-up phase of the UASB. The hydraulic retention time (HRT) had a significant influence on the system. The maximum removal efficiency for COD and sulfate reached 83% and 78%, respectively, at an HRT of 20 h. The methane production process competed with the sulfate reduction process in the UASB. The fractionation of metals in the sludge was analyzed to facilitate metal recovery in a later processing stage. The most abundant sulfate-reducing bacteria was Desulfobulbus, and the methanogen archaeal community in the reactor was mainly composed of Methanobacterium.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Shuchuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Tianhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
19
|
Liu X, Wu Y, Xu Q, Du M, Wang D, Yang Q, Yang G, Chen H, Zeng T, Liu Y, Wang Q, Ni BJ. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. WATER RESEARCH 2021; 189:116645. [PMID: 33227607 DOI: 10.1016/j.watres.2020.116645] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Poly ferric sulfate (PFS), one of the typical inorganic flocculants widely used in wastewater management and waste activated sludge (WAS) dewatering, could be accumulated in WAS and inevitably entered in anaerobic digestion system at high levels. However, knowledge about its impact on methane production is virtually absent. This study therefore aims to fill this gap and provide insights into the mechanisms involved through both batch and long-term tests using either real WAS or synthetic wastewaters as the digestion substrates. Experimental results showed that the maximum methane potential and production rate of WAS was respectively retarded by 39.0% and 66.4%, whereas the lag phase was extended by 237.0% at PFS of 40 g per kg of total solids. Mechanism explorations exhibited that PFS induced the physical enmeshment and disrupted the enzyme activity involved in anaerobic digestion, resulting in an inhibitory state of the bioprocess of hydrolysis, acidogenesis, and methanogenesis. Furthermore, PFS's inhibition to hydrogenotrophic methanogenesis was much severer than that to acetotrophic methanogenesis, which could be supported by the elevated abundances of Methanosaeta sp and the dropped abundances of Methanobacterium sp in PFS-present digester, and probably due to the severe mass transfer resistance of hydrogen between the syntrophic bacteria and methanogens, as well as the higher hydrogen appetency of PFS-induced sulfate reducing bacteria. Among the derivatives of PFS, "multinucleate and multichain-hydroxyl polymers" and sulfate were unveiled to be the major contributors to the decreased methane potential, while the "multinucleate and multichain-hydroxyl polymers" were identified to be the chief buster to the slowed methane-producing rate and the extended lag time.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Tianjing Zeng
- Ecology and Environment Department of Hunan Provience, Changsha 410014, P.R. China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Wang G, Wang D, Huang L, Song Y, Chen Z, Du M. Enhanced production of volatile fatty acids by adding a kind of sulfate reducing bacteria under alkaline pH. Colloids Surf B Biointerfaces 2020; 195:111249. [PMID: 32682275 DOI: 10.1016/j.colsurfb.2020.111249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion could make sludge stable and harmless, and the volatile fatty acids (VFAs) produced from it. The objective of this study was to reduced sludge production and realize the resource utilization of VFAs through enhance anaerobic sludge fermentation by adding sulfate reducing bacteria (SRB) under alkaline pH. Under the neutral and alkaline pH, SRB was added into the sludge fermentation liquid with sole stock solution and sterilization treatment respectively, while the liquid without any additives was used as control. The results indicated that obvious increase of the production of VFAs was observed after adding SRB under alkaline pH. And, more protein and polysaccharide were obtained which were the main substrates for the production of VFAs. The concentration of ammonia nitrogen (NH4+-N) and phosphate (PO43--P) were also increased with the addition of SRB. So, a high yield production of VFAs could be achieved through the addition of SRB + alkaline pH.
Collapse
Affiliation(s)
- Guangzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China.
| | - Dongdong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yanmei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Maoan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| |
Collapse
|
21
|
Zhao F, Heidrich ES, Curtis TP, Dolfing J. Understanding the complexity of wastewater: The combined impacts of carbohydrates and sulphate on the performance of bioelectrochemical systems. WATER RESEARCH 2020; 176:115737. [PMID: 32240846 DOI: 10.1016/j.watres.2020.115737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Bioelectrochemical systems (BES) have long been viewed as a promising wastewater treatment technology. However, in reality, the performance of bioelectrochemical systems fed with real (and therefore complex) wastewaters is often disappointing. We have sought to investigate the combined impacts of complex substrates and presence of electron acceptors. In particular, this study illustrates and systematically evaluates the disparity in performance between a BES acclimatised with acetate and those acclimatised with more complex carbohydrates (glucose, sucrose or starch) and in the presence and absence of sulphate. Relative to acetate only, operating with complex carbohydrates reduced current by 73%-87% and coulombic efficiency by 4%-50%. Acclimation with complex carbohydrates seriously impeded the colonisation anode by Geobacteraceae, resulting in substantially reduced capacity to produce current (60.2% on average). Combined acclimation with sulphate further reduced current by 35% on average, and resulted in a total reduction of 83%-93% relative to the acetate control. However, the presence of an electrogenic sulphide-sulphur shuttle meant sulphate had little effect on the coulombic efficiency of the BES. The results indicate that a reduction in current and coulombic efficiency is, at present, an unavoidable consequence of operating a BES fed with complex wastewater. Researchers, designers and policy makers should incorporate such losses in both their plans and their prognostications.
Collapse
Affiliation(s)
- Fei Zhao
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, England, UK
| | - Elizabeth S Heidrich
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, England, UK
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, England, UK
| | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, England, UK.
| |
Collapse
|
22
|
Zan F, Dai J, Jiang F, Ekama GA, Chen G. Ground food waste discharge to sewer enhances methane gas emission: A lab-scale investigation. WATER RESEARCH 2020; 174:115616. [PMID: 32145553 DOI: 10.1016/j.watres.2020.115616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Emission of sulfide and methane from sewerage system has been a major concern for a long time. Sewers are now facing emerging challenges, such as receiving food waste (FW) to relieve the burdens on solid waste treatment. However, the knowledge of the direct impact of FW addition on sulfide and methane production in and emission from sewers is still lacking. In this study, two lab-scale sewer reactors, one without and one with FW addition, were continuously operated to investigate the production of sulfide and methane and microbial communities arising from FW discharge to freshwater sewerage system. The 190-day long-term monitoring and the batch tests on days 69 and 124 suggest that the FW addition has little impact on sulfide production possibly due to the limited sulfate concentration (40 mg S/L) but enhanced methane production by up to 60%. Moreover, cryosection-fluorescence in situ hybridization (FISH) revealed that the FW addition significantly stimulated the accumulation of methanogenic archaea (MA) in sewer biofilms and altered the spatial distributions of sulfate-reducing bacteria (SRB) and MA. Moreover, the relative abundance of MA in biofilms with FW addition was higher than that without FW addition, whereas the relative abundance of SRB was similar. Metabolic pathway analysis for sulfidogenesis and methanogenesis indicates that sufficient substrates derived from the FW addition were biodegraded during fermentation to produce acetate and hydrogen, and consequently facilitate methanogenesis. These findings shed light on the impacts of changes in wastewater compositions (e.g., FW addition) on sulfide and methane production in the freshwater sewerage system for improved policy-making on sewer management.
Collapse
Affiliation(s)
- Feixiang Zan
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China.
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
23
|
Yuan Y, Cheng H, Chen F, Zhang Y, Xu X, Huang C, Chen C, Liu W, Ding C, Li Z, Chen T, Wang A. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor. ENVIRONMENT INTERNATIONAL 2020; 136:105503. [PMID: 32006760 DOI: 10.1016/j.envint.2020.105503] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organics is a challenging task under high-strength sulfate (SO42-) conditions. The generation of toxic sulfides by SO42--reducing bacteria (SRB) causes low methane (CH4) production. This study investigated the feasibility of alleviating sulfide inhibition and enhancing CH4 production by using an anaerobic reactor with built-in microbial electrolysis cell (MEC), namely ME-AD reactor. Compared to AD reactor, unionized H2S in the ME-AD reactor was sufficiently converted into ionized HS- due to the weak alkaline condition created via cathodic H2 production, which relieved the toxicity of unionized H2S to methanogenesis. Correspondingly, the CH4 production in the ME-AD system was 1.56 times higher than that in the AD reactor with alkaline-pH control and 3.03 times higher than that in the AD reactors (no external voltage and no electrodes) without alkaline-pH control. MEC increased the amount of substrates available for CH4-producing bacteria (MPB) to generate more CH4. Microbial community analysis indicated that hydrogentrophic MPB (e.g. Methanosphaera) and acetotrophic MPB (e.g. Methanosaeta) participated in the two major pathways of CH4 formation were successfully enriched in the cathode biofilm and suspended sludge of the ME-AD system. Economic revenue from increased CH4 production totally covered the cost of input electricity. Integration of MEC with AD could be an attractive technology to alleviate sulfide inhibition and enhance CH4 production from AD of organics under SO42--rich condition.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiqian Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
24
|
Zan F, Hao T. Sulfate in anaerobic co-digester accelerates methane production from food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 298:122536. [PMID: 31835199 DOI: 10.1016/j.biortech.2019.122536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The presence of sulfate in food waste (FW) and waste activated sludge (WAS) threatens the anaerobic co-digestion for methane production. In this study, methane production from the anaerobic co-digestion of FW and WAS at sulfate concentrations of 50, 100, and 400 mg S/L was not affected, but instead deteriorated at 200 and 300 mg S/L. However, a model-based kinetic analysis reveals that sulfate can significantly promote the conversion of rapidly biodegradable substrates by up to 93%. From a point of thermodynamic view, the presence of sulfate can stimulate sulfate-reducing bacteria acting as acetogens to convert propionate to acetate, providing an alternative metabolic pathway for methanogenesis. In the anaerobic co-digestion, regulation of sulfate can be a potential strategy to improve the efficiency of methane production. However, more research is needed to optimize the sulfate concentration and substrate types in the anaerobic co-digester.
Collapse
Affiliation(s)
- Feixiang Zan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
25
|
Li J, Cai MH, Miao Y, Luo G, Li WT, Li Y, Li AM. Bacterial community structure and predicted function in an acidogenic sulfate-reducing reactor: Effect of organic carbon to sulfate ratios. BIORESOURCE TECHNOLOGY 2019; 293:122020. [PMID: 31470231 DOI: 10.1016/j.biortech.2019.122020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
A lab-scale acidogenic sulfate-reducing reactor with N2 stripping was continuously operated to uncover its microbial mechanism treating highly sulfate-containing organic wastewaters. Results showed that sulfate reduction efficiency decreased with the influent COD/sulfate ratios. Microbial community analysis showed that VFA accumulation mainly caused by the predominance of fermentative bacteria including Streptococcus and Oceanotoga. Genus Desulfovibrio was the most predominant SRB and enriched at low influent COD/sulfate ratios. Although Bifidobacterium, Atopobium, Wohlfahrtiimonas, Dysgonomonas etc. had low average abundance, they were identified keystone genera by the co-occurrence network analysis. The functions of the microbial community were not insignificantly influenced by COD/sulfate ratios. All predicted functional genes involved in dissimilatory sulfate reduction reached their maximum abundances at influent COD/sulfate ratio of 1.5, while the assimilatory sulfate reduction was favored at the COD/sulfate ratio lower than 2.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min-Hui Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Zan F, Zeng Q, Hao T, Ekama GA, Hao X, Chen G. Achieving methane production enhancement from waste activated sludge with sulfite pretreatment: Feasibility, kinetics and mechanism study. WATER RESEARCH 2019; 158:438-448. [PMID: 31071647 DOI: 10.1016/j.watres.2019.04.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Sulfite has been widely employed as a key agent in many industrial processes, leading to a large amount of sulfite-laden wastes generated. Given its antimicrobial function and destructive ability on cell walls, detailed mechanisms for impacts of sulfite on waste activated sludge (WAS) and outcomes of methane production after the sulfite-pretreatment have not been clear so far. In this study, the feasibility of methane production from sulfite pretreated WAS was verified and investigated. Biochemical methane potential tests demonstrated that methane production from WAS after the pretreatment at 800 mg S/L of sulfite (a typical level in sulfite-laden wastes) increased by up to 25%. Kinetic analysis of the test results indicated that sulfite pretreatment increased the sludge hydrolysis rate (khyd) by 1.71 times while the ultimate biochemical methane potential (Bu) by 1.20 times. Further study investigated the effects of sulfite on WAS from the macro-scale (i.e. sludge physicochemical properties) to the micro-scale (i.e. bacterial viability, microbial community). Sulfite concentrations of up to 800 mg S/L substantially enhanced WAS disintegration and solubilization, reducing the particle size by up to 39%, boosting substrate release by 87% and improving cell lysis by 43% through the direct destruction of gram-positive microorganisms (e.g., norank_p_Saccharibacteria) in WAS. Adverse impact on anaerobic digestion by introduction of sulfite was not observed in this study, though a long-term evaluation is needed in the future work. Based on the findings of the present study, sulfite-laden by-products or wastes from industrial processes may be co-treated with WAS when overall cost-effectiveness is concerned.
Collapse
Affiliation(s)
- Feixiang Zan
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qian Zeng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China
| |
Collapse
|