1
|
Nusair A, Alkhateb H, D'Alessio M. Synthesis, characterization, and environmental applications of graphene-coated sand: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170107. [PMID: 38232845 DOI: 10.1016/j.scitotenv.2024.170107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Global water quality has deteriorated, leaving over 844 million individuals without access to clean drinking water. While sand filters (SF) offer a solution, their limited surface area and adsorption capacity for emerging contaminants remain a challenge. This has prompted the development of new materials such as graphene-coated sand (GCS) to enhance the sand's adsorptive properties. Notably, GCS also possesses inherent anti-bacterial properties and can function as a photocatalyst when exposed to UV and visible light, offering enhanced water purification. This manuscript 1) reviews the synthesis of GCS, detailing the characterization techniques employed to understand its structure, composition, and multifunctional properties and 2) highlights the superior efficacy of GCS in removing contaminants, including metals (>95 % removal of Cd2+, Pb2+, Zn2+, and Cu2+ in low pH environment), sulfides (full removal compared to 26 % removal by raw sand), antibiotics (98 % removal of tetracycline), and bacteria (complete cell membrane destruction), compared to traditional SF. Due to its enhanced performance and multifaceted purification capabilities, GCS presents a promising alternative to SFs, especially in developing countries, aiming to improve water quality and ensure safe drinking water access. To the best of our knowledge, no other work groups the available research on GCS. Furthermore, future research directions should focus on reducing the overall production cost of GCS, exploring surface modification techniques, and expanding the range of contaminants tested by GCS, to fully realize its potential in water purification.
Collapse
Affiliation(s)
- Abdulla Nusair
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
| | - Hunain Alkhateb
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA
| | - Matteo D'Alessio
- Department of Civil Engineering, University of Mississippi, Carrier Hall, University, MS 38677, USA.
| |
Collapse
|
2
|
van Dijk J, Dekker SC, Kools SAE, van Wezel AP. European-wide spatial analysis of sewage treatment plants and the possible benefits to nature of advanced treatment to reduce pharmaceutical emissions. WATER RESEARCH 2023; 241:120157. [PMID: 37300966 DOI: 10.1016/j.watres.2023.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of >100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity <100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands.
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, 3584, CB, Utrecht, the Netherlands
| | | | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, GE, 1090, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Sadia M, Nollen I, Helmus R, ter Laak TL, Béen F, Praetorius A, van Wezel AP. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3062-3074. [PMID: 36779784 PMCID: PMC9979608 DOI: 10.1021/acs.est.2c06015] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Ingeborg Nollen
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Rick Helmus
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Thomas L. ter Laak
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Frederic Béen
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Annemarie P. van Wezel
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pistocchi A, Alygizakis NA, Brack W, Boxall A, Cousins IT, Drewes JE, Finckh S, Gallé T, Launay MA, McLachlan MS, Petrovic M, Schulze T, Slobodnik J, Ternes T, Van Wezel A, Verlicchi P, Whalley C. European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157124. [PMID: 35792263 DOI: 10.1016/j.scitotenv.2022.157124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
Collapse
Affiliation(s)
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Alistair Boxall
- Environment and Geography Department, University of York, Heslington York YO10 5NG, UK
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jörg E Drewes
- Urban Water Systems Engineering, Technical University of Munich, D-85748 Garching, Germany
| | - Saskia Finckh
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tom Gallé
- LIST, Environmental Research and Innovation Dept., 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Marie A Launay
- Micropollutants Competence Centre Baden-Württemberg, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569 Stuttgart, Germany
| | - Michael S McLachlan
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | - Annemarie Van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
5
|
Zhang SZ, Chen S, Jiang H. A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes. WATER RESEARCH 2022; 222:118908. [PMID: 35917670 DOI: 10.1016/j.watres.2022.118908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Accurately predicting the water quality of treated water from a water treatment plant (WWTP) based on the obtained operating database is of great significance. However, it is difficult for common mechanistic models to work well. In this study, a back propagation artificial neural network (BPANN) model with high accuracy was developed to predict the denitrification efficiency based on a 1-year operating database. Standardized principal component analysis (PCA) methods were used to address the data, and the PCA processed data exhibited the best accuracy. In three WWTPs adopting the anaerobic/anoxic/oxic (A2O) process, the ammonia nitrogen removal efficiency of WWTPs was successfully predicted by using five variables: inlet flow rate, pH value, original ammonia nitrogen concentration, Chemical oxygen demand (COD) concentration, and total phosphorus concentration. Importantly, the obtained BPANN model can be effectively used for other widely used treatment processes, such as oxidation ditch (OD), sequencing batch reactor activated sludge process (SBR), membrane bioreactor (MBR), and cyclic activated sludge technology (CAST), by simply optimizing the training data ratios between 50/50 and 90/10. This is the first trial to set up a universal model for predicting the denitrification efficiency of WWTPs adopting common biological processes. The model could be used to choose the optimum treatment process in the new WWTP design or take action in advance to avoid the risk of excessive emissions when the already built WWTPs are subjected to sudden shocks.
Collapse
Affiliation(s)
- Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Advanced Treatment of Phosphorus Pesticide Wastewater Using an Integrated Process of Coagulation and Ozone Catalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal12010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conventional pretreatment and secondary biochemical treatment are ineffective methods for removing phosphorus from phosphorus-containing pesticide wastewater. In this study, coagulation-coupled ozone catalytic oxidation was used to treat secondary biochemical tailwater of phosphorus-containing pesticide wastewater thoroughly. The effects of the coagulant type, coagulant dosage, coagulant concentration, wastewater pH, stirring rate, and stirring time on the removal efficiency of chemical oxygen demand (COD), total phosphorus (TP), and chromaticity were investigated during coagulation. When the dosage of the coagulant PAFS was equal to 100 mg/L, the concentration of the coagulant, pH, stirring rate, and stirring time were 5 wt%, 8, 100 rpm, and 5 min, respectively, and the removal rates of COD, TP, and chroma in wastewater reached the maximum value of 17.6%, 86.8%, and 50.0%, respectively. Effluent after coagulation was treated via ozone catalytic oxidation. When the respective ozone dosage, H2O2 dosage, catalyst dosage, and reaction time were 120 mg/L, 0.1 vt‰, 10 wt%, and 90 min, residual COD and chromaticity of the final effluent were 10.3 mg/L and 8, respectively. The coagulation-coupled ozone catalytic oxidation process has good application prospects in the treatment of secondary biochemical tailwater from phosphorus-containing pesticide wastewater.
Collapse
|
7
|
Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144918. [PMID: 33578141 DOI: 10.1016/j.scitotenv.2020.144918] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.
Collapse
Affiliation(s)
- Alan Rempel
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Julia Pedó Gutkoski
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Gabrielle Nadal Biolchi
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, 99700-000 Erechim, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil.
| |
Collapse
|
8
|
Ng AJ, Sheehan NP, Martinez E, Murray K, McCollum C, Flagg T, Boyle J, Bier P. Distributed treatment systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1418-1424. [PMID: 32574412 DOI: 10.1002/wer.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This section presents a review of the scientific literature published in 2019 on topics relating to distributed treatment systems. This review is divided into the following sections: constituent removal, treatment technologies, planning and treatment management, and other topics. PRACTITIONER POINTS: Highlights changes and innovation in removal techniques and technologies in water treatment. Reviews management systems of distributed treatment systems. Discusses point-of-use treatment systems.
Collapse
Affiliation(s)
- Andrew J Ng
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Nathaniel P Sheehan
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Erick Martinez
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Kyle Murray
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Caleb McCollum
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Tim Flagg
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - John Boyle
- Department of Geography and Environmental Engineering, United States Military Academy, West Point, New York, USA
| | - Peter Bier
- U.S. Army Combined Arms Center, Fort Leavenworth, Kansas, USA
| |
Collapse
|
9
|
Chen X, Xu X, Cui J, Chen C, Zhu X, Sun D, Qian J. Visible-light driven degradation of tetracycline hydrochloride and 2,4-dichlorophenol by film-like N-carbon@N-ZnO catalyst with three-dimensional interconnected nanofibrous structure. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122331. [PMID: 32097858 DOI: 10.1016/j.jhazmat.2020.122331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/15/2020] [Indexed: 05/28/2023]
Abstract
The emergence of more and more persistent organic molecules as contaminants in water simulates research towards the development of more advanced technologies, among which photocatalysis is a feasible choice. However, it is still challenging to design a photocatalyst that fulfills all the requirements for industrial application, i.e., active under visible-light irradiation, shape with handy convenience, highly uniform distribution of active sites, substrate with excellent electronic properties, etc. In this study, we report an attempt to solve these issues at once by designing a film-like photocatalyst with uniform distribution of nitrogen-doped ZnO nanoparticles along nitrogen-doped carbon ultrafine nanofibers with three-dimensional interconnected structure. Under visible-light irradiation, the product exhibited remarkable reactivity for the degradation of two model pollutants tetracycline hydrochloride and 2,4-dichlorophenol within 100 min. The cyclic experiments demonstrated only a slight loss (ca. 5 %) of reactivity after five consecutive photocatalytic reactions. We also investigated the detailed relationship between the structural features and the superior properties of this product, as well as the degradation mechanisms. The convenient shape of the product with excellent performances for the treatment of real polluted water increases its suitability for larger scale application. Our work provides a rational design of photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xuran Xu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Jian Cui
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xufei Zhu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.
| | - Jieshu Qian
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.
| |
Collapse
|
10
|
Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. WATER 2020. [DOI: 10.3390/w12051264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Freshwater is a precious resource, and shortages can lead to water stress, impacting agriculture, industry, and other sectors. Wastewater reuse is increasingly considered as an opportunity to meet the freshwater demand. Legislative frameworks are under development to support the responsible reuse of wastewater, i.e., to balance benefits and risks. In an evaluation of the proposed European regulation for water reuse, we concluded that the proposed regulation is not practically feasible, as the water provider alone is responsible for the risk assessment and management, even beyond their span of control. The required knowledge and resources are extensive. Therefore, without clear guidance for implementation, the regulation would hinder implementation of reuse programs. As a consequence, the current practice of uncontrolled, unintentional, and indirect reuse continues, including related risks and inefficiency. Therefore, we provide an outline of the interdisciplinary approach required to design and achieve safe, responsible water reuse. Responsible water reuse requires knowledge of water demand and availability, quality and health, technology, and governance for the various types of application. Through this paper we want to provide a starting point for an interdisciplinary agenda to compile and generate knowledge (databases), approaches, guidelines, case examples, codes of practice, and legislation to help bring responsible water reuse into practice.
Collapse
|
11
|
Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment. WATER 2019. [DOI: 10.3390/w11102043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Production of potable water or reclaimed water with higher quality are in demand to address water scarcity issues as well as to meet the expectation of stringent water quality standards. Forward osmosis (FO) provides a highly promising platform for energy-efficient membrane-based separation technology. This emerging technology has been recognized as a potential and cost-competitive alternative for many conventional wastewater treatment technologies. Motivated by its advantages over existing wastewater treatment technologies, the interest of applying FO technology for wastewater treatment has increased significantly in recent years. This article focuses on the recent developments and innovations in FO for wastewater treatment. An overview of the potential of FO in various wastewater treatment application will be first presented. The contemporary strategies used in membrane designs and fabrications as well as the efforts made to address membrane fouling are comprehensively reviewed. Finally, the challenges and future outlook of FO for wastewater treatment are highlighted.
Collapse
|