1
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
2
|
Yao C, Xue J, Xie Q, Chen S, Jiang T, Wang J, Wang Y, Wang D. Mercury reduction by agricultural organic waste-derived dissolved organic matter: Kinetic analysis and the role of light-induced free radicals. ENVIRONMENTAL RESEARCH 2025; 264:120332. [PMID: 39547563 DOI: 10.1016/j.envres.2024.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Agricultural organic wastes can leach dissolved organic matter (DOM) into surrounding water bodies, establishing them as significant sources of aquatic DOM. Given the importance of DOM in biogeochemical cycling of mercury (Hg), this DOM may mediate divalent Hg (Hg(II)) reduction, a process that remains poorly understood. This study investigated Hg(II) reduction using DOM derived from six representative agricultural wastes, categorized into livestock manure (chicken, pig, cow) and crop straw (rice, corn, rapeseed), with systematic considerations of the kinetics of reduction processes and the involvement of key free radicals. Results revealed that photoreduction was the primary pathway for Hg(II) reduction, with pig manure DOM exhibiting the highest efficiency at 36%. Key DOM quality parameters, such as protein-like components, have been identified as critical determinants of Hg(II) photoreduction capacity. Furthermore, free radicals induced by DOM could either enhance or inhibit Hg(II) reduction capacities. Specifically, in livestock manure, the superoxide anion (O2•-)·was identified as the primary radical promoting Hg(II) photoreduction of pig manure DOM. In crop straw, hydroxyl radicals (·OH) were found to inhibit Hg(II) photoreduction, whereas O2•- promoted the Hg(II) photoreduction of rice straw DOM. These findings provide valuable insights into the role of agricultural organic wastes in biogeochemical cycling of Hg within aquatic ecosystems.
Collapse
Affiliation(s)
- Cong Yao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jinping Xue
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et des Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Pau, 64000, France
| | - Qing Xie
- Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Sha Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Jiang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Juan Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Zhu S, Yang P, Yin Y, Zhang S, Lv J, Tian S, Jiang T, Wang D. Influences of wildfire on the soil dissolved organic matter characteristics and its electron-donating capacity. WATER RESEARCH 2024; 266:122382. [PMID: 39298894 DOI: 10.1016/j.watres.2024.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.
Collapse
Affiliation(s)
- Sihua Zhu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanyi Tian
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Cai T, Zhang X, Zhang S, Ming Y, Zhang Q. Photochemical behaviors of dissolved organic matter in aquatic environment: Generation, characterization, influencing factors and practical application. ENVIRONMENTAL RESEARCH 2023; 231:116174. [PMID: 37209983 DOI: 10.1016/j.envres.2023.116174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Dissolved organic matter (DOM) widely exists in aquatic environment and plays a critical role in environmental photochemical reaction. The photochemical behaviors of DOM in sunlit surface waters have received widely attention because its photochemical effects for some coexisted substances in aquatic environment, especially for organic micropollutants degradation. Therefore, to gain a comprehensive understanding of the photochemical properties and environmental effects of DOM, we reviewed the influence of sources on the structure and composition of DOM with relevant identified techniques to analysis functional groups. Additionally, identification and quantification for reactive intermediates are discussed with a focus on influencing factors to produce reactive intermediates by DOM under solar irradiation. These reactive intermediates can promote the photodegradation of organic micropollutants in the environmental system. In future, attention should be paid to the photochemical properties of DOM and environmental effects in real environmental system and development of advanced techniques to study DOM.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai, 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
5
|
Chen H, Xiao L, Jiang L, Wang X, Tang Y. Autochthonous DOM had solar disinfection effect but nitrate counteracted with them. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131027. [PMID: 36889074 DOI: 10.1016/j.jhazmat.2023.131027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Pathogens in natural water can pose great threat to public health and challenge water quality. In sunlit surface water, dissolved organic matters (DOMs) can inactivate pathogens due to their photochemical activity. However, the photoreactivity of autochthonous DOM derived from different source and their interaction with nitrate on photo-inactivation remained limited understood. In this study, the composition and photoreactivity of DOM extracted from Microcystis (ADOM), submerged aquatic plant (PDOM) and river water (RDOM) were studied. Results revealed that lignin and tannin-like polyphenols and polymeric aromatic compounds negatively correlated with quantum yield of 3DOM*, whilst lignin like molecules positively correlated with •OH generation. ADOM had highest photoinactivation efficiency of E. coli, followed by RDOM and PDOM. Both the photogenerated •OH and low energy 3DOM* could inactivate bacteria damaging cell membrane and causing increase of intracellular reactive species. PDOM with more phenolic or polyphenols compounds not only weaken its photoreactivity, also increase regrowth potential of bacteria after photodisinfection. The presence of nitrate counteracted with autochthonous DOMs on photogeneration of •OH and photodisinfection activity, as well as increased the reactivation rate of PDOM and ADOM, which might be attributed to the increase of survival bacteria and more bioavailable fractions provided in systems.
Collapse
Affiliation(s)
- Huiping Chen
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, 163, Xianlin Avenue, Nanjing 210023, Jiangsu, PR China; Ecology and Environmental Science Research & Design Institute of Zhejiang Province, 109, Tianmushan Road, Hangzhou 310007, Zhejiang, PR China
| | - Lin Xiao
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, 163, Xianlin Avenue, Nanjing 210023, Jiangsu, PR China.
| | - Lijuan Jiang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, 163, Xianlin Avenue, Nanjing 210023, Jiangsu, PR China
| | - Xiaolin Wang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, 163, Xianlin Avenue, Nanjing 210023, Jiangsu, PR China
| | - Yuqiong Tang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, 163, Xianlin Avenue, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
6
|
Kurek MR, Garcia-Tigreros F, Nichols NA, Druschel GK, Wickland KP, Dornblaser MM, Striegl RG, Niles SF, McKenna AM, Aukes PJK, Kyzivat ED, Wang C, Smith LC, Schiff SL, Butman D, Spencer RGM. High Voltage: The Molecular Properties of Redox-Active Dissolved Organic Matter in Northern High-Latitude Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37235632 DOI: 10.1021/acs.est.3c01782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Redox-active functional groups in dissolved organic matter (DOM) are crucial for microbial electron transfer and methane emissions. However, the extent of aquatic DOM redox properties across northern high-latitude lakes and their relationships with DOM composition have not been thoroughly described. We quantified electron donating capacity (EDC) and electron accepting capacity (EAC) in lake DOM from Canada to Alaska and assessed their relationships with parameters from absorbance, fluorescence, and ultrahigh resolution mass spectrometry (FT-ICR MS) analyses. EDC and EAC are strongly tied to aromaticity and negatively related to aliphaticity and protein-like content. Redox-active formulae spanned a range of aromaticity, including highly unsaturated phenolic formulae, and correlated negatively with many aliphatic N and S-containing formulae. This distribution illustrates the compositional diversity of redox-sensitive functional groups and their sensitivity to ecosystem properties such as local hydrology and residence time. Finally, we developed a reducing index (RI) to predict EDC in aquatic DOM from FT-ICR MS spectra and assessed its robustness using riverine DOM. As the hydrology of the northern high-latitudes continues to change, we expect differences in the quantity and partitioning of EDC and EAC within these lakes, which have implications for local water quality and methane emissions.
Collapse
Affiliation(s)
- Martin R Kurek
- Department of Earth, Ocean and Atmospheric Science, Florida State University, 1011 Academic Way, Tallahassee, Florida 32304, United States
- National High Magnetic Field Laboratory Geochemistry Group, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Fenix Garcia-Tigreros
- School of Environmental and Forest Sciences, University of Washington, 3715 W Stevens Way NE, Seattle, Washington 98195, United States
| | - Natalie A Nichols
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan Street, Indianapolis, Indiana 46202, United States
| | - Gregory K Druschel
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, 723 W Michigan Street, Indianapolis, Indiana 46202, United States
| | - Kimberly P Wickland
- Geosciences and Environmental Change Science Center, United States Geological Survey, Denver Federal Center, Denver, Colorado 80225-0046, United States
| | - Mark M Dornblaser
- Water Resources Mission Area, United States Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Robert G Striegl
- Water Resources Mission Area, United States Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Sydney F Niles
- National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory Ion Cyclotron Resonance Facility, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Soil & Crop Sciences, Colorado State University, 307 University Avenue, Fort Collins, Colorado 80521, United States
| | - Pieter J K Aukes
- Department of Earth & Environmental Studies, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
- Geography & Environmental Studies, Wilfrid Laurier University, 75 University Avenue W, Waterloo, Ontario N2L 3C5, Canada
| | - Ethan D Kyzivat
- Department of Earth, Environmental & Planetary Sciences and Institute at Brown for Environment & Society, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Chao Wang
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, 104 South Road, CB#3315, Chapel Hill, North Carolina 27514, United States
| | - Laurence C Smith
- Department of Earth, Environmental & Planetary Sciences and Institute at Brown for Environment & Society, Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States
| | - Sherry L Schiff
- Department of Earth & Environmental Studies, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - David Butman
- School of Environmental and Forest Sciences, University of Washington, 3715 W Stevens Way NE, Seattle, Washington 98195, United States
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, Washington 98195-2700, United States
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, 1011 Academic Way, Tallahassee, Florida 32304, United States
- National High Magnetic Field Laboratory Geochemistry Group, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
7
|
Li W, Liu N, Li J, Wang B, Shi X, Liang X, Yang M, Xu S, Liu CQ. Chemodiversity of Dissolved Organic Matter Is Governed by Microbial Biogeography in Inland Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7753-7763. [PMID: 37163365 DOI: 10.1021/acs.est.3c00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) is crucial for the carbon biogeochemical cycle and has a close link with microbiome in aquatic ecosystems; however, the causal relationship between DOM and microbial diversity in inland waters is not very clear so far. Therefore, a national survey of China's inland waters was conducted, and the DOM chemical composition and microbial community composition were determined by Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to clarify the abovementioned question. Here, we found that DOM chemodiversity was governed by microbial community assembly in inland waters, not vice versa. Under the control of microbial biogeography, DOM chemodiversity showed a clear geographical distribution difference. Water DOM chemodiversity was mainly constrained by bacterial and archaeal community composition, whereas sediment DOM chemodiversity was mainly controlled by eukaryotic and fungal community composition. In addition, the sediment DOM chemical composition was also affected by the interaction of different microbial groups between waters and sediments. The study is the first to clarify the causal relationship and proposes a microbial regulatory mechanism on the geographical distribution pattern of DOM chemodiversity, thus further deepening the understanding of the DOM biogeochemical cycle.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianfeng Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| |
Collapse
|
8
|
Abdelhafiz MA, Liu J, Jiang T, Pu Q, Aslam MW, Zhang K, Meng B, Feng X. DOM influences Hg methylation in paddy soils across a Hg contamination gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121237. [PMID: 36758923 DOI: 10.1016/j.envpol.2023.121237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice paddies provide optimum conditions for Hg methylation, and paddy soil is a hot spot for Hg methylation and the predominant source of methylmercury (MeHg) accumulated in rice grains. The role of dissolved organic matter (DOM) in controlling Hg bioavailability and methylation in rice paddy systems remains unclear. Paddy soils from eight various cultivation sites in China were chosen to investigate the variations in soil DOM and the influence of DOM concentration and optical characteristics on Hg methylation in rice paddy systems. In the present study, 151 rhizosphere soil samples were collected, and UV-Vis absorption and fluorescent spectroscopy were used to identify the optical properties of DOM. The relationship between MeHg and DOM's optical property indices revealed the production of MeHg consumes lower molecular weight DOM. Moreover, the correlation between DOM concentration and its optical characteristics highlighted the significant role of humic components on MeHg variability in paddy soil. Variation and correlation results demonstrated the allochthonous origin of DOM in the Hg-contaminated soil, with a higher molecular weight and humic character of DOM, as well as the dominant role of autochthonous DOM in promoting Hg methylation in uncontaminated soil. The current study indicated that soil organic matter and its dissolved fractions tend to limit Hg bioavailability and subsequently diminish MeHg production in contaminated paddy soils. Furthermore, the leading roles of allochthonous DOM in protecting MeHg from degradation and autochthonous DOM signatures in enhancing MeHg production in paddy soils. Overall, these findings provide insight into the correlative distributions of DOM and Hg along a Hg concentration gradient in paddy soil, thereby highlighting their potential role in controlling Hg bioavailability and regulating Hg methylation in the soil ecosystems.
Collapse
Affiliation(s)
- Mahmoud A Abdelhafiz
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Geology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
9
|
Zhang S, Yin Y, Yang P, Yao C, Tian S, Lei P, Jiang T, Wang D. Using the end-member mixing model to evaluate biogeochemical reactivities of dissolved organic matter (DOM): autochthonous versus allochthonous origins. WATER RESEARCH 2023; 232:119644. [PMID: 36736245 DOI: 10.1016/j.watres.2023.119644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) is an essential component of environmental systems. It usually originates from two end-members, including allochthonous and autochthonous sources. Previously, links have been established between DOM origins/sources and its biogeochemical reactivities. However, the influence of changes in DOM characteristics driven by end-member mixing on DOM biogeochemical reactivities has not been clarified. In this study, we investigated variations of DOM reactivities responding to the dynamics of DOM characteristics induced by different mixing ratios of two DOM end-members derived from humic acid (HA) and algae, respectively. Four biogeochemical reactivities of DOM were evaluated, including biodegradation, ·OH production, photodegradation, and redox capacity. Results showed that the variations of DOM characteristics due to the two end-members mixing significantly impact its biogeochemical reactivities. However, not all spectral parameters and reactivities followed the conservative mixing behavior. In contrast to reactivities of ·OH production and redox capacity, mixed samples showed apparent deviations from conservative linear relationships in biodegradation and photodegradation due to the interaction between the two end-members. Regarding the role of DOM properties influencing reactivity changes, peak A and M were recognized as the most stable parameters. However, peak C and SUVA254 were identified as the most vital contributors for explaining DOM reactivity variations. These findings suggest that a general model for describing the dynamic relationship between DOM source and reactivity cannot be proposed. Thus, the dynamics of DOM reactivity in diverse ecosystems cannot be estimated simply by the "plus or minus" of the reactivity from individual end-member. The effect of end-member mixing should be evaluated in a given reactivity instead of generalization. This study provides important insights for further understanding the dynamics of DOM's environmental role in different ecosystems influenced by variations of source inputs. In future, more field investigations are needed to further verify our findings in this study, especially in the scenario of end-member mixing.
Collapse
Affiliation(s)
- Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cong Yao
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shanyi Tian
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
10
|
Chen W, Yu Z, Yang X, Wang T, Li Z, Wen X, He Y, Zhang C. Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3761. [PMID: 36834455 PMCID: PMC9963283 DOI: 10.3390/ijerph20043761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/13/2023]
Abstract
Biochar can effectively reduce the phytoavailability of mercury (Hg) in soil, but the mechanisms are not fully understood. In this study, the dynamic changes in Hg content adsorbed by the biochar (BC-Hg), Hg phytoavailability in the soil (P-Hg), and soil dissolved organic matter (DOM) characteristics were determined over a 60-day treatment period. Biochar obtained at 300 °C, 500 °C and 700 °C reduced the P-Hg concentration assessed by MgCl2 extraction by 9.4%, 23.5% and 32.7%, respectively. However, biochar showed a very limited adsorption on Hg, with the maximum BC-Hg content only accounting for 1.1% of the total amount. High-resolution scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) results showed that the proportion of Hg atoms in biochar after 60 d was barely detectable. Biochar treatment can shift soil DOM toward higher aromatic content and molecular weight. Additionally, the addition of high-temperature biochar increased more humus-like components, but low-temperature biochar increased more protein-like components. Correlation analysis and partial least squares path modeling (PLS-PM) showed that biochar promoted humus-like fractions formation to reduce the Hg phytoavailability. This research has deepened the understanding of the mechanisms by which biochar stabilizes Hg in agricultural soils.
Collapse
Affiliation(s)
- Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
11
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
12
|
Liu S, Hou J, Suo C, Chen J, Liu X, Fu R, Wu F. Molecular-level composition of dissolved organic matter in distinct trophic states in Chinese lakes: Implications for eutrophic lake management and the global carbon cycle. WATER RESEARCH 2022; 217:118438. [PMID: 35452972 DOI: 10.1016/j.watres.2022.118438] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is an abundant and mobile part of the aquatic environment and plays important roles in aquatic biogeochemical cycles and the global carbon cycle. Recently, eutrophication has become an important environmental issue in global lakes, but how eutrophication drives changes in the molecular composition of DOM along trophic gradients remains poorly understood. We thus characterized 67 DOM isolates from 11 lakes along a trophic gradient in China by using a combined approach including absorption spectroscopy, excitation-emission matrix fluorescence and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Our results indicated that dissolved organic carbon and absorption coefficients at 350 nm increased with increasing trophic status index. The ultraviolet absorbance at 254 nm and fluorescence intensity of all fluorescent components were higher in eutrophic lakes than in oligotrophic lakes. DOM in high trophic state lakes tended to be dominated by higher molecular weight, unsaturation degree, greater abundance of S-containing compounds, and condensed or polycyclic aromatic compounds than oligotrophic lakes. Additionally, autochthonous DOM characterized by more aliphatic compounds increased with the increasing trophic state. We concluded that nutrient input along with allochthonous DOM favors the lake eutrophication and subsequently increases the release and accumulation of autochthonous DOM. Consequently, eutrophication modifies the structure of the organic matter into more complex materials with increased input of allochthonous DOM and increased release of autochthonous DOM, which could accelerate global carbon cycle processes. Our results here have potential to contribute significantly to future studies of DOM dynamics in eutrophic lakes.
Collapse
Affiliation(s)
- Shasha Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junwen Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengyu Suo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junyi Chen
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaohui Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Fu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
13
|
Chemical Oxidation and Reduction Pathways of Mercury Relevant to Natural Waters: A Review. WATER 2022. [DOI: 10.3390/w14121891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mercury (Hg) pollution in the environment is a global issue and the toxicity of mercury depends on its speciation. Chemical redox reactions of mercury in an aquatic environment greatly impact on Hg evasion to the atmosphere and the methylation of mercury in natural waters. Identifying the abiotic redox pathways of mercury relevant to natural waters is important for predicting the transport and fate of Hg in the environment. The objective of this review is to summarize the current state of knowledge on specific redox reactions of mercury relevant to natural waters at a molecular level. The rate constants and factors affecting them, as well as the mechanistic information of these redox pathways, are discussed in detail. Increasing experimental evidence also implied that the structure of natural organic matter (NOM) play an important role in dark Hg(II) reduction, dark Hg(0) oxidation and Hg(II) photoreduction in the aquatic environment. Significant photooxidation pathways of Hg(0) identified are Hg(0) photooxidation by hydroxyl radical (OH•) and by carbonate radical (CO3−•). Future research needs on improving the understanding of Hg redox cycling in natural waters are also proposed.
Collapse
|
14
|
Chételat J, McKinney MA, Amyot M, Dastoor A, Douglas TA, Heimbürger-Boavida LE, Kirk J, Kahilainen KK, Outridge PM, Pelletier N, Skov H, St Pierre K, Vuorenmaa J, Wang F. Climate change and mercury in the Arctic: Abiotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153715. [PMID: 35149079 DOI: 10.1016/j.scitotenv.2022.153715] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marc Amyot
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des Sciences, Montréal, QC H2V 0B3, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, QC H9P 1J3, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99709, USA
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Jane Kirk
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, ON L7S 1A1, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Peter M Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada
| | - Nicolas Pelletier
- Geography and Environmental Studies, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kyra St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jussi Vuorenmaa
- Finnish Environment Institute (SYKE), Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Dept. of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Luo J, Zhou Q, Hu X, Zeng H, Deng P, He C, Shi Q. Lake Chemodiversity Driven by Natural and Anthropogenic Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5910-5919. [PMID: 35389635 DOI: 10.1021/acs.est.1c08148] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As extremely active sites processing terrestrially derived dissolved organic matter (DOM), lakes deserve sufficient attention. Because of high-complexity interactions between DOM and the surrounding environment, the natural and anthropogenic drivers controlling the composition and chemodiversity of DOM molecules in lakes remain unclear. Here, 13,952 DOM molecules were identified and assessed in 45 lakes across China via ultrahigh-resolution mass spectrometry. Furthermore, the effects of both natural and anthropogenic factors on the DOM composition, DOM chemodiversity, and greenhouse gas emissions were investigated. The majority of the variations in DOM chemical composition could be attributed to the differences in the hydrology and nutrient concentrations of the lakes, and human activities also played a role, mainly through atmospheric pollution. Environmental factors mainly influenced DOM chemodiversity in the form of S-containing compounds. N-containing compounds exhibited a positive correlation with CO2 emissions, while N- and S-free compounds exhibited a positive correlation with N2O emissions. These results facilitate a comprehensive understanding of the interactions between lake DOM and the surrounding environment, thereby providing a reference for the formulation of strategies aimed at the harmonious development of human and natural environments.
Collapse
Affiliation(s)
- Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing 102249, China
| |
Collapse
|
16
|
Wu Z, Li Z, Shao B, Zhang Y, He W, Lu Y, Gusvitskii K, Zhao Y, Liu Y, Wang X, Tong Y. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. CHEMOSPHERE 2022; 294:133713. [PMID: 35074323 DOI: 10.1016/j.chemosphere.2022.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) input into ecosystems is estimated to have increased by twofold to fivefold since the industrial revolution. In aquatic ecosystems, methylmercury (MeHg) receives the most attentions of all the Hg species due to its neurotoxicity and strong bioaccumulation capacity in food chain. Dissolved organic matter (DOM) is crucial in impacting aquatic Hg transformation. However, only few spatially constrained studies have attempted to quantify the relative importance of DOM and other factors (e.g., Hg availability, temperature, pH, and land-use type) on MeHg concentration. In this study, we collected data of 585 water samples at 373 sites globally, including lakes, rivers, estuaries, and wetlands, and characterized the global pattern of MeHg distribution and environmental drivers of aquatic MeHg concentration. Our results showed that MeHg concentrations ranged from detection limits to 11 (geometric mean 0.11 and average 0.29) ng/L, and the highest MeHg concentration and Hg methylation potential were observed in wetlands. A positive relationship was observed between MeHg fraction in the total mercury (THg) and DOM for all the aquatic ecosystems. Using the structural equation modeling, we found that Hg availability was a dominant factor in impacting water MeHg concentration followed by DOM. According to 129 samples of specific DOM source information, we found that the percentage of THg as MeHg (%MeHg) in water dominated by the autochthonous DOM was higher than that dominated by the allochthonous DOM. Our results could advance understanding of aquatic Hg cycling and their environmental drivers, which are fundamental for predicting and mitigating MeHg productions and its potential health risks for humans.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiyan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Kair Gusvitskii
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
17
|
Wang Y, Liu J, Liem-Nguyen V, Tian S, Zhang S, Wang D, Jiang T. Binding strength of mercury (II) to different dissolved organic matter: The roles of DOM properties and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150979. [PMID: 34687708 DOI: 10.1016/j.scitotenv.2021.150979] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) influences the environmental fate and toxic effects of trace metals such as mercury (Hg). However, because of limits in DOM analytical techniques and lack of sample diversity in past studies, it remains unclear whether the binding strength of DOM complexed with Hg(II) is related to the DOM properties. In this study, different DOM isolates (n = 26) from various sources were used to determine the conditional stability constant (logK) of DOM-Hg complexes using the equilibrium dialysis ligand exchange (EDLE) method. UV-Vis and fluorescence spectrometry were used to evaluate the correlation between logK values and DOM properties, such as chromophoric moieties, aromaticity, and molecular weight. Results demonstrated that the DOM from different sources presented an extensive range of binding strengths to Hg(II), because of their heterogeneous properties. Moreover, DOM chromophores, including aromaticity and molecular weight, are critical indicators of the DOM-Hg affinity in ambient-relevant circumstances. Significantly, higher terrestrial DOM led to greater DOM-Hg affinity. Additionally, this study supports that UV-Vis and fluorescence spectroscopy can be used to estimate DOM composition and its binding strength with Hg(II). Furthermore, the observed relationship between logK and DOM properties provided a possible pathway of explanation for the spatial co-variations between Hg(II) concentrations and DOM characters observed in previous field investigations.
Collapse
Affiliation(s)
- Yuqin Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Van Liem-Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Shanyi Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
18
|
Du X, Gu LP, Wang TT, Kou HJ, Sun Y. The relationship between the molecular composition of dissolved organic matter and bioavailability of digestate during anaerobic digestion process: Characteristics, transformation and the key molecular interval. BIORESOURCE TECHNOLOGY 2021; 342:125958. [PMID: 34560433 DOI: 10.1016/j.biortech.2021.125958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, swine wastewater (SW) and cow wastewater (CW) were used for anaerobic digestion (AD). We found the bioavailability of dissolved organic matter (DOM) was affected by the molecular weight ranges and molecular composition during the AD process. The organic substance in the small molecular range (0-5 kDa) accumulated due to a larger molecular fraction (>10 kDa) degradation, which enhanced the bioavailability of the DOM. Moreover, based on the excitation emission matrix-parallel factor (EEM-PARAFAC) analysis, the protein-like component in 0-5 kDa molecular size and humic-like component over 5 kDa are significantly positively correlated with DOM bioavailability. This study indicated that increasing the hydrolysis of larger organic matter and humification degree of molecular weights>5 kDa are critical solutions to improving the bioavailability of DOM. These conclusions can help explain the molecular mechanisms of DOM transformation and the AD process of livestock wastewater.
Collapse
Affiliation(s)
- Xian Du
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Li-Peng Gu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ting-Ting Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hui-Juan Kou
- Ulanqab animal husbandry station of Inner Mongolia Autonomous Region, Inner Mongolia 012000, PR China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
19
|
Rizzuto S, Jones KC, Zhang H, Baho DL, Leu E, Nizzetto L. Critical assessment of an equilibrium-based method to study the binding of waterborne organic contaminants to natural dissolved organic matter (DOM). CHEMOSPHERE 2021; 285:131524. [PMID: 34329125 DOI: 10.1016/j.chemosphere.2021.131524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) can play a major role in determining availability of pollutants to aquatic biota. Equilibrium dialysis is the most commonly used method to assess the interaction between DOM and organic contaminants. However, results obtained through this method can be affected by confounding factors linked to the diffusion of DOM through the membrane or the interaction of DOM and/or the compounds with the membrane itself. In this study, we propose an improved experimental approach, where highly hydrophilic cellulose-ester membranes with small molecular cut-off (100-500 Da) were used to overcome some of these hindrances. The performance of the method to determine the binding of a commonly used moderately hydrophobic herbicide (Isoproturon - ISU) with natural DOM was critically evaluated through a set of quality assurance criteria, across a range of DOM concentrations and pH conditions. DOM trans-membrane diffusion was prevented by the smaller pore size of the dialysis membrane. Good measurement reproducibility, mass balance closure, and successful trans-membrane equilibrium of ISU were obtained. ISU showed relatively low affinity with DOM (log KDOC 1-2 L g-1), which was significantly influenced by varying pH and DOM concentration. An alternative membrane may be needed for higher pH conditions as the greater adsorption effect blurred the observation of trans-membrane equilibrium and confounding mass balance closure. The paper makes recommendations on how to avoid measurement artefacts, while considering criteria for the expected mass distribution of compounds at equilibrium and for sorption onto the membrane and surfaces of the experimental units.
Collapse
Affiliation(s)
- Simone Rizzuto
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Didier L Baho
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Eva Leu
- Akvaplan-niva, CIENS, Science Park, Gaustadalléen 21, 0349, Oslo, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway; RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
20
|
Wang M, Liu J, Peng L, Tian S, Yang C, Xu G, Wang D, Jiang T. Estimation of the biogeochemical reactivities of dissolved organic matter from modified biochars using color. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147974. [PMID: 34380277 DOI: 10.1016/j.scitotenv.2021.147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Modified biochar is widely used as a soil amendment in agricultural systems to improve crop yields and remove environmental pollutants. The water-soluble fraction of biochar, called biochar-derived dissolved organic matter (DOMBC), is the most active biochar component. However, the correlation between the optical properties of DOMBC and its biogeochemical activity remain unclear. In this study, one biochar and six modified derivatives were used to extract DOMBC and characterize its optical properties. The biogeochemical reactivities of DOMBC were determined using biodegradation, photodegradation, and electron-donating capacity assays. The results show that modification changes the biochar characteristics, leading to a variety of DOMBC properties. The DOMBC from modified biochars degrades more rapidly than the original biochar. On the other hand, modification reduces the redox functional groups in DOMBC, resulting in a lower electron-donating capacity of DOM samples. However, the modifications did not seem to affect photodegradation. Not all spectral parameters provide information about the correlations between the DOMBC properties and biogeochemical reactivity. However, two fundamental properties, that is, the specific UV absorbance at 254 nm (SUVA254, showing aromaticity) and spectral slopes over the ranges of 275-295 nm of the UV absorbance (S275-295, showing molecular weight), are the dominant factors affecting the biodegradation and electron-donating capacities of DOMBC. In this study, a rapid and straightforward method is presented, which can be used to characterize DOMBC and predict the reactivity of biochar that is used as an environmental amendment to minimize toxic organic compounds.
Collapse
Affiliation(s)
- Mingxing Wang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Luo Peng
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shanyi Tian
- Soil Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Guomin Xu
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China; Guizhou Material Industrial Technology Institute, Guiyang 550014, China
| | - Dingyong Wang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- State Cultivation Base of Eco-Agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
21
|
Li X, Ma W, Huang T, Wang A, Guo Q, Zou L, Ding C. Spectroscopic fingerprinting of dissolved organic matter in a constructed wetland-reservoir ecosystem for source water improvement-a case study in Yanlong project, eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144791. [PMID: 33736401 DOI: 10.1016/j.scitotenv.2020.144791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The coupling between constructed wetlands and reservoir (CWs-R) afforded a novel ecosystem to improve the water quality and increase the emergency storage capacity of micro-polluted river drinking water source. In this study, spectroscopic characteristics of DOM in YL CWs-R ecosystem were first systematic studied based on a three-year field monitoring to investigate the chemical composition, sources and track the involved biogeochemical processes in the ecosystem. Three humic-like components (C1, C2, and C4, em >380 nm) and one protein-like component (C3, em < 380 nm) were identified by PARAFAC model. Significant spatiotemporal variations in concentration and composition of FDOM were observed in YL CWs-R ecosystem. The improved water transparency (SD) and, the increased hydraulic retention time (HRT) along YL CWs-R ecosystem enhance photochemical processes, leading to significant decreases in the intensities of humic-like components in effluent (P < 0.05) with lower degrees of aromaticity, molecular weights, and humification (decrease in HIX and increases in SR and BIX). In contrast, no significant spatial difference was observed for protein-like component (P > 0.05), which implies that the biodegradation and production of protein-like component may balance each other in the CWs-R ecosystem. The ecological pond unit plays a major role in the removal and transformation of DOM, especially in summer, while wetland purification unit contributes little to DOM reduction. In addition, the decay of aquatic macrophytes in wetland purification unit and the risk of algal bloom in the ecological pond unit might become important autochthonous sources of DOM, especially in summer and autumn. These findings are critical for further understanding the transformation processes of DOM in large-scale CWs-R ecosystems, and could provide important implications to improve sustainable safety of drinking water sources.
Collapse
Affiliation(s)
- Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weixing Ma
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingyuan Guo
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Lihang Zou
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| |
Collapse
|
22
|
Liu J, Liang J, Bravo AG, Wei S, Yang C, Wang D, Jiang T. Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142857. [PMID: 33160674 DOI: 10.1016/j.scitotenv.2020.142857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The biodegradation of dissolved organic matter (DOM) in natural environments is determined by its molecular composition and reactivity. Redox oscillations are common in the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR). As a consequence, the soil DOM released is degraded under both anaerobic and aerobic conditions. The DOM compounds available for degradation under contrasting redox conditions and the resulting DOM composition still need to be elucidated. By combining laboratory experiments with an in-depth characterization of DOM optical properties, we show that different pathways controlled the depletion and enrichment of the DOM optical components under different oxygen regimes. In particular, 28-day dark biodegradation assays showed that up to 39.5 ± 4% DOM was degraded under anaerobic conditions, while 55.5 ± 6% DOM was biodegraded under aerobic conditions. Aerobic biodegradation resulted in a higher aromaticity and degree of humification of the DOM compared to anaerobic degradation. The specific UV absorbance at a wavelength of 254 (SUVA254) and biological index (BIX) could be used to track DOM biodegradation under anaerobic conditions. Under aerobic conditions, the SUVA254, BIX and concentration of coloured DOM (CDOM, reflected by a (355)) could track DOM biodegradation, and significant amounts of CDOM could be aerobically biodegraded.
Collapse
Affiliation(s)
- Jiang Liu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Jian Liang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; College of Chemistry and Environmental Engineering, Baise University, Guangxi 533000, China
| | - Andrea G Bravo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Shiqiang Wei
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden.
| |
Collapse
|
23
|
Lin H, Xia X, Zhang Q, Zhai Y, Wang H. Can the hydrophobic organic contaminants in the filtrate passing through 0.45 μm filter membranes reflect the water quality? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141916. [PMID: 32892049 DOI: 10.1016/j.scitotenv.2020.141916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
In the traditional water quality assessment, the concentration of total dissolved hydrophobic organic compounds (HOCs) passing through 0.45 μm filter membranes is usually used to evaluate the influence of HOCs on water quality. However, the bioavailability of dissolved organic matter (DOM)-associated and particle-associated HOCs is not considered. In the present work, pyrene, fulvic acid, and natural suspended particles (SPS) were used to simulate natural water (raw water). The immobilization and pyrene content in the tissues of D. magna caused by total pyrene in the raw water and those caused by freely dissolved pyrene with the concentration equal to the total dissolved pyrene in the filtrate of raw water were compared to determine whether the total dissolved pyrene concentration can reflect the water quality. The results indicated that when the DOM concentration was 5 mg C L-1 and the SPS concentration was higher than 0.2-0.4 g L-1, the bioavailability of pyrene was underestimated by the traditional water quality assessment because of the SPS-associated pyrene, and it was underestimated by 23.6-63.9% when SPS concentration was higher than 0.6 g L-1 due to the neglection of SPS-associated pyrene. Furthermore, the threshold value of SPS concentration was related to the SPS size and composition, and the effects of SPS and DOM on water quality were influenced by the concentration, size, and composition of SPS as well as the molecular weight of DOM. This study suggests that the traditional water quality assessment should be improved by comprehensively considering concentrations and characteristics of SPS and DOM.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yawei Zhai
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Characteristics and Source of Dissolved Organic Matter in Lake Hulun, A Large Shallow Eutrophic Steppe Lake in Northern China. WATER 2020. [DOI: 10.3390/w12040953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lake Hulun, the fifth largest lake in China, is a typical eutrophic steppe lake located in the Hulun Buir Prairie. The dissolved organic matter (DOM) in the water of Lake Hulun has a high concentration. However, little is known about the occurrence characteristics and source of the DOM in Lake Hulun. The spatial and temporal distribution characteristics of DOM concentration in Lake Hulun were thoroughly surveyed, and the optical characteristics, fluorescence components and sources of DOM were analyzed by excitation emission matrix (EMM) and parallel factor analysis (PARAFAC) technology. The DOM concentration was 6.46–42.87 mg C/L, and was highest in summer and lowest in winter. The difference in the spatial distribution of DOM in winter was significant due to the ice over, and showed a trend where the concentration near the shore was higher than that in the center of the lake. Three humic-like components and one component consisting of a mixture of humic-like and protein-like substances of DOM were identified, with the former being prevalent. The humification index of DOM was 2.22–9.92, indicating that the DOM has a high degree of humification. The DOM is mainly derived from terrestrial sources, with the highest proportion (91.0% ± 8.1%) found in winter and the lowest (66.2% ± 7.7%) in summer. Given that the DOM in Lake Hulun is mainly dominated by humic-like components with a high degree humification, the DOM may have low bioactivity. However, this is just a preliminary analysis and judgment, and it is necessary to conduct other experiments such as biodegradation experiments to further study the bioavailability of DOM in Lake Hulun.
Collapse
|