1
|
Guo J, Jiang M, Li X, Farid MU, Deka BJ, Zhang B, Sun J, Wang Z, Yi C, Wong PW, Jeong S, Gu B, An AK. Springtail-inspired omniphobic slippery membrane with nano-concave re-entrant structures for membrane distillation. Nat Commun 2024; 15:7750. [PMID: 39237575 PMCID: PMC11377731 DOI: 10.1038/s41467-024-52108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Omniphobic membranes, due to their exceptional properties, have drawn significant attention for overcoming the bottleneck in membrane distillation (MD) technology. This study demonstrates an innovative method for fabricating an omniphobic membrane that is simple and facile compared to other methods such as wet/dry etching and photolithography. The surface morphology of springtails was imitated using electrospraying technique to coat a polyvinylidene fluoride substrate with concave-shaped polystyrene beads that were successfully developed by controlling the electrical traction (voltage) and air resistance (humidity). Then, the lipid coating of springtail surfaces was mimicked by dip-coating the membrane in a low-toxicity short-chain perfluoropolyether lubricant. The concave structure's tiny air pockets increased membrane hydrophobicity significantly, indicated by the fact that the first round of water bouncing took only 16.3 ms. Finally, in MD treatment of seawater containing 1.0 mM sodium dodecyl sulfate, the optimized omniphobic membrane maintained a stable 99.9% salt rejection rate.
Collapse
Affiliation(s)
- Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Mengnan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Xiaolu Li
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Baoping Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Chunhai Yi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Environmental Engineering, Pusan National University, Pusan, South Korea
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, South Korea
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
3
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Hou Y, Shah P, Constantoudis V, Gogolides E, Kappl M, Butt HJ. A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation. Nat Commun 2023; 14:6886. [PMID: 37898660 PMCID: PMC10613234 DOI: 10.1038/s41467-023-42204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023] Open
Abstract
Membrane distillation (MD) is an emerging desalination technology that exploits phase change to separate water vapor from saline based on low-grade energy. As MD membranes come into contact with saline for days or weeks during desalination, membrane pores have to be sufficiently small (typically <0.2 µm) to avoid saline wetting into the membrane. However, in order to achieve high distillation flux, the pore size should be large enough to maximize transmembrane vapor transfer. These conflicting requirements of pore geometry pose a challenge to membrane design and currently hinder broader applications of MD. To address this fundamental challenge, we developed a super liquid-repellent membrane with hierarchical porous structures by coating a polysiloxane nanofilament network on a commercial micro-porous polyethersulfone membrane matrix. The fluorine-free nanofilament coating effectively prevents membrane wetting under high hydrostatic pressure (>11.5 bar) without compromising vapor transport. With large inner micro-porous structures, the nanofilament-coated membrane improves the distillation flux by up to 60% over the widely used commercially available membranes, while showing excellent salt rejection and operating stability. Our approach will allow the fabrication of high-performance composite membranes with multi-scale porous structures that have wide-ranging applications beyond desalination, such as in cleaning wastewater.
Collapse
Affiliation(s)
- Youmin Hou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Power and Mechanical Engineering, Wuhan University, 430072, Wuhan, China
| | - Prexa Shah
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Evangelos Gogolides
- Institute of Nanoscience and Nanotechnology NCSR Demokritos, 15341, Agia Paraskevi, Greece
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
6
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
7
|
Dan H, Gao Y, Feng L, Yin W, Xu X, Gao B, Yue Q. Super-amphiphilic graphene promotes peroxymonosulfate-based emulsion catalysis for efficient oil purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130469. [PMID: 36463736 DOI: 10.1016/j.jhazmat.2022.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Oil fractions containing highly toxic and hazardous organic contaminants can not only cause severe environmental disasters, but also an undesired waste of resources. Given the exceptional performance of persulfates in the removal of persistent and refractory organic pollutants from aqueous media, herein, a peroxymonosulfate-based Pickering emulsion catalytic (PPEC) system was constructed for the hazardous oil purification, using super-amphiphilic graphene as a solid emulsifier and a heterogeneous catalyst simultaneously. Combined detailed instrumental analysis with theoretical calculations, we find that the incorporation of pyridinic N and its oxide significantly facilitated the formation of super-amphiphilic graphene and successfully induced the formation of Pickering emulsion. In addition to stabilizing the PPEC system, super-amphiphilic graphene can also achieve efficient removal of Sudan III (simulated lipophilic organic pollutant) by activating peroxymonosulfate (PMS) to generate •O2- and 1O2. Results showed that 80 mg/L Sudan III (20 mL) could be fully degraded within 30 min using 10 mL 5 mmol PMS. More significantly, our proposed PPEC system also exhibited excellent property in the purification of practical waste engine oil. This study provides new insights into the purification and recovery of waste oil.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| | - Lidong Feng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
8
|
An omniphobic membrane with macro-corrugation for the treatment of real pharmaceutical wastewater via membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Engineering omniphobic corrugated membranes for scaling mitigation in membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Peng J, Deka BJ, Wu S, Luo Z, Kharraz JA, Jia W. Rational Design of PDA/P-PVDF@PP Janus Membrane with Asymmetric Wettability for Switchable Emulsion Separation. MEMBRANES 2022; 13:14. [PMID: 36676821 PMCID: PMC9861049 DOI: 10.3390/membranes13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Water pollution caused by oil spills or sewage discharges has become a serious ecological environmental issue. Despite the membrane separation technique having a promising application in wastewater purification, the membrane fabrication method and separation robustness have remained unsatisfactory until now. Herein, we developed a novel strategy, spacer-assisted sequential phase conversion, to create a patterned polyvinylidene fluoride@polypropylene (P-PVDF@PP) substrate membrane with a multiscale roughened surface. Based on that surface structure, the underwater oil resistance behavior of the P-PVDF@PP membrane was improved. Moreover, owing to the abundant active sites on the P-PVDF@PP surface, the polydopamine/P-PVDF@PP (PDA/P-PVDF@PP) Janus membrane could be readily fabricated via wet chemical modification, which exhibited excellent switchable oil-water separation performance. Regarding surfactant-stabilized oil-water emulsion, the as-prepared PDA/P-PVDF@PP Janus membrane also had robust separation efficiency (as high as 99% in the n-hexane/water, chloroform/water, and toluene/water emulsion separation cases) and desirable reusability. Finally, the underlying mechanism of emulsion separation in the PDA/P-PVDF@PP Janus membrane was specified. The as-designed PDA/P-PVDF@PP Janus membrane with high-efficiency oil-water separation shows potential application in oily wastewater treatment, and the developed fabrication method has implications for the fabrication of advanced separation membranes.
Collapse
Affiliation(s)
- Jingjun Peng
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shaodi Wu
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| | - Zhongyuan Luo
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
| | - Jehad A. Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong SAR, China
| | - Wei Jia
- National Innovation Center for Advanced Medical Devices, National Institute of Advanced Medical Devices, Shenzhen 518110, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China
| |
Collapse
|
11
|
Liu D, Liu P, Liu D, Zhao J, Zhang T, Zhong L, Sun F, Liu J, Wang W. Binder-free in-situ reinforced nanofibrous membrane with anti-deformable pore structures for seawater concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Spraying Fluorinated Silicon Oxide Nanoparticles on CuONPs@CF-PVDF Membrane: A Simple Method to Achieve Superhydrophobic Surfaces and High Flux in Direct Contact Membrane Distillation. Polymers (Basel) 2022; 14:polym14235164. [PMID: 36501558 PMCID: PMC9740881 DOI: 10.3390/polym14235164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Desalinization of seawater can be achieved by membrane distillation techniques (MD). In MD, the membranes should be resistant to fouling, robust for extended operating time, and preferably provide a superhydrophobic surface. In this work, we report the preparation and characterization of a robust and superhydrophobic polyvinylidene fluoride membrane containing fluoroalkyl-capped CuONPs (CuONPs@CF) in the inner and fluorinated capped silicon oxide nanoparticles (SiO2NPs@CF) on its surface. SiO2NPs@CF with a mean diameter of 225 ± 20 nm were prepared by the sol method using 1H,1H,2H,2H-perfluorodecyltriethoxysilane as a capping agent. Surface modification of the membrane was carried out by spraying SiO2NPs@CF (5% wt.) dispersed in a mixture of dimethyl formamide (DMF) and ethanol (EtOH) at different DMF/EtOH % v/v ratios (0, 5, 10, 20, and 50). While ethanol dispersed the nanoparticles in the spraying solution, DMF dissolved the PVDF on the surface and retained the sprayed nanoparticles. According to SEM micrographs and water contact angle measurements, the best results were achieved by depositing the nanoparticles at 10% v/v of DMF/EtOH. Under these conditions, a SiO2NPs covered surface was observed with a water contact angle of 168.5°. The water contact angle was retained after the sonication of the membrane, indicating that the modification was successfully achieved. The membrane with SiO2NPs@CF showed a flux of 14.3 kg(m2·h)-1, 3.4 times higher than the unmodified version. The method presented herein avoids the complicated modification procedure offered by chemical step modification and, due to its simplicity, could be scalable to a commercial membrane.
Collapse
|
13
|
Yan X, Yang C, Ma C, Tao H, Cheng S, Chen L, Wang G, Lin X, Yao C. A novel janus membrane modified by MXene for enhanced anti-fouling and anti-wetting in direct contact membrane distillation. CHEMOSPHERE 2022; 307:136114. [PMID: 35998734 DOI: 10.1016/j.chemosphere.2022.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling and wetting limit the applications of membrane distillation (MD) for wastewater treatment, especially when treating the wastewater with a high concentration of low surface tension substances such as oil and surfactants. In this paper, virgin polyvinylidene fluoride (PVDF) membrane was modified by polydimethylsiloxane (PDMS) to enhance anti-wetting ability. Then a thin polydopamine (PDA) layer was coated as a reaction platform for further modification. Polyethyleneimine (PEI) was cross-linked with PDA to form a uniform and stable layer, through hydrogen bonds and electrostatic interaction to immobilize hydrophilic MXene, which formed a Janus MXene-PVDF membrane. The MXene layer was the key for superoleophobicity and high liquid entry pressure (LEP) of membrane, capable of mitigating membrane fouling and wetting when dealing with low surface tension wastewater (LSTW). From the experiments results, pristine PVDF membrane showed severe fouling and wetting with flux decline and salt leakage during treatment of LSTW (surfactants containing water, oil-in-water emulsion and sodium dodecyl sulfate stabilized oil-in-water emulsion). However, under the same conditions, the Janus MXene-PVDF membrane exhibited remarkably stable flux (9.3 kg m-2h-1, 9.1 kg m-2h-1, 10.2 kg m-2h-1) and salt rejection (almost 99.9%) after 15 h operation. Excellent fouling and wetting resistance of MXene-PVDF membrane was mainly attributed to its superhydrophilic and superoleophobic top surface (in-air water contact angle: 30.2°, under-water oil contact angle: 169.9°) and hydrophobic substrate (in-air water contact angle: 130.8°), together with high LEP value (91.1 Kpa). This study provides a viable route to fabricated a Janus membrane with outstanding fouling and wetting resistance for LSTW, oily wastewater and it has great potential for sewage treatment in the future.
Collapse
Affiliation(s)
- Xiaoju Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengyu Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Hui Tao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Shirong Cheng
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Lin Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Guodong Wang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xinping Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chengzhi Yao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
14
|
Dan H, Ji K, Gao Y, Yin W, Gao B, Yue Q. Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH 4H 2PO 4 modification for multi-behavioral oil/water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155869. [PMID: 35561933 DOI: 10.1016/j.scitotenv.2022.155869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrophobic and oleophilic biomass-based block materials are considered to be highly promising candidates used for oil/water separation. However, the crucial hydrophobic modification process often involves various toxic and hazardous organic substances or requires high energy inputs. Inspired by the flame retardant principle of phosphorus-containing flame retardants, herein, an Enteromorpha-derived carbon (ADP-EP) aerogel with a water contact angle of 144.2° was prepared by successive freeze-shaping, freeze-drying and low-temperature carbonization treatment (300 °C), using NH4H2PO4 (ADP) as a modifier. The results demonstrated that the introduction of NH4H2PO4 could largely facilitate the removal of oxygenated groups from the pristine EP aerogels and enhance their surface roughness, thereby achieving surface hydrophobic modification. Featuring intrinsic low density, rich porosity and strong lipophilicity, the as-fabricated ADP-EP aerogels exhibited exceptional performance in both oil spill adsorption (~140 g/g) and water-in-oil emulsion separation. Moreover, the good reusability for oil uptake was also realized thanks to its robust mechanical compressibility and thermal stability. This work provides a facile, economical and eco-friendly route to obtain a desirable hydrophobic/oleophilic surface.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Kaidi Ji
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Li B, Hou D, Li C, Yun Y. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sivaprakash B, Rajamohan N, Reshmi A, Annadurai A, Varjani S. Applications of submerged and staged membrane systems for pollutant removal from effluents and mechanism studies - a review. CHEMOSPHERE 2022; 301:134747. [PMID: 35490749 DOI: 10.1016/j.chemosphere.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Membrane based filtration is one of the promising technologies for rehabilitation of wastewater streams for reuse and recycle. Many advancements have emerged with the use of novel materials and innovative integrated technologies. The present investigation focuses on the treatment methods based on submerged and stages systems of membranes for water purification. Ceramic, polymeric and mixed matrix type of membranes fabricated for specific type of effluents, their modification methods for accelerating the rejection efficiency, permeability, durability, stability and antifouling properties are detailed in this review. Graphene oxide is the most considered membrane material for adsorption purposes as it exhibits larger surface area, abundant functional groups contain oxygen and has good supply of ligands which is responsible in metal adsorption as it enhances electrostatic interaction by bonding metal ions with graphene oxide nanosheets. Energy derivation in terms of biogas production was also reported in some integrated methods. In many cases, embedded nanomaterial matrices yielded maximum efficiencies in both the submerged and staged operations. However, submerged type of membranes are reported more than the staged type due to simpler configuration with relatively lesser equipment, operational and maintenance issues. In treatment of a low strength wastewater, aluminum oxide based membrane in fluidized bed assembly was reported to yield promising results with reduced power requirement.
Collapse
Affiliation(s)
- Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Angelin Reshmi
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Abitha Annadurai
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC-608002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
17
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Liu YJ, Lu YN, Liang DQ, Hu YS, Huang YX. Multi-Layered Branched Surface Fluorination on PVDF Membrane for Anti-Scaling Membrane Distillation. MEMBRANES 2022; 12:membranes12080743. [PMID: 36005658 PMCID: PMC9416731 DOI: 10.3390/membranes12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Membrane distillation (MD) has emerged as a promising technology for hypersaline wastewater treatment. However, membrane scaling is still a critical issue for common hydrophobic MD membranes. Herein, we report a multi-layered surface modification strategy on the commercial polyvinylidene fluoride (PVDF) membrane via plasma treatment and surface fluorination cycles. The repeated plasma treatment process generates more reaction sites for the fluorination reaction, leading to higher fluorination density and more branched structures. MD tests with CaSO4 as the scaling agent show that the modification strategy mentioned above improves the membrane scaling resistance. Notably, the PVDF membrane treated with three cycles of plasma and fluorination treatments exhibits the best anti-scaling performance while maintaining almost the same membrane flux as the unmodified PVDF membrane. This study suggests that a highly branched surface molecular structure with low surface energy benefits the MD process in both membrane flux and scaling resistance. Besides, our research demonstrates a universal and facile approach for membrane treatment to improve membrane scaling resistance.
Collapse
Affiliation(s)
- Yu-Jing Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Yan-Nan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Dong-Qing Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yin-Shuang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence:
| |
Collapse
|
19
|
Salami BA, Oyehan TA, Gambo Y, Badmus SO, Tanimu G, Adamu S, Lateef SA, Saleh TA. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42560-42600. [PMID: 35380322 DOI: 10.1007/s11356-022-19793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Babatunde Abiodun Salami
- Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tajudeen Adeyinka Oyehan
- Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Yahya Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gazali Tanimu
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sagir Adamu
- Chemical Engineering Department and Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Lateef
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
20
|
Shang W, Yang S, Liu W, Wong PW, Wang R, Li X, Sheng G, Lau W, An AK, Sun F. Understanding the influence of hydraulic conditions on colloidal fouling development by using the micro-patterned nanofiltration membrane: Experiments and numerical simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Farid MU, Kharraz JA, Lee CH, Fang JKH, St-Hilaire S, An AK. Nanobubble-assisted scaling inhibition in membrane distillation for the treatment of high-salinity brine. WATER RESEARCH 2022; 209:117954. [PMID: 34922105 DOI: 10.1016/j.watres.2021.117954] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, we report the use of nanobubbles (NBs) as a simple and facile approach to effectively delay scaling in membrane distillation (MD) during the treatment of highly saline feed (100 g L-1). Unlike conventional gas bubbling in MD for improving the hydrodynamic flow conditions in the feed channel, here we generated air NBs with an average size of 128.81 nm in the feed stream and examined their impact on membrane scaling inhibition during MD operation. Due to their small size, neutral buoyancy, and negative surface charge, NBs remain in suspension for a longer time (14 days), providing homogenous mixing throughout the entire feed water. The MD performance results revealed that severe membrane scaling happened during the DCMD treatment of high salinity brine in the absence of nanobubbles, which dramatically reduced the distillate flux to zero after 13 h. A one-time addition of air NBs in the saline feed significantly reduced salt precipitation and crystal deposition on the PVDF membrane surface, delayed the occurrence of flux decline, prevented membrane wetting, thereby prolonging the effective MD operating time. With similar feed concentration and operating conditions, only 63% flux decline after 98 h operation was recorded in nanobubble-assisted MD. Two key explanations were suggested for the delayed membrane scaling upon addition of air NBs in the MD feed: (1) NB-induced turbulent flow in the feed channel that increases the surface shear forces at the membrane surface, alleviating both temperature and concentration polarization effect, (2) electrostatic attractions of the counterions to the negatively charged NBs, which reduces the availability of these ions in the bulk feed for scale formation.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, at Chee Avenu, Kowloon, China Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, at Chee Avenu, Kowloon, China Hong Kong Special Administrative Region
| | - Cheng-Hao Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China Hong Kong Special Administrative Region; Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, China Hong Kong Special Administrative Region
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, China Hong Kong Special Administrative Region; Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, China Hong Kong Special Administrative Region; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China Hong Kong Special Administrative Region
| | - Sophie St-Hilaire
- Department of Infectious Disease and Public Health, City University of Hong Kong, Kowloon, China Hong Kong Special Administrative Region
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, at Chee Avenu, Kowloon, China Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
Kharraz JA, Farid MU, Jassby D, An AK. A systematic study on the impact of feed composition and substrate wettability on wetting and fouling of omniphobic and janus membranes in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Abstract
Water serves as an indispensable part of human life and production. On account of the overexploitation of traditional water sources, the demand for wastewater recycling is expanding rapidly. As a promising water treatment process, membrane distillation (MD) has been utilized in various wastewater treatments, such as desalination brine, textile wastewater, radioactive wastewater, and oily wastewater. This review summarized the investigation work applying MD in wastewater treatment, and the performance was comprehensively introduced. Moreover, the obstructions of industrialization, such as membrane fouling, membrane wetting, and high energy consumption, were discussed with the practical investigation. To cope with these problems, various strategies have been adopted to enhance MD performance, including coupling membrane processes and developing membranes with specific surface characteristics. In addition, the significance of nutrient recovery and waste heat utilization was indicated.
Collapse
|
24
|
Zhu H, Cai S, Zhou J, Li S, Wang D, Zhu J, Wu Y, Huang Y, Yuan S, Jin S, Xia F. Integration of water collection and purification on cactus- and beetle-inspired eco-friendly superwettable materials. WATER RESEARCH 2021; 206:117759. [PMID: 34715525 DOI: 10.1016/j.watres.2021.117759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Freshwater shortage has been a terrible threat for the sustainable progress and development of human society in 21st century. Inspired from natural creatures, harvesting water from atmosphere has been a feasible and effective method to alleviate water shortage crisis. However, the recent works related to water collection just focuses on how to optimize fog-harvesting manners and efficiencies, the safety and availability of collected water are always ignored. In this paper, we proposed a new strategy accessed to freshwater resources through combining water collection and purification together on eco-friendly superwettable material inspired by cactus spines and desert beetles. Six superhydrophilic wedge-shaped patterns prepared by P25 TiO2 nanoparticles (NPs) were constructed on candle soot@polydimethylsiloxane (CS@PDMS) superhydrophobic coating. The special superhydrophilic regions not only effectively captured water from foggy environment but generated Laplace pressure gradient to faster drive water away. The bioinspired material exhibited an efficient water collection rate (WCR) of 14.9 ± 0.2 mg min-1 cm-2, which was 5.3 and 2.5 times larger than that on uniformed superhydrophilic and superhydrophobic surfaces, respectively. Because of the existence of photocatalytic P25 NPs in wetting areas, the harvested wastewater containing nine kinds of pesticides (0.5 mg/L) could be purified in low concentrations (< 5%) under UV light (365 nm, 5.0 ± 0.6 mW cm-2). Ten zebrafishes were still alive in such purified water for 72 h, as a contrast, the same number of fishes would almost die in untreated harvested wastewater in just 7 h. This work indeed opens up a new sight to freshwater accessibility, aiming to a promising project for alleviating water shortage around the world.
Collapse
Affiliation(s)
- Hai Zhu
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jia Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Siqi Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Juan Zhu
- Xianning ecological environment monitoring center of Hubei ecological environment department, Xianning, China
| | - Yaqin Wu
- Xianning ecological environment monitoring center of Hubei ecological environment department, Xianning, China
| | - Yu Huang
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Songhu Yuan
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Fan Xia
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| |
Collapse
|
25
|
Sinha Ray S, Dommati H, Wang JC, Lee HK, Park YI, Park H, Kim IC, Chen SS, Kwon YN. Facile approach for designing a novel micropatterned antiwetting membrane by utilizing 3D printed molds for improved desalination performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
27
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Saldías C, Terraza CA, Leiva A, Koschikowski J, Winter D, Tundidor-Camba A, Martin-Trasanco R. PVDF Composite Membranes with Hydrophobically-Capped CuONPs for Direct-Contact Membrane Distillation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1497. [PMID: 34198766 PMCID: PMC8227552 DOI: 10.3390/nano11061497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022]
Abstract
Water scarcity is an imminent problem that humanity is beginning to attempt to solve. Among the several technologies that have been developed to mitigate water scarcity, membrane distillation is of particular note. In the present work, CuO nanoparticles capped with 1-octanethiol (CuONPs@CH) or 1H,1H,2H,2H-perfluorodecanethiol (CuONPs@CF) are prepared. The nanoparticles are characterized by FT-IR and TGA methods. Two weight losses are observed in both cases, with the decomposition of the organic fragments beginning at 158 °C and 230 °C for CuONPs@CF and CuONPs@CH, respectively. Flat sheet PVDF composite membranes containing nanoparticles are prepared by the casting solution method using nanoparticle concentrations that ranged between 2-20% with a non-woven polyester fabric as support. The obtained membranes showed a thickness of 240 ± 40 μm. According to water contact angle (87° for CuONPs@CH and 95° for CuONPs@CF, both at 10% w.t) and roughness (12 pixel for CuONPs@CH and 14 pixels for CuONPs@CF, both at 10% w.t) determinations, the hydrophobicity of membranes changed due to a decrease in surface energy, while, for naked CuONPs, the roughness factor represents the main role. Membranes prepared with capped nanoparticles showed similar porosity (60-64%). SEM micrographs show asymmetric porous membranes with a 200-nm surface pore diameter. The largest finger-like pores in the membranes prepared with CuONPs, CuONPs@CH and CuONPs@CF had values of 63 ± 10 μm, 32 ± 8 μm, and 45 ± 10 μm, respectively. These membranes were submitted to a direct contact membrane distillation module and flux values of 1.8, 2.7, and 3.9 kg(m2·h)-1 at ΔT = 30 °C were obtained for the CuONPs, CuONPs@CH, and CuONPs@CF, respectively. The membranes showed 100% salt rejection during the testing time (240 min).
Collapse
Affiliation(s)
- César Saldías
- Department of Physical Chemistry, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile; (C.S.); (A.L.)
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile;
- UC Energy Research Center, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
| | - Angel Leiva
- Department of Physical Chemistry, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile; (C.S.); (A.L.)
| | - Joachim Koschikowski
- Fraunhofer Institute for Solar Energy Systems (ISE), 79110 Freiburg, Germany; (J.K.); (D.W.)
| | - Daniel Winter
- Fraunhofer Institute for Solar Energy Systems (ISE), 79110 Freiburg, Germany; (J.K.); (D.W.)
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile;
- UC Energy Research Center, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
| | - Rudy Martin-Trasanco
- Departamento de Química, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Santiago 8940577, Chile
| |
Collapse
|
29
|
Deka BJ, Guo J, An AK. Robust dual-layered omniphobic electrospun membrane with anti-wetting and anti-scaling functionalised for membrane distillation application. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
32
|
Effects of different secondary nano-scaled roughness on the properties of omniphobic membranes for brine treatment using membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Farid MU, Kharraz JA, An AK. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3805-3815. [PMID: 33444505 DOI: 10.1021/acsami.0c17154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrate the desalination performance of a solar-driven membrane distillation (MD) process, where upon light illumination, a highly localized heating of plasmonic titanium nitride nanoparticles (TiN NPs) immobilized on a hydrophobic membrane provides the thermal driving force for the MD operation. The engineered TiN photothermal membrane induces vapor generation directly at the feed-membrane interface upon solar irradiation, thereby eliminating the need to heat the entire bulk feed water. The results indicate that the average vapor flux through the TiN photothermal membrane without any auxiliary feed heating was recorded as 1.01 L m-2 h-1, which corresponds to the solar-thermal efficiency of 66.7% under 1 sun solar irradiance. The superior performance of the photothermal MD process is attributed to the broadband optical absorption and excellent light-to-heat conversion properties of the plasmonic TiN NP layer, which enabled efficient interfacial water heating at the membrane surface and increased the net driving force for vapor transport. Results also reveal the high mechanical stability of the TiN photothermal coating layer during long-term photothermal MD operations. We believe that the TiN photothermal membranes fabricated using a relatively inexpensive and nontoxic material via the simple technique with high stability and photothermal conversion efficiency will provide a path forward for developing the solar-driven MD applications.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Department of Science, School of Science and Technology, Open University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
34
|
Khan AA, Siyal MI, Kim JO. Fluorinated silica-modified anti-oil-fouling omniphobic F-SiO 2@PES robust membrane for multiple foulants feed in membrane distillation. CHEMOSPHERE 2021; 263:128140. [PMID: 33297128 DOI: 10.1016/j.chemosphere.2020.128140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Direct-contact membrane distillation (DCMD) can be eminent solution for oily wastewater treatment if the membrane provided is slippery and tolerant to low surface tension complex solutions. This study describes preparation of an anti-oil-fouling omniphobic polyethersulfone membrane using fluorinated silica nanoparticles (F-SiO2@PES) combined with perfluorodecyl triethoxysilane and polydimethylsiloxane for application against oil-In-water (o/w) emulsions. Feed solutions consist of different concentrations of oil (hexadecane), different charge surfactants (anionic sodium dodecyl benzenesulfonate, non-ionic Tween 20, and cationic hexadecyltrimethylammonium bromide, and salt (NaCl). The hierarchical re-entrant micro structured surface of the omniphobic F-SiO2@PES membrane and functional groups are confirmed by atomic force microscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The anti-oil-fouling and anti-wetting performance of omniphobic F-SiO2@PES membranes are investigated using contact-angle, sliding angles, DCMD tests with multiple foulants of surfactants. Omniphobic F-SiO2@PES membrane exhibited effective anti-oil-fouling and anti-wetting performance against emulsions as no severe fouling and a conductivity rises were evident regardless of surfactant charge and the concentration of components. Flux reduction and rejection rates for the omniphobic F-SiO2@PES membranes are in a range of 5-15% (only) and >99%, respectively, for various combinations of feed solution components.
Collapse
Affiliation(s)
- Aftab Ahmad Khan
- Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Muhammad Irfan Siyal
- Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
35
|
Xu Y, Yang Y, Sun M, Fan X, Song C, Tao P, Shao M. High‐performance desalination of high‐salinity reverse osmosis brine by direct contact membrane distillation using superhydrophobic membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuanlu Xu
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Yi Yang
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Menghan Sun
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Xinfei Fan
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Chengwen Song
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Ping Tao
- College of Environmental Science and Engineering Dalian Maritime University Dalian China
| | - Mihua Shao
- College of Marine Engineering Dalian Maritime University Dalian China
| |
Collapse
|
36
|
Qing W, Wu Y, Li X, Shi X, Shao S, Mei Y, Zhang W, Tang CY. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118226] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|