1
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intl1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Zhangyang Road 699, 200122, Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Niemenkatu 73, 15240, Lahti, Finland; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, China.
| |
Collapse
|
2
|
Liao X, Guo R, Mei M, Li J, Wang T, Liu J, Chen S, Wang W. Insights into the performance and mechanism of a reinforced lignocellulosic sorbent fabricated from sawdust biomass for multi-tasking application in enrofloxacin removal and monitoring. Int J Biol Macromol 2024; 285:138316. [PMID: 39638168 DOI: 10.1016/j.ijbiomac.2024.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Natural lignocellulose-based materials have numerous strengths such as abundance, cheap price and biodegradability, which indicates a brilliant prospect for environmental protection. This work aimed to design an efficient sorbent (NaSS-PSD) by pine sawdust (PSD) for the surveillance and management of enrofloxacin (ENR). In the study, sodium styrenesulfonate (NaSS) was chosen as an effective monomer to ameliorate the performance of PSD by graft copolymerization. The removal of ENR by NaSS-PSD was enhanced in comparison with the ungrafted ones under investigated conditions. Pseudo-second-order and Temkin were the best-fitted models to describe the adsorption behavior. For the first time, NaSS-PSD was employed as a novel extractant of solid-phase extraction (SPE) and dispersive solid-phase microextraction (DSPME) to develop accurate, eco-friendly and economic analytical techniques for trace ENR determination. Good linearity and reproducibility were obtained. The limits of detection were 0.41 μg/L for DSPME-HPLC-DAD technique and 0.15 μg/L for SPE-HPLC-DAD technique. These two methods exhibited satisfying practicability when applied to quantify ENR residue in real waters. The study on interfacial interaction mechanism and preferential binding sites suggested that hydrogen bond and π-π interactions took the primary responsibility. Our work provides a good perspective for tailoring natural lignocellulosic biomass to be alternative adsorbents for emerging pollutants.
Collapse
Affiliation(s)
- Xuan Liao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Ruiyu Guo
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Wenxia Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
3
|
Wu Y, Zheng J, Liu J, Lin Q, Zeng C, Liu Y, Luo H, Luo Y, Pan J, Xie H. Degradation of diclofenac sodium by peroxymonosulfate activated with a sulfur-doped chitosan ferrocarbon material: Synergistic interaction of free radical and nonfree radical pathways. J Colloid Interface Sci 2024; 680:734-747. [PMID: 39580925 DOI: 10.1016/j.jcis.2024.11.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The synthesis of efficient and stable peroxymonosulfate (PMS) catalysts by doping naturally degradable and functional group-rich chitosan (CS) with nonmetallic atoms remains challenging. In this study, an environmentally friendly electron-rich S-doped CS ferrocarbon material (Fe-S-CN) was synthesized via the sol-gel method, and the resulting material exhibited excellent catalytic activity (up to 98.6 % diclofenac sodium (DCF) removal in 5 min), wide pH applicability, environmental tolerance and renewability. Moreover, Fe-S-CN synergistically activated PMS via both the radical pathway (superoxide radical (O2•-)) and the nonradical pathway (single-linear oxygen (1O2) and electron transfer processes (ETP)) to efficiently mineralize DCF. O2•- originates from the self-decomposition of PMS, whereas 1O2 is due to the oxidation of PMS and further conversion of O2•-. In addition, Fe species, graphitic N and thiophene S are the major active sites in Fe-S-CN. The susceptibility sites of DCF and its possible degradation pathways in the Fe-S-CN/PMS system were inferred in conjunction with density functional theory (DFT) calculation. The present study creates a promising scenario for the synergistic effect of easily overlooked heteroatom doping in chitosan iron-carbon materials in the removal of difficult-to-biodegrade organic matter from water bodies.
Collapse
Affiliation(s)
- Yajie Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junli Zheng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chen Zeng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieyi Pan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., China
| |
Collapse
|
4
|
Ran T, Ji C, Zhang Q, Wang S, Zhang Y, Niu W, Wei T, Shi Y. Advanced treatment and reuse of dye wastewater using thermo-irreversible on/off switch starch with disruption of dissolution/precipitation dynamic equilibrium. Carbohydr Polym 2024; 342:122425. [PMID: 39048208 DOI: 10.1016/j.carbpol.2024.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
The development of irreversible on/off switching materials is a potential strategy for unidirectional capture and encapsulation of pollutants, preventing the pollutant leakage problem resulting from the reversible dissolution of flocculants. Herein, a thermo-irreversible on/off switch starch (TISS) is prepared through modifying starch by etherification grafting glycidyl phenyl ether and 2,4-bis(dimethylamino)-6-chloro-[1,3,5]-triazine. It breaks the dissolution/precipitation dynamic equilibrium across heating-cooling cycles by thermal-induced irreversible coil-to-globule self-assembly of polymer chains, resulting in a 50-fold decrease in polymer solubility. Particularly, TISS shows a superior double-locking effect on pollutants and flocculants through its unique irreversible conformation memory capability, leading to a high-quality reuse water. 99.9 % of reactive brilliant red dye and 97.9 % of TISS remain fixed within sludge flocs even after prolonged immersion in cold water at 24 °C for 60 days. Furthermore, direct recycling and reuse of dye-bath energy can be realized through the isothermal flocculation and dyeing method, showing a 75 % decrease in energy consumption after three cycles compared to traditional dyeing techniques. This work presents a novel approach to constructing an irreversible pollutant delivery system using thermo-irreversible on/off switch starch, addressing the problems of high energy dissipation and water quality fluctuations during wastewater treatment.
Collapse
Affiliation(s)
- Tingmin Ran
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Qi Zhang
- Xinjiang Shenbang Environmental Engineering Co., Ltd, Shihezi 832000, China
| | - Shengxin Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Yanxue Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Tingting Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Yulin Shi
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
5
|
Wang YB, Tang J, Ran DD, Zhu XM, Zheng SJ, Hong SD, Fu SF, van Loosdrecht MCM, Zeng RJ, Dai K, Zhang F. Deciphering the Dual Roles of an Alginate-Based Biodegradable Flocculant in Anaerobic Fermentation of Waste Activated Sludge: Dewaterability and Degradability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083369 DOI: 10.1021/acs.est.4c05971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Biodegradable flocculants are rarely used in waste activated sludge (WAS) fermentation. This study introduces an alginate-based biodegradable flocculant (ABF) to enhance both the dewatering and degradation of WAS during its fermentation. Alginate was identified in structural extracellular polymeric substances (St-EPS) of WAS, with alginate-producing bacteria comprising ∼4.2% of the total bacterial population in WAS. Owing to its larger floc size, higher contact angle, and lower free energy resulting from the Lewis acid-base interaction, the addition of the prepared ABF with a network structure significantly improved the dewaterability of WAS and reduced capillary suction time (CST) by 72%. The utilization of ABF by an enriched alginate-degrading consortium (ADC) resulted in a 35.5% increase in the WAS methane yield owing to its higher hydrolytic activity on both ABF and St-EPS. Additionally, after a 30 day fermentation, CST decreased by 62% owing to the enhanced degradation of St-EPS (74.4%) and lower viscosity in the WAS + ABF + ADC group. The genus Bacteroides, comprising 12% of ADC, used alginate lyase (EC 4.2.2.3) and pectate lyase (EC 4.2.2.2 and EC 4.2.2.9) to degrade alginate and polygalacturonate in St-EPS, respectively. Therefore, this study introduces a new flocculant and elucidates its dual roles in enhancing both the dewaterability and degradability of WAS. These advancements improve WAS fermentation, resulting in higher methane production and lower CSTs.
Collapse
Affiliation(s)
- Yi-Bo Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Tang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Di Ran
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Mei Zhu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shan-Fei Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Zhang S, Yi X, He D, Tang X, Chen Y, Zheng H. Recent progress and perspectives of typical renewable bio-based flocculants: characteristics and application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46877-46897. [PMID: 38980480 DOI: 10.1007/s11356-024-34199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaohui Yi
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Dilin He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
7
|
Wang Z, Zhang L, Su R, Yang L, Xiao F, Chen L, He P, Yang D, Zeng Y, Zhou Y, Wan Y, Tang B. PANI/GO and Sm co-modified Ti/PbO 2 dimensionally stable anode for highly efficient amoxicillin degradation: Performance assessment, impact parameters and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121435. [PMID: 38889646 DOI: 10.1016/j.jenvman.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Yali Zeng
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China
| | - Yun Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
8
|
Zhao L, Lei T, Chen R, Tian Z, Bian B, Graham NJD, Yang Z. Bioinspired stormwater control measure for the enhanced removal of truly dissolved polycyclic aromatic hydrocarbons and heavy metals from urban runoff. WATER RESEARCH 2024; 254:121355. [PMID: 38430755 DOI: 10.1016/j.watres.2024.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Stormwater harvesting (SWH) addresses the UN's Sustainable Development Goals (SDGs). Conventional stormwater control measures (SCMs) effectively remove particulate and colloidal contaminants from urban runoff; however, they fail to retain dissolved contaminants, particularly substances of concern like polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs), thereby hindering the SWH applicability. Here, inspired by protein folding in nature, we reported a novel biomimetic SCM for the efficient removal of dissolved PAHs and HMs from urban runoff. Lab-scale tests were conducted together with a more mechanistic investigation on how the contaminants were removed. By integrating hydrophobic organic chains with low-cost hydrophilic flocculant matrixes, our biomimetic flocculants achieved a 1.4-9.5 times removal of all detected dissolved PAHs and HMs, while enhancing the removal of a wide-spectrum of particulate and colloidal contaminants, compared to existing SCMs. Ecotoxicity, as indicated by newborn Daphnia magna as experimental organisms, was reduced from "acute toxicity" of the original runoff sample (toxic unit of ∼2.6) to "non-toxicity" (toxic unit < 0.4) of the treated water. The improved performance is attributed to the protein-folding-like features of the bioinspired flocculants providing: (i) stronger binding to PAHs (via hydrophobic association) and HMs (via coordination), and (ii) the ability of spontaneous aggregation. The bio-inspired approach in this work holds strong promise as an alternative or supplementary component in SCM systems, and is expected to contribute to sustainable water management practices in relation to SDGs.
Collapse
Affiliation(s)
- Lina Zhao
- School of Chemistry and Materials Science, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Tao Lei
- School of Chemistry and Materials Science, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ruhui Chen
- School of Chemistry and Materials Science, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Bo Bian
- School of Chemistry and Materials Science, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | - Zhen Yang
- School of Chemistry and Materials Science, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Kong Y, Guo M, Lu F, Huang A, Nie Y, Ma J. Coagulation performance and mechanism analysis of humic acid by using covalently bonded coagulants: effect of pH and matching mechanism of humic acid functional groups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22560-22575. [PMID: 38407709 DOI: 10.1007/s11356-024-32257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Conventional inorganic coagulants (Al, Fe) and Al/Fe-based covalently bonded flocculants (CAFMs) had different hydrolysis species at different pHs, which subsequently led to differences in their binding sites and complexation ability with humic acid (HA). Studying the binding sites and interactions between CAFMs, AlCl3 (Al), and FeCl3 (Fe) hydrolysates and HA molecules is critical to understanding the coagulation mechanism. The results found that CAFM 0.6, Al, and AlCl3 combined FeCl3 (Al/Fe) removed more than 90% of HA at pH 6, and CAFMs showed higher HA removal rate than that of Al, Fe, and Al/Fe under the same reaction conditions. The flocs of CAFMs contained abundant -NH2/OH as well as the large particle size, compact structure, and excellent settling performance. The hydrolyzed species of Al and Fe were predominantly Alb and Feb at pH 6, but the hydrolyzed species of CAFMs were primarily (Al + Fe)c. Moreover, the hydrolyzed species of Al and Al/Fe were found to complex with HA functional groups such as -COOH, C = O, C-H/C-C, C = C, and C-OH to form ligand bonds, while the hydrolyzed species (Al + Fe)c of CAFMs could deeply interact with HA functional groups including C-O, -COOH, C = O, C-H/C-C, C = C, and C-OH by the adsorption and sweeping.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Meng Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Fan Lu
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Aihua Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China.
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China.
| |
Collapse
|
10
|
Gao Z, Ju B, Tang B, Ma W, Niu W, Zhang S. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38297996 DOI: 10.1021/acs.langmuir.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Flocculants are crucial agents in wastewater treatment because they can remove oppositely charged impurities effectively and swiftly. However, flocculation also inevitably causes secondary contamination due to the residual properties, nonreusability, and nondegradability of traditional flocculant molecules. Herein, an ecofriendly starch-based flocculant, i.e., 2,4-bis(dimethylamino)-[1,3,5]-triazine-6-starch, was synthesized via a preactivation-etherification strategy. The large molecular weight property of the flocculant produced by this method enhances the intermolecular hydrophobic association, achieving complete phase separation of all flocculant molecules from water and residue-free flocculation for the first time. Importantly, a large molecular weight tertiary amine starch-based flocculant (LMTS) exhibits a remarkable flocculation capacity of over 1800 mg·g-1 for dye wastewater, which is significantly higher than that of traditional polyacrylamide and polyaluminum chloride flocculants. Furthermore, the LMTS flocculant could be recycled by pH adjustment, and its structural stability ensured sustained reusability. This high-performance residue-free biomass-based flocculant offers a green advance for wastewater treatment.
Collapse
Affiliation(s)
- Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Kar S, Dey S, Chowdhury KB, Ghosh SK, Mukhopadhyay J, Kumar S, Ghosh S, Majumdar S. Phyto-assisted synthesis of CuO/industrial waste derived biochar composite for adsorptive removal of doxycycline hydrochloride and recycling of spent biochar as green energy storage device. ENVIRONMENTAL RESEARCH 2023; 236:116824. [PMID: 37549783 DOI: 10.1016/j.envres.2023.116824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
The highest exposure of Endocrine disrupting compounds (EDC) into the water bodies as a result of extensive production and application of Covid-19 related drugs is a growing concern now a days. Herein, a novel nanocomposite material was developed by impregnating green synthesized copper oxide nanoparticles on the porous surface of fabric waste derived biochar to eliminate the concerned EDCs along with a sustainable disposal strategy for the spent adsorbent. Morphological characterizations by Field emission scanning electron microscopy confirmed the formation of hierarchical porous structured material. X-ray analysis revealed presence of both amorphous nature of biochar matrix as well as the crystalline nature attributed from monodispersion of copper oxide nanoparticles onto biochar surface. Batch sorption study showed removal of doxycycline hydrochloride (DOX) of >97% after 2 h at pH 7, 30 mg L-1 initial concentration of DOX and 2 g L-1 of adsorbent dose at room temperature after a two-step optimization process. Spectroscopic study and Raman shift suggested that pore filling, strong complexation and electrostatic interactions maximise the adsorption of DOX in the CuO/biochar composite as compared to the pristine biochar. However disposal of spent adsorbent is a crucial aspect for the environment and therefore, a sustainable recycling strategy for DOX loaded adsorbent as electrode material has been proposed for the first time in this study. Maximum specific capacitance value was observed in the range of 221.9-297.3 F g-1 for the DOX loaded nanocomposite at 1 mV s-1 comparable with other reported heteroatom-doped carbonaceous material as electrode. Therefore the excellent adsorption capacity of green synthesized CuO/biochar composite and its recycling after DOX adsorption can be recommended as a sustainable solution for mitigation of pharmaceuticals from wastewater. A detail study on degradation of DOX into eco-friendly products and its cost-effectiveness would be beneficial to suggest appropriate mitigation strategy for such compounds.
Collapse
Affiliation(s)
- Susmita Kar
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shoroshi Dey
- Energy Materials and Device Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kushal Banik Chowdhury
- Socio-Economic Research Unit, Indian Statistical Institute (North-East Centre), Tezpur, Assam 784501, India
| | - Sudip Kumar Ghosh
- Energy Materials and Device Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Jayanta Mukhopadhyay
- Energy Materials and Device Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Sourja Ghosh
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Swachchha Majumdar
- Membrane and Separation Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
12
|
Guo K, Yu C, Gao B, Liu B, Wang Z, Wang Y, Yue Q, Gao Y. Intrinsic mechanism for the removal of antibiotic pollution by a dual coagulation process from the perspective of the interaction between NOM and antibiotic. WATER RESEARCH 2023; 244:120483. [PMID: 37633212 DOI: 10.1016/j.watres.2023.120483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
Antibiotics bring potential risks to human health and ecosystem, and their coexistence with natural organic matters (NOMs) could have harmful impacts on the environment. Herein, a polyaluminium chloride (PAC)-polydimethyl diallyl ammonium chloride (PDMDAAC) dual coagulation process was designed to remove the co-pollutants of chlortetracycline (CTC) and humic acid (HA), representing antibiotics and NOMs, respectively. The main research strength was given to understand molecular interactions and their mechanisms associated with the coagulation and flocculation. We found that the co-existing HA and CTC increased the hydrophily and stability of contaminants, and generated HA@CTC complexes with large particles size. The interaction mechanism between CTC and HA was mainly hydrogen bonding, hydrophobic association action, n-π* electron donor-acceptor interaction, and π-π* conjugation. Lewis acid-base interaction was the main force between HA and CTC. The bonding energies of OH…N, OH…O, and hydrophobic association were -12.2 kcal/mol, -13.1 kcal/mol, and -11.4 kcal/mol, respectively, indicating that hydrogen bonding was stronger than hydrophobic association. The interactions between HA and CTC could improve their removal efficiency in the coagulation process. This is due to that the functional groups (COOH and OH) in the HA@CTC could be adsorbed by Al based hydrolysates. Polar interaction dominated the CTC and HA removal, and PAC was more efficient than PDMDAAC to remove HA@CTC complexes due to its higher complexing capacity. Thanks to the low concentration of residual contaminants and the formation of large and loose flocs, the interaction of HA and CTC could alleviate membrane fouling during ultrafiltration process. This study will provide new insight into the efficient removal of combined pollution and membrane fouling control.
Collapse
Affiliation(s)
- Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Chenghui Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| |
Collapse
|
13
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
14
|
Zhao S, Zhang J, Yang W, Liu M, Yan Y, Jia W. Application of laminarin as a novel coagulant aid to improve coagulation-ultrafiltration efficiency. ENVIRONMENTAL RESEARCH 2023; 228:115909. [PMID: 37060989 DOI: 10.1016/j.envres.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Polyacrylamide (PAM) is the most commonly used coagulant aid in coagulation-ultrafiltration (C-UF) systems; however, its hydrolyzed monomer is harmful to the human nervous system. In this study, laminarin (LA), was extracted from Laminaria japonica and used as a novel coagulant aid to improve coagulation efficiency and reduce membrane fouling during the C-UF process. Optimal LA usage conditions were systematically examined and compared with those of PAM to evaluate their potential for industrial applications. The results revealed that coagulation efficiency could be enhanced by 15-35% with moderate LA addition, which exhibited comparable aid effects to PAM. LA exhibited the highest coagulation aid effect at pH 8-9, and under this condition, turbidity and natural organic matter (NOM) removal achieved 82% and 54%, respectively. Compared with a one-time LA dosing strategy, the pollutant removal capacity of batch dosing was superior. Even in lower water temperatures (5-15 °C), coagulation efficiency was still satisfied, which exhibited a good practical application perspective. The coagulation aid role of LA should be attributed to its long-chain molecular structure, which enhances the bridging role between micro flocs and assists floc growth, thus facilitating the formation of large flocs. In addition, LA adsorption on floc surface was conducive to the direct electrostatic repulsion effect of electronegative membrane, which resulted in a more porous cake layer and higher membrane flux. Therefore, LA exhibits excellent application potential for eliminating NOM while simultaneously reducing membrane fouling through the C-UF process.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| | - Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| | - Mingkai Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| | - Yan Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| | - Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221000, China.
| |
Collapse
|
15
|
Jin W, Nan J, Chen M, Song L, Wu F. Superior performance of novel chitosan-based flocculants in decolorization of anionic dyes: Responses of flocculation performance to flocculant molecular structures and hydrophobicity and flocculation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131273. [PMID: 36996540 DOI: 10.1016/j.jhazmat.2023.131273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To achieve economical and efficient decolorization, two novel flocculants, weakly hydrophobic comb-like chitosan-graft-poly (N, N-Dimethylacrylamide) (CSPD) and strongly hydrophobic chain-like chitosan-graft-L-Cyclohexylglycine (CSLC) were synthesized in this study. To assess the effectiveness and application of CSPD and CSLC, the impacts of factors, including flocculant dosages, initial pH, initial dye concentrations, co-existing inorganic ions and turbidities, on the decolorization performance were explored. The results suggested that the optimum decolorizing efficiencies of the five anionic dyes ranged from 83.17% to 99.40%. Moreover, for accurately controlling flocculation performance, the responses to flocculant molecular structures and hydrophobicity in flocculation using CSPD and CSLC were studied. The Comb-like structure gives CSPD a wider dosage range for effective decolorization and better efficiencies with large molecule dyes under weak alkaline conditions. The strong hydrophobicity makes CSLC more effective in decolorization and more suitable for removing small molecule dyes under weak alkaline conditions. Meanwhile, the responses of removal efficiency and floc size to flocculant hydrophobicity are more sensitive. Mechanism studies revealed that charge neutralization, hydrogen bonding and hydrophobic association worked together in the decolorization of CSPD and CSLC. This study has provided meaningful guidance for developing flocculants in the treatment of diverse printing and dyeing wastewater.
Collapse
Affiliation(s)
- Wenxing Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Langrun Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
16
|
Wang Z, Chen R, Li Y, Yang W, Tian Z, Graham NJD, Yang Z. Protein-folding-inspired approach for UF fouling mitigation using elevated membrane cleaning temperature and residual hydrophobic-modified flocculant after flocculation-sedimentation pre-treatment. WATER RESEARCH 2023; 236:119942. [PMID: 37031529 DOI: 10.1016/j.watres.2023.119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hydrophobic-modified flocculants have demonstrated considerable promise in the removal of emerging contaminants by flocculation. However, there is a lack of information about the impacts of dosing such flocculants on the performance of subsequent treatment unit(s) in the overall water treatment process. In this work, inspired by the ubiquitous protein folding phenomenon, an innovative approach using an elevated membrane cleaning temperature as the means to induce residual hydrophobic-modified chitosan flocculant (TRC), after flocculation-sedimentation, to reduce membrane fouling in a subsequent ultrafiltration was proposed; this was evaluated in a continuous flocculation-sedimentation-ultrafiltration (FSUF) process treating samples of the Yangtze River. The hydrophobic chains of TRC had similar temperature-dependent hydrophobicity to those of natural proteins. In the 40-day operation of the FSUF system with combined dosing of alum and TRC, a moderately elevated cleaning water temperature (45 °C) of both backwash with air-bubbling and soaking with sponge-scrubbing cleaning, significantly reduced reversible and irreversible fouling resistance by 49.8%∼61.3% and 73.9%∼83.3%, respectively, compared to the system using cleaning water at 25 °C. Material flow analysis, statistical analysis, instrumental characterizations, and computational simulations, showed that the enhanced fouling mitigation originated from three factors: the reduced contaminant accumulation onto membranes, the strengthened membrane-surface-modification role of TRC, and the weakened structure of the fouling material containing TRC, at the elevated cleaning temperature. Other measures of the performance, these being water purification, membrane stability and economic aspects, also confirmed the potential and feasibility of the proposed approach. This work has provided new insights into the role of hydrophobic-modified flocculants in membrane fouling control, in addition to emerging contaminant removal, in a FSUF surface water treatment process.
Collapse
Affiliation(s)
- Zhangzheng Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ruhui Chen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Yunyun Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
17
|
Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, Khalid M, Zairin DA. Parametric and kinetic studies of activated sludge dewatering by cationic chitosan-like bioflocculant BF01314 produced from Citrobacter youngae. ENVIRONMENTAL RESEARCH 2023; 224:115527. [PMID: 36822539 DOI: 10.1016/j.envres.2023.115527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
Collapse
Affiliation(s)
- Nur Syahirah Mohamed Hatta
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Shiew Wei Lau
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Han Bing Chua
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Tushar Kanti Sen
- Chemical Engineering Department, King Faisal University, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun, 248007 Uttarakhand, India
| | - Danial Aminin Zairin
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
18
|
Qin J, Fang Y, Shi J, Tokoro C, Córdova-Udaeta M, Oyama K, Zhang J. Waste-Based Ceramsite for the Efficient Removal of Ciprofloxacin in Aqueous Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5042. [PMID: 36981951 PMCID: PMC10049662 DOI: 10.3390/ijerph20065042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Ciprofloxacin (CIP), a compound with bioaccumulation toxicity and antibiotic resistance, is frequently detected in water at alarming concentrations, which is becoming an increasing concern. In this study, a low-cost ceramsite was developed from industrial solid wastes through sintering to remove CIP from wastewater. The effects of adsorbent dosage, initial pH, contact time, initial CIP concentration, and temperature were explored. More than 99% of CIP (20-60 mg/L) was removed at around pH 2-4 by the ceramsite. The kinetic data fitted well with the pseudo-second-order model, revealing that chemisorption was the main rate-determining step. The isotherm data was better described by the Freundlich model, suggesting that CIP was removed by the formation of multiple layers on the heterogeneous surface. Moreover, the removal efficiency was practically higher than 95% during five regeneration cycles, when different regeneration methods were used, including calcination, HCl, and NaOH washing, indicating that the ceramsite exhibited outstanding reusability in removing CIP. The primary mechanism of CIP removal by the ceramsite was found to be the synergism of adsorption and flocculation, both of which depended on the release of Ca2+ from the ceramsite. In addition, strong Ca-CIP complexes could be formed through surface complexation and metal cation bridging between Ca2+ and different functional groups in CIP.
Collapse
Affiliation(s)
- Juan Qin
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yeting Fang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jian Shi
- Analysis and Testing Center, Nantong University, Nantong 226019, China
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mauricio Córdova-Udaeta
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Juncheng Zhang
- Department of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| |
Collapse
|
19
|
Feng H, Wang Z, Sajab MS, Abdul PM, Ding G. A novel chitinous nanoparticles prepared and characterized with black soldier fly (Hermetia illucens L.) using steam flash explosion treatment. Int J Biol Macromol 2023; 230:123210. [PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Haiyue Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China.
| |
Collapse
|
20
|
Li Y, Wang Y, Jin J, Tian Z, Yang W, Graham NJD, Yang Z. Enhanced removal of trace pesticides and alleviation of membrane fouling using hydrophobic-modified inorganic-organic hybrid flocculants in the flocculation-sedimentation-ultrafiltration process for surface water treatment. WATER RESEARCH 2023; 229:119447. [PMID: 36476382 DOI: 10.1016/j.watres.2022.119447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Pesticide concentrations in surface water occasionally exceed regulated values due to seasonal events (rainy season in high intensity agricultural areas) or intermittent discharges (leakage, spillage, or other emergency events). The need to remove pesticide compounds in these situations poses a challenge for drinking water treatment plants (DWTPs). In this work, the performance of dosing hydrophobic-modified inorganic-organic hybrid flocculants (HOC-M; lower acute toxicity than corresponding metal salt coagulants; acceptable economic costs when M=Al or Fe; prepared in large-scale quantities), for the removal of four different pesticides (each initial concentration: 0.25 μg/L) from Yangtze River water, and in mitigating membrane fouling, by an integrated flocculation-sedimentation-ultrafiltration (FSUF) process, was evaluated over a period of 40 days; the FSUF is well-established in many DWTPs. The mechanisms underlying the treatment were unveiled by employing a combination of instrumental characterizations, chemical computations, material flow analyses, and statistical analyses. Efficient pesticide removal (80.3%∼94.3%) and membrane fouling reduction (26.6%∼37.3% and 28.3%∼57.6% for reversible and irreversible membrane resistance, respectively) in the FSUF process were achieved by dosing HOC-M, whereas conventional inorganic coagulants were substantially inferior for pesticide removal (< 50%) and displayed more severe fouling development. Hydrophobic association between the pesticides and the hydrophobic organic chain of HOC-M played a predominant role in the improvement in pesticide removal; coexisting particulate/colloid inorganic minerals and natural organic matter with HOC-M adsorbed on the surface, acting as floc building materials, provided sites for the indirect combination of pesticides into flocs. The observed fouling alleviation from dosing HOC-M was ascribed to both the pre-removal of fouling-causing materials in the flocculation-sedimentation prior to UF, and a stable hydrophilization modification effect of residual HOC-M in the UF unit. The latter effect resulted from a hydrophobic association between the PVDF substrate of the membranes and the hydrophobic organic chains of the HOC-M, causing the hydrophilic ends of the HOC-M to be exposed away from the membrane surface, thereby inhibiting foulant accumulation. This work has not only demonstrated the superior performance of dosing HOC-M in the FSUF process for trace pesticide removal in DWTPs, but also clarified the underlying mechanisms.
Collapse
Affiliation(s)
- Yunyun Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Yadong Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Jin Jin
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
21
|
Zhang J, Li G, Yuan X, Li P, Yu Y, Yang W, Zhao S. Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review. MEMBRANES 2023; 13:77. [PMID: 36676884 PMCID: PMC9862110 DOI: 10.3390/membranes13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
Ultrafiltration (UF) processes exhibit high removal efficiencies for suspended solids and organic macromolecules, while UF membrane fouling is the biggest obstacle affecting the wide application of UF technology. To solve this problem, various pretreatment measures, including coagulation, adsorption, and advanced oxidation, for application prior to UF processes have been proposed and applied in actual water treatment processes. Previously, researchers mainly focused on the contribution of natural macromolecular pollutants to UF membrane fouling, while the mechanisms of the influence of emerging pollutants (EPs) in UF processes (such as antibiotics, microplastics, antibiotic resistance genes, etc.) on membrane fouling still need to be determined. This review introduces the removal efficiency and separation mechanism for EPs for pretreatments combined with UF membrane separation technology and evaluates the degree of membrane fouling based on the UF membrane's materials/pores and the structural characteristics of the cake layer. This paper shows that the current membrane separation process should be actively developed with the aim of overcoming specific problems in order to meet the technical requirements for the efficient separation of EPs.
Collapse
Affiliation(s)
- Jianguo Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gaotian Li
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xingcheng Yuan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Panpan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yongfa Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
22
|
Ma J, Wu G, Zhang R, Xia W, Nie Y, Kong Y, Jia B, Li S. Emulsified oil removal from steel rolling oily wastewater by using magnetic chitosan-based flocculants: Flocculation performance, mechanism, and the effect of hydrophobic monomer ratio. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Wang K, Zhang S, Xu Q, Lian T, Xu Z, Jiang M, Liu P. Fabrication of Salt-tolerant Chitosan-based Polyelectrolyte Flocculant through Enhancing H-bond Hydration Effect for Treating and Recycling of Highly Saline Dyeing Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hu X, Hu P, Yang H. Influences of charge properties and hydrophobicity on the coagulation of inorganic and organic matters from water associated with starch-based coagulants. CHEMOSPHERE 2022; 298:134346. [PMID: 35314179 DOI: 10.1016/j.chemosphere.2022.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, two series of binary graft cationic starch-based coagulants (CS-DMCs and CS-DMLs) with different hydrophobicities and charge densities (CDs) were prepared by graft copolymerization of acrylamide with 2-(methacryloyloxy)-N,N,N- trimethylethanaminium chloride and acryloyloxyethyl dimethyl benzyl ammonium chloride, respectively, on the starch (St) backbone. Kaolin particles, sodium humate (NaHA), and bovine serum albumin (BSA) were used as the simulated sources of inorganic colloidal particles and different organic pollutants in the micropolluted turbid surface water. The influences of the CD and hydrophobicity associated with the St-based coagulants on the removal of kaolin particles, NaHA, and BSA from single, binary, and ternary pollutant aqueous systems were investigated systematically. On the basis of the apparent coagulation performance, the floc characteristics, and the zeta potentials of the supernatants after coagulation, the coagulation mechanisms associated with the structural features of the St-based coagulants and the pollutants treated were explored and discussed in detail. The St-based coagulants with a higher CD and a stronger hydrophobicity showed better coagulation performance due to the synergistic effects of charge neutralization and hydrophobic association. The maximum efficiencies of the optimized St-based coagulant in removal of Kaolin, NaHA and BSA were 93.85%, 100% and 97.52% in their respective single pollutant systems. In addition to these simulated water samples, a real micropolluted turbid surface water tested and compared, further confirming the superiority of the hydrophobically modified cationic St-based coagulants, especially in the purification of organic pollutants in water.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Pan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, PR China.
| |
Collapse
|
26
|
Sun M, Sun Q, Zhao C, Huang Y, Jiang J, Ding W, Zheng H. Degradation of diclofenac sodium with low concentration from aqueous milieu through polydopamine-chitosan modified magnetic adsorbent-assisted photo-Fenton process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Huang R, Li X, Wu Y, Huang Z, Ye H, Niu Y, Li L, Wang J. A study on the adsorption behaviors of three hydrophobic quinolones by ordered mesoporous CMK-3. CHEMOSPHERE 2022; 294:133761. [PMID: 35092754 DOI: 10.1016/j.chemosphere.2022.133761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this work, a series of ordered mesoporous carbon nanomaterials (CMK-3) have been synthesized by a hard-template method at temperatures of 80 °C, 100 °C and 130 °C, which can serve as adsorbents for efficient adsorption of quinolones in aqueous solutions. The physicochemical properties and the morphologies of these CMK-3 have been well characterized, showing mesoporous channels with the specific surface area reaching up to 1290 m2/g. Adsorption studies have been performed on three hydrophobic quinolones: norfloxacin (NOR), ciprofloxacin (CIP) and enrofloxacin (ENR), with the adsorption capacities of 403 mg/g, 479 mg/g and 510 mg/g, respectively, at room temperature. The adsorption kinetics of the three quinolones are in accordance with the pseudo-second kinetic model, and the adsorption isotherm curves conform to Langmuir isotherm model. Significantly, the adsorption thermodynamics confirms that the adsorption processes are spontaneous endothermic. Finally, the adsorption mechanism has been discussed, which can be attributed to the synergistic effect of pore diffusion, hydrophobic bond, and electron donor-acceptor interaction.
Collapse
Affiliation(s)
- Ruixiong Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xin Li
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuxi Wu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zhishan Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Huiyi Ye
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yule Niu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangzhou, 510006, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| | - Jing Wang
- School of Environment, South China Normal University, Guangzhou, 510006, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Wang Z, Li Y, Hu M, Lei T, Tian Z, Yang W, Yang Z, Graham NJD. Influence of DOM characteristics on the flocculation removal of trace pharmaceuticals in surface water by the successive dosing of alum and moderately hydrophobic chitosan. WATER RESEARCH 2022; 213:118163. [PMID: 35151090 DOI: 10.1016/j.watres.2022.118163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Hydrophobically-modified chitosan (HC) has emerged as a promising flocculant for trace pharmaceutical removal from surface water. However, the variation in the characteristics of dissolved organic matter (DOM) in different water sources influences the efficacy of HC in removing pharmaceutical compounds. In this work, the flocculation performance of sequentially dosing alum and HC (alum+HC) for the treatment of five water types (three synthetic waters, and samples of two real waters collected from the Yangtze River and the Thames River), having different DOM and five representative pharmaceuticals (initial concentration: 100 ng/L), was assessed by bench-scale jar tests. The DOM characteristics were correlated quantitatively with the removal efficiencies (REs) of the pharmaceuticals. Density functional theory computations were performed to illuminate the interfacial interactions in the flocculation. Alum+HC exhibited a remarkably higher RE of all five pharmaceuticals (maximum RE: 73%-95%) from all waters compared to a conventional coagulant or flocculant (alum or polyacrylamide, respectively). In contrast to using HC alone, alum+HC also achieved a higher RE of pharmaceuticals with nearly half the HC dosage, thereby enhancing the cost-effectiveness of the alum+HC dosing system. Among the different key DOM characteristics, the surface charge and molecular weight of DOM had no evident correlation with RE(pharmaceutical), but the hydrophobic/hydrophilic nature and functional group composition of organic carbon of DOM were strongly correlated: Strongly hydrophobic fractions, with C-C & C=C functional groups (binding pharmaceuticals via hydrophobic association), were beneficial, while hydrophilic fractions with C-OH groups were less effective, for pharmaceutical removal. This work showed the enhanced performance of the alum+HC dosing combination in the removal of different pharmaceutical compounds from different waters, and filled the knowledge gap regarding the performance of hydrophobically-modified flocculants in the treatment of different surface water sources.
Collapse
Affiliation(s)
- Zhangzheng Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Yunyun Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Tao Lei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China.
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
29
|
Zhao R, Wang Y, An Y, Yang L, Sun Q, Ma J, Zheng H. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126917. [PMID: 34464865 DOI: 10.1016/j.jhazmat.2021.126917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous present antibiotics in aquatic environment is attracting increasing concern due to the dual problems of bioaccumulation toxicity and antibiotic resistance. In this study, a low-cost chitin-biocalcium (CC) composite was developed by a facile alkali activation process from shell waste for typical antibiotics ciprofloxacin (CIP) removal. Response surface methodology (RSM) was utilized to optimize synthesis methodology. The optimized CC products featured superior CIP removal capacity of 2432 mg/g at 25 °C (adsorption combined with flocculation), rapid adsorption kinetics, high removal efficiency (95.58%) and wide pH adaptability (under pH range 4.0-10.0). The functional groups in chitin and high content of biocalcium (Ca2+) endowed CC abundant active sites. The kinetic experimental data was fitted well by pseudo-second-order and intraparticle diffusion model at different concentrations, revealing the removal was controlled by chemisorption and mass transport step. From the macroscopic aspect, flocs were produced with the increase of CIP concentration during the reaction, adsorption combined with flocculation were related to the CIP removal. From the microcosmic aspect, the superior removal performance was attributed to cation bridging, cation complexation among biocalcium-CIP and hydrogen bond between functional groups of chitin and CIP.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yuxuan Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yanyan An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Liuwei Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
30
|
Sun Y, Yu Y, Zhou S, Shah KJ, Sun W, Zhai J, Zheng H. Functionalized chitosan-magnetic flocculants for heavy metal and dye removal modeled by an artificial neural network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Wang Y, Zuo G, Kong J, Guo Y, Xian Z, Dai Y, Wang J, Gong T, Sun C, Xian Q. Sheet-on-sheet TiO 2/Bi 2MoO 6 heterostructure for enhanced photocatalytic amoxicillin degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126634. [PMID: 34330077 DOI: 10.1016/j.jhazmat.2021.126634] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Developing sheet-on-sheet (2D/2D) heterostructure with built-in electric field (BIEF) is effective in boosting the performance of photocatalysts for emerging contaminants degradation. Herein, the 2D/2D microtopography and (-)TiO2/(+)Bi2MoO6 BIEF were precisely integrated into hierarchical nanosheets, which can provide the basis and driving force for charge transfer both in in-plane and interface of heterojunction. The prepared photocatalyst (TiO2/Bi2MoO6) showed high-efficiency and stable performance for photocatalytic amoxicillin (AMX) degradation, which was 18.2 and 5.7 times higher than TiO2 and Bi2MoO6, respectively. More importantly, TiO2/Bi2MoO6 showed more efficient photocatalytic activity and photogenerated charge separation than TiO2@Bi2MoO6 (different morphology). Besides, four possible pathways of AMX degradation were proposed depending on Gaussian calculations and intermediates analysis by GC-MS and HPLC-TOFMS. This work sheds light on the design and construction of unique 2D/2D heterostructure photocatalysts for AMX degradation.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Gancheng Zuo
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jijie Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Yang Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China; Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042, PR China
| | - Zeyu Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
32
|
Song Y, Xiao M, Li Z, Luo Y, Zhang K, Du X, Zhang T, Wang Z, Liang H. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration. CHEMOSPHERE 2022; 286:131680. [PMID: 34365166 DOI: 10.1016/j.chemosphere.2021.131680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 05/09/2023]
Abstract
In this study, a BDD electrolytic oxidation-ceramic membrane ultrafiltration (EO-CM) system for the removals of antibiotics, organic matters and ammonia in wastewater was evaluated. Sulfamethazine (SMZ) was degraded following a pseudo first-order kinetics. The removal rate of SMZ improved with the increase of electro-oxidation time (0-60 min) and current density (5-30 mA/cm2). During the BDD electro-oxidation process, H2O2 and hydroxyl radicals (•OH) were generated which were detected by N, N-diethyl-p-phenylenediamine (DPD) method and electron paramagnetic resonance spectroscopy (EPR), respectively. Chemical oxygen demand (COD) was able to be removed by EO and CM processes, in which proteins and humic acids were regarded as the main removed components measured using excitation-emission matrix (EEM) technique. Moreover, BDD electro-oxidation pretreatment could make the CM process maintain a high water flux and significantly control the membrane fouling and relieve transmembrane pollution. In addition, the removal of ammonia was enhanced with the increase of chloride ions (Cl-) in wastewater during EO process due to the generation of active chlorine (i.e., ClO-, HClO, or Cl2) from the oxidation of Cl-. Chloramine and nitrogen were produced in the oxidation of ammonia by active chlorine. Overall, the results of this study suggest that BDD EO-CM system is a promising process for removing antibiotics, organic matters and ammonia.
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kaiming Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Tianxiang Zhang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, China.
| |
Collapse
|
33
|
Xu M, Luo Y, Wang X, Zhou L. Coagulation-ultrafiltration efficiency of polymeric Al-, Fe-, and Ti- coagulant with or without polyacrylamide composition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Tong J, Zhu Z, He M, Zhou P, Jiang Y, Wang Z. Electrochemical degradation kinetics of cleaning wastewater containing ethylene diamine tetraacetic acid. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Wang Q, Tu S, Wang W, Chen W, Duan X, Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Hu M, Zhao L, Yu N, Tian Z, Yin Z, Yang Z, Yang W, Graham NJ. Application of ultra-low concentrations of moderately-hydrophobic chitosan for ultrafiltration membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Wang K, Ran T, Yu P, Chen L, Zhao J, Ahmad A, Ramzan N, Xu X, Xu Y, Shi Y. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. ENVIRONMENTAL RESEARCH 2021; 201:111489. [PMID: 34166665 DOI: 10.1016/j.envres.2021.111489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report a novel renewable pH-responsive starch-based flocculant (CIAT-ST) via etherifying 2-chloro-4,6-isopropylamino-[1,3,5]-triazine (CIAT) onto the starch backbones for decontamination and reuse of highly saline effluents. The obtained CIAT-ST shows a unique pH-sensibility and reversibility in response to a subtle pH change due to a pH-controllable surface charge density of polymer chains. The level of residual CIAT-ST in the solution can be facilely monitored by using UV-vis detection. The dye flocculation performance of CIAT-ST was evaluated by using a batch experiment. The results exhibited that the dye removal was highly dependent on the solution pH (optimal pH was 2), the flocculation equilibrium can be achieved within 5 min, and the maximum flocculation capacity of CIAT-ST for K-2BP and KN-B5 were calculated to be 2452.6 ± 23.9 and 792.7 ± 14.1 mg/g, respectively. The multiple flocculation mechanisms, including charge neutralization, bridging and charge patching, may participate in the flocculation process. Adjustment in pH-mediated hydrophilicity-hydrophobicity switch of flocculant facilitates readily recovery and then sequentially reused three times while retaining satisfying flocculation efficiency. A significant contribution was also confirmed that the highly saline effluents after flocculation and sedimentation were reused in three successive dyeing processes without sacrificing fabric quality (ΔE* < 1) due to relatively low polymer residuals, and the efficiency of salt reuse for consecutive regeneration processes could be achieved above 85%. The present work could provide alternative thoughts for the reutilization of spent flocculant and clarified saline wastewater, which is also an efficient and sustainable strategy for textile wastewater management.
Collapse
Affiliation(s)
- Kaixiang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Tingmin Ran
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Pai Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Long Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jigang Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China; International Joint Research Center for Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, 60000, Pakistan
| | - Naveed Ramzan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yisheng Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yulin Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
38
|
Xiao X, Yu Y, Sun Y, Zheng X, Chen A. Heavy metal removal from aqueous solutions by chitosan-based magnetic composite flocculants. J Environ Sci (China) 2021; 108:22-32. [PMID: 34465434 DOI: 10.1016/j.jes.2021.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/13/2023]
Abstract
In this study, three magnetic flocculants with different chelating groups, namely, carboxymethyl chitosan-modified Fe3O4 flocculant (MC), acrylamide-grafted magnetic carboxymethyl chitosan flocculant (MCM), and 2-acrylamide-2-methylpropanesulfonic acid copolyacrylamide-grafted magnetic carboxymethyl chitosan flocculant (MCAA) were prepared, synthesized, and characterized by photopolymerization technology. They were applied to the flocculation removal of Cr(III), Co(II), and Pb(II). The effect of flocculation condition on the removal performance of Cr(III), Co(II), and Pb(II) was studied. Characterization results show that the three magnetic carboxymethyl chitosan-based flocculants have been successfully prepared with good magnetic induction properties. Flocculation results show that the removal rates of MC, MCM, and MCAA on Cr(III) are 51.79%, 82.33%, and 91.42%, respectively, under the conditions of 80 mg/L flocculant, pH value of 6, reaction time of 1.5 hr, G value of 200 s-1, and precipitation magnetic field strength of 120 mT. The removal rates of Co(II) by MC, MCM, and MCAA are 54.33%, 84.99%, and 90.49%, respectively. The removal rates of Pb(II) by MC, MCM, and MCAA are 61.54%, 91.32%, and 95.74%, respectively. MCAA shows good flocculation performance in composite heavy metal-simulated wastewater. The magnetic carboxymethyl chitosan-based flocculant shows excellent flocculation performance in removing soluble heavy metals. This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove heavy metals in wastewater.
Collapse
Affiliation(s)
- Xuefeng Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Yuanyuan Yu
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Xing Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Aowen Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
39
|
Yang Z, Zhao L, Hu M, Cai D, Tian Z, Baeyens J, Dewil R, Qin P, Yang W, Graham NJ. Hydrophobic-modified metal-hydroxide nanoflocculants enable one-step removal of multi-contaminants for drinking water production. iScience 2021; 24:102491. [PMID: 34113827 PMCID: PMC8169996 DOI: 10.1016/j.isci.2021.102491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Flocculation is a mainstream technology for the provision of safe drinking water but is limited due to the ineffectiveness of conventional flocculants in removing trace low-molecular-weight emerging contaminants. We described a synthesis strategy for the development of high-performance nanoflocculants (hydrophobic-organic-chain-modified metal hydroxides [HOC-M]), imitating surfactant-assembling nano-micelles, by integration of long hydrophobic chains with traditional inorganic metal (Fe/Al/Ti)-based flocculants. The core-shell nanostructure was highly stable in acidic stock solution and transformed to meso-scale coagulation nuclei in real surface water. In both jar and continuous-flow tests, HOC-M was superior over conventional flocculants in removing many contaminants (turbidity, UV254, and DOC: >95%; TP and NO3-N: >90%; trace pharmaceuticals [initial concentration: 100 ng/L]: >80%), producing flocs with better structural and dewatering properties, and lowering the environmental risk of metal leaching. The rationally designed nanoflocculants have large application potential, as a solution to increasing public concern about micro-pollutants and increasing water quality requirements.
Collapse
Affiliation(s)
- Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Lina Zhao
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Min Hu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Di Cai
- College of Life Science and Technology, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Jan Baeyens
- College of Life Science and Technology, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
| | - Peiyong Qin
- College of Life Science and Technology, National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210046, China
| | - Nigel J.D. Graham
- Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
40
|
Tang X, Wang T, Zhang S, Fang L, Zheng H. Enhanced performance of a novel flocculant containing rich fluorine groups in refractory dyeing wastewater treatment: Removal mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Hermosillo-Ochoa E, Picos-Corrales LA, Licea-Claverie A. Eco-friendly flocculants from chitosan grafted with PNVCL and PAAc: Hybrid materials with enhanced removal properties for water remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Ma J, Xia W, Zhang R, Ding L, Kong Y, Zhang H, Fu K. Flocculation of emulsified oily wastewater by using functional grafting modified chitosan: The effect of cationic and hydrophobic structure. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123690. [PMID: 33264882 DOI: 10.1016/j.jhazmat.2020.123690] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/01/2020] [Accepted: 08/08/2020] [Indexed: 06/12/2023]
Abstract
In this work, modified chitosan flocculants (MCS) was synthesized by using chitosan (CS), acrylamide, cationic monomers and hydrophobic monomers via low-pressure UV-initiated copolymerization. The flocculation performance of MCS was evaluated in emulsified oily wastewater treatment. The effect of cationic and hydrophobic structure on oil removal was studied, and the interactions between these functional groups and the components in oil were also analyzed. Results suggested that MCS flocculants exhibited excellent oil removal efficiency in a wide pH range (2.0‒10). The flocculation efficiency of 91 % was achieved at the dosages of 0.6 mL/L (6 mg/L). During pH of 2.0-10, the optimal cationic and hydrophobic monomer was DMC and VT, respectively. Silane groups were favorable for oil removal than the other hydrophobic structures. The cationic groups expanded the optimal pH range of MCS in flocculation, whereas hydrophobic groups considerably reduced the dosage of MCS. The experimental results showed that alkane, cyclic aromatic hydrocarbon compounds in oil can be easily removed by using MC4, whereas cycloalkanes compounds was effectively removed by MC6 and MC7 because of preferable demulsification capacity, and the hydrophobic interaction, interfacial adsorption and electrostatic attraction played the dominant in flocculation. Thus, the synthesized MCS is favorable for emulsified oily wastewater treatment.
Collapse
Affiliation(s)
- Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China.
| | - Wei Xia
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Rui Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Huiwen Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Kun Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
43
|
Fabrication of carboxymethyl cellulose and chitosan modified Magnetic alkaline Ca-bentonite for the adsorption of hazardous doxycycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Ouyang J, Zhou L, Liu Z, Heng JY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117536] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Palacio DA, Becerra Y, Urbano BF, Rivas BL. Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes. CHEMOSPHERE 2020; 258:127416. [PMID: 32947674 DOI: 10.1016/j.chemosphere.2020.127416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antibiotics as pollutants in the environment is one of the worldwide concerns because the bacterial strains generate a threat to the aquatic ecosystem and human health. In this study, an alkylated chitosan polyelectrolyte (ChA-PE) was used in conjunction with ultrafiltration membranes to remove three commonly used antibiotics, including amoxicillin (AMX), tetracycline (TET), and ciprofloxacin (CIP), in aqueous systems. The removal study considered diverse experimental variables through two methods: washing (pH, ionic strength, polymer ratio, and antibiotic concentration) and enrichment (maximum retention capacity). The retention percentage reached 80% at a pH of 11.0 at different polymer/antibiotic molar ratios. The ChA-PE presented irreversibly bound antibiotic interaction values of 0.51, 0.74, and 0.92 for CIP, AMX, and TET, respectively, at a pH of 11, showing that the polymer presents stronger permanent interactions with AMX and TET. On the other hand, the ChA-PE presented maximum retention capacity values of 185.6, 420.2, and 632.8 mg g-1 for CIP, AMX, and TET, respectively, in accordance with the association efficiency percentage values of 73.54, 87.08, and 93.83% for CIP, AMX, and TET, respectively.
Collapse
Affiliation(s)
- Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Yerko Becerra
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|