1
|
Ozgur C. The analytic hierarchy process method to design applicable decision making for the effective removal of 2-MIB and geosmin in water sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12431-12445. [PMID: 38231335 PMCID: PMC10869403 DOI: 10.1007/s11356-024-31848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Numerous utilities encounter issues with taste and odor that alter the public's impression of the safety of drinking water. The creation of certain components in water naturally due to global climate change is another source of taste and odor components, in addition to industrial emissions. Geosmin and 2-methylisoborneol (2-MIB), both of which are generated by blue-green algae and actinomycetes, are two substances that contribute to the musty and earthy smells in drinking water sources. Unfortunately, current conventional treatment plants only partially remove 2-MIB and geosmin. Therefore, to protect the environment and public health, more up-to-date or optimized treatment methods should be applied to outdated treatment facilities. Best treatment practices, evaluation standards, and decision-making approaches, however, are still shrouded in mystery. The goal of this study was to identify the most effective treatment options for 2-MIB and geosmin. By using the analytical hierarchy process (AHP), a total of 22 assessment criteria were found and prioritized. A thorough literature search led to the identification of potential treatment options, and their effectiveness was evaluated. These options and priority rankings were decided upon using AHP in the decision-making process. Advanced oxidation techniques came out on top in the final priority ranking, followed by membrane filtering, adsorption, oxidation, hybrid processes, and traditional treatment methods. The applied analytical decision techniques may also be used to choose the optimal treatment options, even though the results are particular to 2-MIB and geosmin.
Collapse
Affiliation(s)
- Cihan Ozgur
- Isparta University of Applied Sciences, Sutculer Prof. Dr. Hasan Gurbuz Vocational School, Isparta, Turkey.
| |
Collapse
|
2
|
Nakazawa Y, Kosaka K, Yoshida N, Asami M, Matsui Y. Long-term removal of perfluoroalkyl substances via activated carbon process for general advanced treatment purposes. WATER RESEARCH 2023; 245:120559. [PMID: 37713795 DOI: 10.1016/j.watres.2023.120559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Granular or powdered activated carbon (GAC/PAC) processes are installed in full-scale drinking water treatment plants (DWTPs) to reduce disinfection byproduct precursors, odor, ammonia, and pesticides. This study investigated the ability of GAC/PAC processes in 23 DWTPs to remove per- and polyfluoroalkyl substances (PFASs). In the GAC process, filter breakthrough of perfluoroalkyl carboxylic acids (PFCAs) occurred faster as the PFCA chain length is decreased. During periods of high water temperatures (20-29 °C), the effluent concentration of two short-chain PFCAs (C4 and C5) surpassed that of the influent after the throughput reached 5,000-7,500 bed volumes (equivalent to 2-3 months) due to desorption. However, such desorption was not observed during periods of low water temperatures (5-19 °C). Meanwhile, long-chain PFCAs were consistently removed, as the GAC was replaced before breakthrough became noticeable. PFAS removal deteriorated at a remarkably fast rate after a partial breakthrough of several tens of percent. Biological activated carbon was proved ineffective in removing PFASs due to its diminished adsorption capacity after long-term use. The PAC process, however, exhibited a slight decrease in PFCA residual (10%) at higher water temperatures (15-30 °C). The PAC dose required for a certain residual ratio was lower with an increase in the hydrophobicity of PFAS; C8-PFCA only required 20 mg/L of PAC for 50% removal, while C4-PFCA required a significantly higher dose of 100-700 mg/L. Consequently, the activated carbon process, which removes organic contaminants in surface water, was inadequate in removing PFASs, particularly those with short chains. Thus, it is recommended that GAC filters be replaced more frequently (within two months) for short-chain PFAS removal. Further, the adsorption performance of PAC must be enhanced.
Collapse
Affiliation(s)
- Yoshifumi Nakazawa
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Nobue Yoshida
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Mari Asami
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Yuan J, Fox F, Crowe G, Mortazavian S, Passeport E, Hofmann R. Is In-Service Granular Activated Carbon Biologically Active? An Evaluation of Alternative Experimental Methods to Distinguish Adsorption and Biodegradation in GAC. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16125-16133. [PMID: 36210519 DOI: 10.1021/acs.est.2c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In-service granular activated carbon (GAC) may transform into biological activated carbon (BAC) and remove contaminants through both adsorption and biodegradation, but it is difficult to determine its biodegradative capacity. One approach to understand the GAC biodegradative capacity is to compare the performance between unsterilized and sterilized GAC, but the sterilization methods may not ensure effective microbial inhibition and may affect adsorption. This study identified the 14C-glucose respiration rate as the best metric to evaluate the effectiveness of three sterilization methods: sodium azide addition, autoclaving, and γ irradiation. The sterilization protocols were refined, including continuously feeding 300 mg/L of sodium azide, three cycles of autoclaving, and 10-12 kGy of γ irradiation. Parallel minicolumn tests were conducted to identify sodium azide addition as the most broadly effective sterilization method with an insignificant effect on adsorption in most cases, except for the adsorption of anionic compounds under certain conditions. Nevertheless, this problem was solved by decreasing the azide dosage as long as it is still sufficient to provide effective microbial inhibition. This study helps to develop an approach that differentiates adsorption and biodegradation in GAC, which could be used by future studies to advance our understanding of BAC filtration.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
| | - Fiona Fox
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
| | - Grace Crowe
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
| | - Soroosh Mortazavian
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, CanadaM5S 3E5
| | - Ron Hofmann
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4
| |
Collapse
|
4
|
Yuan J, Mortazavian S, Passeport E, Hofmann R. Evaluating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal across granular activated carbon (GAC) filter-adsorbers in drinking water treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156406. [PMID: 35660589 DOI: 10.1016/j.scitotenv.2022.156406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Granular activated carbon (GAC) was harvested from six filter-adsorbers that are used for taste and odour control in three drinking water treatment plants in Ontario, Canada, and evaluated for the removal of perfluorooctanic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using minicolumn tests under different operational conditions. Parallel column tests were conducted using unsterilized GAC and sterilized GAC to distinguish adsorption from potential biodegradation of PFOA and PFOS across the GAC. It was observed that the GAC could achieve approximately 20% to 55% of PFOA and PFOS removal even after a long period of GAC operation (e.g., 6 years). There was no evidence of PFOA and PFOS biodegradation, so the removal in GAC can be attributed solely to adsorption under the conditions tested. However, in one location, there was evidence suggesting both removal and formation of PFOS and PFOA across the GAC, with the formation presumably due to the biotransformation of pre-existing precursors in the source water. Additionally, GAC service time and empty bed contact time (EBCT) were identified to be important factors that could affect the removal of PFOA and PFOS. Based on this information, an empirical model was proposed to predict PFOA and PFOS removal in GAC filter-adsorbers as a function of GAC service time and EBCT. This study provides useful information for utilities that have installed GAC for taste and odour control but may consider per- and polyfluoroalkyl substances (PFAS) removal as an additional voluntary objective or due to more stringent guidelines.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Soroosh Mortazavian
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ron Hofmann
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
5
|
Yuan J, Mortazavian S, Crowe G, Flick R, Passeport E, Hofmann R. Evaluating the relative adsorption and biodegradation of 2-methylisoborneol and geosmin across granular activated carbon filter-adsorbers. WATER RESEARCH 2022; 215:118239. [PMID: 35272225 DOI: 10.1016/j.watres.2022.118239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/08/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the relative contributions of adsorption vs. biodegradation towards 2-methylisoborneol (MIB) and geosmin removal in the granular activated carbon (GAC) harvested from six filter-adsorbers in three drinking water treatment plants in the Great Lakes region. Column tests using azide-treated (sterilized) and untreated GAC in parallel were used to isolate the two effects. It was identified that substantial MIB and geosmin biodegradation in the GAC was occurring in one location, and that GAC in some cases had significant adsorption capacity after as much as 9 years of operation. Four alternative biological parameters (adenosine triphosphate, esterase activity, phosphatase activity, and 14C-glucose respiration rate) were measured to quantify the biological activity of the GAC, and 14C-glucose respiration rate was identified to be a potential indicator for GAC biodegradative capacity in terms of MIB, geosmin, and dissolved organic carbon. Several potential MIB and geosmin biodegradation products were also identified using non-targeted screening analysis. By using the new tools identified in this study, we can begin to better understand where adsorption vs. biodegradation may predominate under real-world conditions (e.g., different temperatures, influent concentrations, and empty bed contact time), leading ultimately to more cost-effective use of GAC.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.
| | - Soroosh Mortazavian
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Grace Crowe
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| |
Collapse
|
6
|
Yuan J, Passeport E, Hofmann R. Understanding adsorption and biodegradation in granular activated carbon for drinking water treatment: A critical review. WATER RESEARCH 2022; 210:118026. [PMID: 34996013 DOI: 10.1016/j.watres.2021.118026] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Drinking water treatment plants use granular activated carbon (GAC) to adsorb and remove trace organics, but the GAC has a limited lifetime in terms of adsorptive capacity and needs to be replaced before it is exhausted. Biological degradation of target contaminants can also occur in GAC filters, which might allow the GAC to remain in service longer than expected. However, GAC biofiltration remains poorly understood and unpredictable. To increase the understanding of adsorption and biodegradation in GAC, previous studies have conducted parallel column tests that use one column of GAC (potentially biologically active) to assess overall removal via both adsorption and biodegradation, and one column with either sterilized GAC or biological non-adsorbing media to assess adsorption or biodegradation alone. Mathematical models have also been established to give insight into the adsorption and biodegradation processes in GAC. In this review, the experimental and modeling approaches and results used to distinguish between the role of adsorption and biodegradation were summarized and critically discussed. We identified several limitations: (1) using biological non-adsorbing media in column tests might lead to non-representative extents of biodegradation; (2) sterilization methods may not effectively inhibit biological activity and may affect adsorption; (3) using virgin GAC coated with biofilm could overestimate adsorption; (4) potential biofilm detachment during column experiments could lead to biased results; (5) the parallel column test approach itself is not universally applicable; (6) competitive adsorption was neglected by previous models; (7) model formulations were based on virgin GAC only. To overcome these limitations, we proposed four new approaches: the use of gamma irradiation for sterilization, a novel minicolumn test, compound-specific isotope analysis to decipher the role of adsorption and biodegradation in situ, and a new model to simulate trace organic adsorption and biodegradation in a GAC filter .
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada.
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5 Canada
| | - Ron Hofmann
- Department of Civil & Mineral Engineering, University of Toronto, 35St George Street, Toronto, ON, M5S 1A4 Canada
| |
Collapse
|
7
|
Pan L, Nakayama A, Matsui Y, Matsushita T, Shirasaki N. Desorption of micropollutant from superfine and normal powdered activated carbon in submerged-membrane system due to influent concentration change in the presence of natural organic matter: Experiments and two-component branched-pore kinetic model. WATER RESEARCH 2022; 208:117872. [PMID: 34837808 DOI: 10.1016/j.watres.2021.117872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Submerged-membrane hybrid systems (SMHSs) that combine membrane filtration with powdered activated carbon (PAC) take advantage of PAC's ability to adsorb and remove contaminants dissolved in water. However, the risk of contaminant desorption due to temporal changes in the influent concentration of the contaminant has not been thoroughly explored. In this study, we used a SMHS with conventionally-sized PAC or superfine PAC (SPAC) to remove 2-methylisoborneol (MIB), a representative micropollutant, from water containing natural organic matter (NOM), with the goal of elucidating adsorption-desorption phenomena in the SMHS. We found that 20-40% of the MIB that adsorbed on PAC and SPAC while the influent was contaminated with MIB (6 h, contamination period) desorbed to the liquid phase within 6 h from the time that the MIB-containing influent was replaced by MIB-free influent (no-contamination period). The percentage of desorption during the no-contamination period increased with increasing MIB breakthrough concentration during the contamination period. These findings indicate that the PAC/SPAC in the SMHS should be replaced while the breakthrough concentration is low, not only to keep a high removal rate but also to decrease the desorption risk. SPAC is fast in removal by adsorption, but it is also fast in release by desorption. SPAC (median diameter: 0.94 µm) showed almost the same adsorption-desorption kinetics as PAC (12.1 µm) of a double dose. A two-component branched-pore diffusion model combined with an IAST (ideal adsorbed solution theory)-Freundlich isotherm was used to describe and analyze the adsorption-desorption of MIB. The diffusivity of MIB molecules in the pores of the activated carbon particles decreased markedly in a short period of time. This decrease, which was attributed to fouling of the activated carbon in the SMHS by coagulant-treated water containing NOM, not only reduced the rate of MIB removal during the contamination period but also hindered the rate of MIB desorption during the no-contamination period and thus prevented the effluent MIB concentration from becoming high. On the other hand, coagulation did not change the concentration of NOM that competes with MIB for adsorption sites.
Collapse
Affiliation(s)
- Long Pan
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Akiko Nakayama
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
8
|
Lee YS, Han SB, Mo YH, Lee SG, Park DH, Song J, Hong S, Park KW. Cycling system for decomposition of gaseous benzene by hydrogen peroxide with naturally Fe-containing activated carbon. RSC Adv 2020; 10:39121-39129. [PMID: 35518442 PMCID: PMC9057348 DOI: 10.1039/d0ra08122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
For the removal of volatile organic compounds (VOCs) from environmental systems, gaseous benzene, a model VOC, was adsorbed on naturally Fe-containing activated carbon and subsequently, decomposed in the presence of de-ionized water, and low (0.03%, pH 6.5) and high (30%, pH 2.5) concentration H2O2 solutions. The intermediates produced during benzene decomposition were analyzed and compared using gas chromatography-mass spectrometry. After the decomposition process, the activated carbon sample was air dried. Three cycles were carried out with de-ionized water and low and high concentration H2O2 solutions as oxidants. The adsorption capacity of the activated carbon sample treated with DI water gradually decreased as the number of cycles increased. On the other hand, the benzene adsorption capacity of the activated carbon samples treated with the H2O2 solutions was improved due to the relatively higher specific surface areas of these samples. After treatment with the low-concentration H2O2 solution, intermediates such as glyoxylic acid, oxalic acid, phenol, malonic acid, and pyrocatechol were observed. After treatment with high-concentration H2O2 solution, intermediates such as glyoxylic acid, formic acid, and acetic acid were formed. With increasing H2O2 concentration, the number and the molecular weight of the intermediate formed by the oxidative degradation of benzene, simultaneously decreased. The Fenton reaction induced by naturally Fe-containing activated carbon and H2O2 could lead to more efficient decomposition of benzene.
Collapse
Affiliation(s)
- Yong-Soo Lee
- Boyaz Energy 165 Gasan Digital 2-ro, Geumcheon-gu Seoul 08504 Republic of Korea
| | - Sang-Beom Han
- Boyaz Energy 165 Gasan Digital 2-ro, Geumcheon-gu Seoul 08504 Republic of Korea
- Department of Chemical Engineering, Soongsil University Seoul 156-743 Republic of Korea +82-2-812-5378 +82-2-820-0613
| | - Yong-Hwan Mo
- Boyaz Energy 165 Gasan Digital 2-ro, Geumcheon-gu Seoul 08504 Republic of Korea
| | - Seul-Gi Lee
- Department of Chemical Engineering, Soongsil University Seoul 156-743 Republic of Korea +82-2-812-5378 +82-2-820-0613
| | - Deok-Hye Park
- Department of Chemical Engineering, Soongsil University Seoul 156-743 Republic of Korea +82-2-812-5378 +82-2-820-0613
| | - JiHyun Song
- Department of Civil and Environmental Engineering, Sejong University Seoul 05006 Korea
| | - Seongho Hong
- Department of Chemical Engineering, Soongsil University Seoul 156-743 Republic of Korea +82-2-812-5378 +82-2-820-0613
| | - Kyung-Won Park
- Department of Chemical Engineering, Soongsil University Seoul 156-743 Republic of Korea +82-2-812-5378 +82-2-820-0613
| |
Collapse
|