1
|
Wu N, Yu H, Liu Z, Di S, Zhao H, Wang Z, Wang Z, Wang X, Qi P. The underestimated environmental risk of tris (2-chloroethyl) phosphate photodegradation in aqueous environment induced by polystyrene microplastics. WATER RESEARCH 2025; 273:123048. [PMID: 39742635 DOI: 10.1016/j.watres.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/29/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS). The yield of •OH generated in the aged PS-MPs system was 21 times as high as that of pristine PS-MPs. Contributions of •OH, O2•- and 1O2 to the degradation of TCEP induced by aged PS-MPs were 59.07 %, 34.98 % and 7.8 %, respectively. Possible degradation products of TCEP were identified, primarily formed through hydroxyl substitution, intramolecular cyclization and carboxylation. Density functional theory calculations demonstrated that •OH was more likely to attack the P atom of TCEP than the C atom. The low molecular derivatives containing oxygen group of PS-MPs reacted with •Cl/•OC2H4Cl released by TCEP to generate interaction products. Toxicity evaluation of interaction products suggested some interaction products were more toxic than TCEP, indicating that these interaction products contributed to the underestimation of transformation risk of TCEP and coexisting PS-MPs. This study provides a novel insight into the fate and the ecological risks associated with the combined contamination of MPs and coexisting plastic additives.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haibin Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
2
|
Lu Y, Zhu X, Li A, Cheng C, Xiao B, Cui P, Wang Y, Zhou D. Boosted chlorate hydrogenation reduction via continuous atomic hydrogen. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137679. [PMID: 39983652 DOI: 10.1016/j.jhazmat.2025.137679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Chlorate (ClO3-) is a common toxic oxyanion pollutant from various industrial processes, and hydrogenation reduction of ClO3- by atomic hydrogen (H*) is a promising and effective method. Therefore, more efforts are needed to rationalize the design of catalytic active sites for H2 activation to boost ClO3- hydrogenation reduction. In this work, superior H2 activating capabilities were achieved for efficient ClO3- reduction on a porous graphene-based bimetallic catalyst (RuPd/PG). Edge sites and porosity structures on porous graphene promote the anchoring and confinement of Ru and Pd NPs (Nanoparticles), forming abundant Pd-Ru bonding interfaces and highly dispersed NPs. Based on DFT analysis, the ample Pd-Ru interfaces and highly dispersed Ru NPs are the main active sites, simultaneously boosting H* generation and reactant activation for rapid ClO3- reduction. The defective layer of Ru NPs on the Pd surface provides intermediates with accessibility to the inner Pd NPs, thereby avoiding ClO3- regeneration on Ru. Therefore, ClO3- hydrogenation reduction was significantly enhanced on RuPd/PG with an initial turnover frequency (TOF0) of 27.2 min-1, possessing superior robustness in recycling tests and actual water samples. Undoubtedly, this work provides new insights into H* generation and reactant activation to optimize ClO3- hydrogenation reduction applicable for water treatment.
Collapse
Affiliation(s)
- Yilin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiangdong Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Aodi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Chi H, Ma J, Duan R, Wang A, Qiao Y, Wang W, Li C. Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater. WATER RESEARCH 2024; 262:122101. [PMID: 39032329 DOI: 10.1016/j.watres.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Collapse
Affiliation(s)
- Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Aoqi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafei Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhou S, Yang D, Xiang W, Guo Y, Yu Z, Wang J. An in-depth study of integrating cascaded photocatalytic H 2O 2 generation and activation with solar-driven interfacial evaporation for in-situ organic contaminant remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134963. [PMID: 38908186 DOI: 10.1016/j.jhazmat.2024.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Integrating cascaded photocatalytic H2O2 generation and subsequent activation of H2O2 (into ·OH radicals) with solar-driven interfacial evaporation techniques offers an effective and sustainable approach for in-situ treating water contaminated with organic substances. Unlike traditional water-dispersed catalysts, the interfacial evaporation approach presents unique challenges in photocatalytic reactions. We explored these dynamics using an AgI/PPy/MF interfacial photothermal set, achieving H2O2 production efficiency (approximately 1.53 mM/g/h) - three times higher than submerged counterparts. This efficiency is attributed to exceptional solar light absorption (about 95 %), a significant surface photothermal effect (raising temperatures by approximately 36 °C), and enhanced oxygen availability (38 times more than in water), all characteristic of the interfacial system. The in-situ activation of H2O2 into ·OH notably improves the degradation of organic pollutants, achieving up to 99 % removal efficiency. This comprehensive analysis highlights the potential of combining photocatalytic H2O2 processes with interfacial evaporation for efficiently purifying organically polluted water.
Collapse
Affiliation(s)
- Shuai Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dailin Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyu Xiang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Guo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziwei Yu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Sultan MB, Anik AH, Rahman MM. Emerging contaminants and their potential impacts on estuarine ecosystems: Are we aware of it? MARINE POLLUTION BULLETIN 2024; 199:115982. [PMID: 38181468 DOI: 10.1016/j.marpolbul.2023.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
Emerging contaminants (ECs) are becoming more prevalent in estuaries and constitute a danger to both human health and ecosystems. These pollutants can infiltrate the ecosystem and spread throughout the food chain. Because of the diversified sources and extensive human activities, estuaries are particularly susceptible to increased pollution levels. A thorough review on recent ECs (platinum group elements, pharmaceuticals and personal care products, pesticides, siloxanes, liquid crystal monomers, cationic surfactant, antibiotic resistance genes, and microplastics) in estuaries, including their incidence, detection levels, and toxic effects, was performed. The inclusion of studies from different regions highlights the global nature of this issue, with each location having its unique set of contaminants. The diverse range of contaminants detected in estuary samples worldwide underscores the intricacy of ECs. A significant drawback is the scarcity of research on the toxic mechanisms of ECs on estuarine organisms, the prospect of unidentified ECs, warrant research scopes.
Collapse
Affiliation(s)
- Maisha Binte Sultan
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh; Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
6
|
Wang W, Zhang J, Hu M, Liu X, Sun T, Zhang H. Antidepressants in wastewater treatment plants: Occurrence, transformation and acute toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166120. [PMID: 37579797 DOI: 10.1016/j.scitotenv.2023.166120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Antidepressants (ATDs) are one of the most prescribed medications for psychiatric conditions. The widespread presence in aquatic environment and demonstrated ecotoxicity make ATDs a class of concerning emerging contaminants. Municipal wastewater treatment plants (WWTPs) provide important connecting channel between wastewater and aquatic environment. Herein, we present a critical overview of the occurrence, transformation and toxicity of typical ATDs during water treatments. The total concentration of the detected ATDs and their metabolites in the WWTP influents and effluents are 72.62-5011.80 ng/L and 114.48-6992.40 ng/L, respectively, on a global scale. The frequently observed negative removal of ATDs in WWTPs indicates that some ATDs exist as conjugates in wastewaters. The biotic and abiotic transformation of ATDs and the generated transformation byproducts (TPs) were identified, which occurred in WWTPs worldwide along with ATDs. Acute toxicity of ATDs and their TPs was predicated using the ECOSAR model. Compared to ATDs, the demonstrated enhanced toxicity of several TPs to aquatic organisms necessitates more attention on TPs monitoring in WWTPs. This work provides scientific support for wastewater advanced treatment to alleviate ATDs pollution in effluents.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiaxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ming Hu
- Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Zhang Y, Ma P, Fu H, Qu X, Zheng S. Effective catalytic hydrodechlorination removal of chloroanisole odorants in water using palladium catalyst confined in zeolite Y. CHEMOSPHERE 2022; 309:136551. [PMID: 36152833 DOI: 10.1016/j.chemosphere.2022.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Chloroanisoles is a class of odorous pollutants commonly identified in drinking water. In the present study, we confined noble metal palladium (Pd) in the micropores of zeolite Y (ie-Pd@Y) using an ion exchange method, and applied it for the catalytic hydrodechlorination removal of chloroanisoles (represented by 2,4,6-trichloroanisole/TCA) in water. Pd supported on zeolite Y surface (im-Pd/Y, prepared by conventional impregnation method) was used as the benchmarking catalyst. The characterization results revealed that ie-Pd@Y had smaller Pd particle size and higher Pdn+/Pd0 ratio than im-Pd/Y. The catalytic hydrodechlorination of TCA followed a concerted dechlorination pathway and the Langmuir-Hinshelwood model. The ie-Pd@Y catalysts with different Pd loadings exhibit excellent catalytic activities with more than 95% of TCA removed within 30 min, which is far superior to the im-Pd/Y catalysts (27-70%). Moreover, due to the confinement effect of zeolite Y, ie-Pd@Y displayed enhanced catalytic stability as compared with im-Pd/Y. The initial activity of ie-Pd@Y was more than 20 times higher than that of im-Pd/Y after five reaction cycles. Additionally, with the assistance of sieving effect, ie-Pd@Y displayed much stronger capability against the interference from dissolved organic matter than im-Pd/Y. The present results demonstrate that the confined catalysts ie-Pd@Y can be applied in liquid phase catalytic hydrogenation to effectively eliminate halogenated odorants in waters.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| |
Collapse
|
8
|
Sun H, Chen T, Zhang L, Dong D, Li Y, Guo Z. Distribution of florfenicol and norfloxacin in ice during water freezing process: Dual effects by fluorine substituents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119921. [PMID: 35973450 DOI: 10.1016/j.envpol.2022.119921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Distribution in ice is regarded as one of important transport modes for pollutants in seasonal freeze-up waters in cold regions. However, the distribution characteristics and mechanisms of fluorinated antibiotics as emerging contaminants during the water freezing process remain unclear. Here, florfenicol and norfloxacin were selected as model fluorinated antibiotics to investigate their ice-water distribution. Effects of antibiotic molecular structure on the distribution were explored through comparative studies with their non-fluorinated structural analogs. Results showed that phase changes during the ice growth process redistributed the antibiotics, with antibiotic concentrations in water 3.0-6.4 times higher than those in ice. The solute-rich boundary layer with a concentration gradient was presented at the ice-water interface and controlled by constitutional supercooling during the freezing process. The ice-water distribution coefficient (KIW) values of antibiotics increased by 34.8%-38.0% with a doubling of the cooling area. The solute distribution coefficient (Kbs) values of antibiotics at -20 °C were 65.6%-70.3% higher than at -10 °C. The KIW and Kbs values of all antibiotics were negatively correlated with their water solubilities. The fluorine substituents influenced the binding energies between antibiotics and ice, resulting in a 1.1-fold increase in the binding energy of norfloxacin on the ice surface relative to its structural analog pipemidic acid. The results provide a new insight into the transport behaviors of fluorinated pharmaceuticals in ice-water systems.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Tianyi Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Housing and Urban-Rural Construction Bureau of Chengde High-Tech Industrial Development Zone, Chengde, 067000, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Kim E, Cardosa GB, Stanley KE, Williams TJ, McCurry DL. Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8756-8764. [PMID: 35671187 DOI: 10.1021/acs.est.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 μg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted β-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.
Collapse
Affiliation(s)
- Euna Kim
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Georgia B Cardosa
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Katarina E Stanley
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Travis J Williams
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Salamanca M, López-Serna R, Palacio L, Hernandez A, Prádanos P, Peña M. Ecological Risk Evaluation and Removal of Emerging Pollutants in Urban Wastewater by a Hollow Fiber Forward Osmosis Membrane. MEMBRANES 2022; 12:293. [PMID: 35323768 PMCID: PMC8949913 DOI: 10.3390/membranes12030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Forward osmosis (FO) is a promising technology for the treatment of urban wastewater. FO can produce high-quality effluents and preconcentrate urban wastewater for subsequent anaerobic treatment. This membrane technology makes it possible to eliminate the pollutants present in urban wastewater, which can cause adverse effects in the ecosystem even at low concentrations. In this study, a 0.6 m2 hollow fiber aquaporin forward osmosis membrane was used for the treatment of urban wastewater from the Valladolid wastewater treatment plant (WWTP). A total of 51 Contaminants of Emerging Concern (CECs) were investigated, of which 18 were found in the target urban wastewater. They were quantified, and their ecotoxicological risk impact was evaluated. Different salts with different concentrations were tested as draw solutions to evaluate the membrane performances when working with pretreated urban wastewater. NaCl was found to be the most appropriate salt since it leads to higher permeate fluxes and lower reverse saline fluxes. The membrane can eliminate or significantly reduce the pollutants present in the studied urban wastewater, producing water without ecotoxicological risk or essentially free of pollutants. In all cases, good recovery was achieved, which increased with molecular weight, although chemical and electrostatic interactions also played a role.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| |
Collapse
|
11
|
Fagnani E, Montemurro N, Pérez S. Multilayered solid phase extraction and ultra performance liquid chromatographic method for suspect screening of halogenated pharmaceuticals and photo-transformation products in freshwater - comparison between data-dependent and data-independent acquisition mass spectrometry. J Chromatogr A 2022; 1663:462760. [PMID: 34979338 DOI: 10.1016/j.chroma.2021.462760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Since conventional biological wastewater treatments are not admittedly effective to convert pharmaceutical active compounds (PhACs) into nontoxic products, natural abiotic mechanisms such as solar photolysis arises as an important degradation process, especially for halogenated molecules. In the present work, photolysis simulation was carried out in-lab for precursors and their respective photo-transformation products (photo-TPs), which were analyzed through reversed-phase ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (RP-UHPLCHRMS). An in-house library was created in order to provide reference information for target (precursors) and suspect screening (photo-TPs) analysis of freshwater samples from impacted aquatic environments. Strategies in the use of data-dependent acquisition (DDA) and data-independent acquisition (DIA), as well as the data processing software are discussed here for the identification of 6 PhACs and photo-TPs. Because no standards of photo-TPs were available, only the target compounds, i.e. sitagliptin (398 ± 2 ng L-1), iohexol (209 ± 5 ng L-1), lamotrigine (103 ± 10 ng L-1), losartan (43 ± 10 ng L-1), ofloxacin (28 ± 7 ng L-1), and sertraline (25 ± 7 ng L-1) could be quantified through multiple standard additions.
Collapse
Affiliation(s)
- Enelton Fagnani
- Research Group for Optimization of Analytical Technologies Applied to Environmental and Sanitary Samples (GOTAS), School of Technology, University of Campinas (FT-UNICAMP), Rua Paschoal Marmo, 1888, Limeira, SP 13484-332, Brazil; Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| | - Sandra Pérez
- Water, Environmental and Food Chemistry research group (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research from the Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
12
|
Long M, Elias WC, Heck KN, Luo YH, Lai YS, Jin Y, Gu H, Donoso J, Senftle TP, Zhou C, Wong MS, Rittmann BE. Hydrodefluorination of Perfluorooctanoic Acid in the H 2-Based Membrane Catalyst-Film Reactor with Platinum Group Metal Nanoparticles: Pathways and Optimal Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16699-16707. [PMID: 34874150 DOI: 10.1021/acs.est.1c06528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (Pd0NPs) in situ synthesized on H2-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions. Kinetic tests tracking PFOA removal, F- release, and hydrodefluorination intermediates documented that PFOA was hydrodefluorinated by a mixture of parallel and stepwise reactions on the Pd0NP surfaces. Slow desorption of defluorination products lowered the catalyst's activity for hydrodefluorination. Of the platinum group metals studied, Pd was overall superior to Pt, Rh, and Ru for hydrodefluorinating PFOA. pH had a strong influence on performance: PFOA was more strongly adsorbed at higher pH, but lower pH promoted defluorination. A membrane catalyst-film reactor (MCfR), containing an optimum loading of 1.2 g/m2 Pd0 for a total Pd amount of 22 mg, removed 3 mg/L PFOA during continuous flow for 90 days, and the removal flux was as high as 4 mg PFOA/m2/d at a steady state. The EPA health advisory level (70 ng/L) also was achieved over the 90 days with the influent PFOA at an environmentally relevant concentration of 500 ng/L. The results document a sustainable catalytic method for the detoxification of PFOA-contaminated water.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Long M, Donoso J, Bhati M, Elias WC, Heck KN, Luo YH, Lai YS, Gu H, Senftle TP, Zhou C, Wong MS, Rittmann BE. Adsorption and Reductive Defluorination of Perfluorooctanoic Acid over Palladium Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14836-14843. [PMID: 34496574 DOI: 10.1021/acs.est.1c03134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a group of widespread and recalcitrant contaminants that are attracting increasing concern due to their persistence and adverse health effects. This study evaluated removal of one of the most prevalent PFAS, perfluorooctanoic acid (PFOA), in H2-based membrane catalyst-film reactors (H2-MCfRs) coated with palladium nanoparticles (Pd0NPs). Batch tests documented that Pd0NPs catalyzed hydrodefluorination of PFOA to partially fluorinated and nonfluorinated octanoic acids; the first-order rate constant for PFOA removal was 0.030 h-1, and a maximum defluorination rate was 16 μM/h in our bench-scale MCfR. Continuous-flow tests achieved stable long-term depletion of PFOA to below the EPA health advisory level (70 ng/L) for up to 70 days without catalyst loss or deactivation. Two distinct mechanisms for Pd0-based PFOA removal were identified based on insights from experimental results and density functional theory (DFT) calculations: (1) nonreactive chemisorption of PFOA in a perpendicular orientation on empty metallic surface sites and (2) reactive defluorination promoted by physiosorption of PFOA in a parallel orientation above surface sites populated with activated hydrogen atoms (Hads*). Pd0-based catalytic reduction chemistry and continuous-flow treatment may be broadly applicable to the ambient-temperature destruction of other PFAS compounds.
Collapse
Affiliation(s)
- Min Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Juan Donoso
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Manav Bhati
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Welman C Elias
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Kimberly N Heck
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Thomas P Senftle
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| | - Michael S Wong
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Shangguan Y, Zhou Y, Zheng R, Feng X, Ge Q, Wang R, Yang D, Wei W, Wu X, Lin J, Chen H. Bandgap engineering of tetragonal phase CuFeS2 quantum dots via mixed-valence single-atomic Ag decoration for synergistic Cr(VI) reduction and RhB degradation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Jho EH, Yun SH, Thapa P, Nam JW. Changes in the aquatic ecotoxicological effects of Triton X-100 after UV photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11224-11232. [PMID: 33113057 DOI: 10.1007/s11356-020-11362-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Various spray adjuvants including surfactants are widely used in agricultural pesticide formulations, and some of them may remain in soils and waters and impose more adverse effects than active pesticide ingredients on organisms. However, previous studies are more focused on the active pesticide ingredients than the adjuvants. Thus, this study investigates the changes in toxic effects of surfactants during photodegradation, which is one way of naturally degrading contaminants in natural waters. Triton X-100, a water-soluble non-ionic surfactant, was degraded using different types of UV radiation (UVA, UVB, and UVC), and the changes in the toxic effects were determined using bioluminescent bacteria and water flea. The Triton X-100 removals were negligible with UVA within 24 h, while its removal was 81% with UVB and almost complete with UVC. The NMR spectra indicated possible molecule rearrangement after photolysis. On the other hand, the toxic effects based on the mortality of Daphnia magna and the bioluminescence of Aliivibrio fischeri increased (i.e., lower EC50 values) after photodegradation, suggesting the generation of photoproducts that are likely to have higher toxic effects or higher bioavailability. Furthermore, the sensitivities of D. magna and A. fischeri for Triton X-100 and the photodegraded Triton X-100 were different. This study suggests that the changes in the chemical composition of the Triton X-100 containing water with photodegradation can lead to changes in the relative toxic effects on different aquatic organisms. Therefore, not only the management of parent compound (i.e., Triton X-100) but also the photoproducts generated from the parent compound need to be considered when managing water environment subject to photodegradation.
Collapse
Affiliation(s)
- Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Seong Ho Yun
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Youngin-si, Gyeonggi-do, 17035, South Korea
| | - Punam Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, South Korea
| |
Collapse
|