1
|
Baek SH, Lee CH, Park JS, Yoon JN, Lim YK. Temporal changes in microalgal biomass and species composition on different plastic polymers in nutrient-enriched microcosm experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174352. [PMID: 38969108 DOI: 10.1016/j.scitotenv.2024.174352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Marine plastic debris (MPD) is a potential threat to marine ecosystems, but its function as a vector for the transportation of harmful microalgae and its impact on the habitats of other marine organisms are uncertain. To address this gap in knowledge, we performed month-long experiments in 30 L microcosms that contained plates made of six different plastic polymers (polypropylene [PP], low-density polyethylene [LDPE], high-density polyethylene [HDPE], polyvinyl chloride [PVC], polyethylene terephthalate [PET], and polystyrene [PS]), and examined the time course of changes in planktonic and periphytic microalgae. There were no significant differences in the composition of periphytic microalgae or biomass among the different plastic polymers (p > 0.05). Nutrient depletion decreased the abundance of planktonic microalgae, but increased the biomass of attached periphytic microalgae (p < 0.05). In particular, analysis of the plastic plates showed that the abundance of benthic species that are responsible for harmful algal blooms (HABs), such as Amphidinium operculatum and Coolia monotis, significantly increased over time (days 21-28; p < 0.05). Our findings demonstrated that periphyton species, including benthic microalgae that cause HABs, can easily attach to different types of plastic and potentially spread to different regions and negatively impact these ecosystems. These observations have important implications for understanding the potential role of MPD in the spread of microalgae, including HABs, which pose a significant threat to marine ecosystems.
Collapse
Affiliation(s)
- Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chung Hyeon Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Ji Nam Yoon
- Strategy and Planning Office, Geosystem Research Corporation, Gunpo 15807, Republic of Korea
| | - Young Kyun Lim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
2
|
Liu W, Semmouri I, Janssen CR, Asselman J. Temperature dependent sensitivity of the harpacticoid copepod Nitokra spinipes to marine algal toxins. CHEMOSPHERE 2024; 366:143420. [PMID: 39349068 DOI: 10.1016/j.chemosphere.2024.143420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Harmful algal blooms (HABs) - proliferated algae densities, often producing toxins - have increasingly been found in ocean and coastal areas. Recent studies show that rising temperatures contribute to HAB occurrence, but the broader influence of climate change on these outbreaks is less quantified. Of particular concern is the limited research on HAB toxin effects under varying temperatures, especially regarding primary consumers such as copepods, a crucial component of aquatic ecosystems. Therefore, we examined the impact of marine toxins on the harpacticoid copepod Nitokra spinipes, a model organism for marine ecotoxicology, in the context of climate change. We evaluated the toxicity of four purified, commonly occurring algal toxins, at three different temperatures in the laboratory. First, adult females were exposed to a concentration series of toxins at 15, 20, and 25 °C for 48 h. EC50 values of domoic acid ranged from 8.79 ± 1.93 μg L-1 to 25.97 ± 11.96 μg L-1. Nauplii, aged 48-72 h, were exposed at 18, 20 and 22 °C for the same duration. Less sensitive compared to adults, the EC50 of domoic acid in this case varied from 57.26 ± 6.82 μg L-1 to 97.24 ± 6.45 μg L-1. Both results indicated a temperature-dependent EC50. For the chronic toxicity tests, larval development ratio (LDR), brood size and inter-brood time of domoic acid (DA), yessotoxin (YTX), saxitoxin (STX), and microcystin-LR (MC-LR) were examined at 18, 20 and 22 °C. We observed that with increasing temperatures, LDR increased, whereas brood size significantly decreased as DA, YTX or STX concentrations rose. No interaction between temperature and algal toxins was found but a temperature dependent sensitivity of copepods towards DA, YTX and STX was revealed. Our research provides insights into the effects of long-term exposure to algal toxins on marine copepods and the potential impacts of climate warming.
Collapse
Affiliation(s)
- Wenxin Liu
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Ilias Semmouri
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
3
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Wu F, Liu Z, Wang J, Wang X, Zhang C, Ai S, Li J, Wang X. Research on aquatic microcosm: Bibliometric analysis, toxicity comparison and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134078. [PMID: 38518699 DOI: 10.1016/j.jhazmat.2024.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/03/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Recently, aquatic microcosms have attracted considerable attention because they can be used to simulate natural aquatic ecosystems. First, to evaluate the development of trends, hotspots, and national cooperation networks in the field, bibliometric analysis was performed based on 1841 articles on aquatic microcosm (1962-2022). The results of the bibliometric analysis can be categorized as follows: (1) Aquatic microcosm research can be summarized in two sections, with the first part focusing on the ecological processes and services of aquatic ecosystems, and the second focusing on the toxicity and degradation of pollutants. (2) The United States (number of publications: 541, proportion: 29.5%) and China (248, 13.5%) are the two most active countries. Second, to determine whether there is a difference between single-species and microcosm tests, that is, to perform different-tier assessments, the recommended aquatic safety thresholds in risk assessment [i.e., the community-level no effect concentration (NOECcommunity), hazardous concentrations for 5% of species (HC5) and predicted no effect concentration (PNEC)] were compared based on these tests. There was a significant difference between the NOECcommunity and HC5 (P < 0.05). Moreover, regression models predicting microcosm toxicity values were constructed to provide a reference for ecological systemic risk assessments based on aquatic microcosms.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- Offshore Environmental Technology & Services Limited, Beijing 100027, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Yang J, Sun W, Sun M, Cui Y, Wang L. Current Research Status of Azaspiracids. Mar Drugs 2024; 22:79. [PMID: 38393050 PMCID: PMC10890026 DOI: 10.3390/md22020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The presence and impact of toxins have been detected in various regions worldwide ever since the discovery of azaspiracids (AZAs) in 1995. These toxins have had detrimental effects on marine resource utilization, marine environmental protection, and fishery production. Over the course of more than two decades of research and development, scientists from all over the world have conducted comprehensive studies on the in vivo metabolism, in vitro synthesis methods, pathogenic mechanisms, and toxicology of these toxins. This paper aims to provide a systematic introduction to the discovery, distribution, pathogenic mechanism, in vivo biosynthesis, and in vitro artificial synthesis of AZA toxins. Additionally, it will summarize various detection methods employed over the past 20 years, along with their advantages and disadvantages. This effort will contribute to the future development of rapid detection technologies and the invention of detection devices for AZAs in marine environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China; (J.Y.); (W.S.); (M.S.); (Y.C.)
| |
Collapse
|
6
|
Grigoriyan A, Lorini ML, Figueiredo MDSL, Corrêa Almada EV, Nascimento SM. Effects of culture conditions on the growth of the benthic dinoflagellates Ostreopsis cf. ovata, Prorocentrum lima and Coolia malayensis (Dinophyceae): A global review. HARMFUL ALGAE 2024; 132:102565. [PMID: 38331537 DOI: 10.1016/j.hal.2023.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Benthic dinoflagellates produce potent toxins that may negatively affect humans and the marine biota. Understanding the factors that stimulate their growth is important for management strategies and to reduce their potential negative impacts. Laboratory cultures have been extensively used to study microalgae physiology and characterize life cycles, nutrition, growth rates, among other processes. A systematic review of the literature on the growth parameters of the benthic dinoflagellates Ostreopsis cf. ovata, Prorocentrum lima species complex and Coolia malayensis obtained in laboratory cultures of strains isolated from all over the world was performed. The effects of temperature, light intensity, photoperiod, salinity and culture media on the growth rate of these species were evaluated using multiple regressions and a model selection approach, based on the Akaike Information Criteria (AIC). The potential effects of the initial culture abundance and the media volume used on the growth of the species were also assessed. Data from 50 articles (25 for O. cf. ovata, 21 for P. lima and 6 for C. malayensis), resulting in 399 growth parameter values (growth rate, doubling time and maximum yield) were compiled in a database. The genetic clades of O. cf. ovata and P. lima species complex were also noted. Growth rate was the most frequently reported growth parameter for the three species, and 127 values were retrieved for O. cf. ovata, 90 for P. lima and 56 for C. malayensis. Temperature was the factor that best explained the growth response of P. lima and C. malayensis, whereas for O. cf. ovata, temperature and salinity were equally important. Light intensity and photoperiod were included among the six best models for the studied species but presented a weaker effect on growth. Given the observed and future projected climate change, increasing ocean temperature will promote the growth of these species, likely leading to an expansion of their impacts on ecosystems and human health. The use of common garden experiments using multiple strains from different geographic domains, particularly addressing underrepresented lineages is recommended, as they will provide more balanced insight regarding the species physiological responses to environmental drivers.
Collapse
Affiliation(s)
- Alexandra Grigoriyan
- Laboratório de Microalgas Marinhas, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | - Maria Lucia Lorini
- Laboratório de Ecologia e Biogeografia, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | - Marcos de Souza Lima Figueiredo
- Laboratório de Ecologia e Biogeografia, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil
| | | | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Av. Pasteur, 458, Urca, Rio de Janeiro, 22290-240, RJ, Brazil.
| |
Collapse
|
7
|
Wu H, Zhang H, Peng J, Zheng G, Lu S, Tan Z. Adaptive responses of geographically distinct strains of the benthic dinoflagellate, Prorocentrum lima (Dinophyceae), to varying light intensity and photoperiod. HARMFUL ALGAE 2023; 127:102479. [PMID: 37544679 DOI: 10.1016/j.hal.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The toxic Prorocentrum lima complex can potentially cause serious harm to the benthos and entire food chain. Studies have revealed physiological differences in strains from different regions related to local environment, while differences in the adaptive responses of P. lima complex should be urgently assessed. Hence, this study explored the adaptive responses to varying light intensities and photoperiods of two P. lima complex strains SHG101 and 3XS34, isolated from the Bohai Sea and the South China Sea, respectively. We found the highest cell density of 7.49 × 104 cells mL-1 recorded in the 3XS strain in the stationary phase with high light intensity exposure. No significant difference was observed in growth rate among SHG groups, however, significant differences were found among 3XS groups ranging from 0.176 to 0.311 d-1. Three key pigments Chl a, Peri, and Fuco accounted for up to 60% of the total pigments. Production and concentrations of pigments and Fv/Fm values exhibit a significant negative correlation with high light intensity and growth. Conversely, total diarrhetic shellfish toxin content and the proportion of diol esters increased to varying degrees after high intensity light exposure, with 3XS strain under high light intensity and a photoperiod of light and darkness (12L:12D) consistently exhibiting the highest levels, finally reaching a maximum (21.6 pg cell-1) at day 28. A shortened photoperiod of high light intensity (8L:16D) resulted in impaired recovery compared with 12L:12D. Furthermore, 3XS showed more delayed and intense adaptive responses, indicating a stronger tolerance compared to SHG. Collectively, these results directly characterized variation in the adaptive responses of geographically distinct strains of P. lima complex, highlighting the previously ignored potential risk diversity of this species.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haoyu Zhang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 10362, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Leynse AK, Mudge EM, Turner AD, Maskrey BH, Robertson A. Gambierone and Sodium Channel Specific Bioactivity Are Associated with the Extracellular Metabolite Pool of the Marine Dinoflagellate Coolia palmyrensis. Mar Drugs 2023; 21:md21040244. [PMID: 37103383 PMCID: PMC10143066 DOI: 10.3390/md21040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Tropical epibenthic dinoflagellate communities produce a plethora of bioactive secondary metabolites, including the toxins ciguatoxins (CTXs) and potentially gambierones, that can contaminate fishes, leading to ciguatera poisoning (CP) when consumed by humans. Many studies have assessed the cellular toxicity of causative dinoflagellate species to better understand the dynamics of CP outbreaks. However, few studies have explored extracellular toxin pools which may also enter the food web, including through alternative and unanticipated routes of exposure. Additionally, the extracellular exhibition of toxins would suggest an ecological function and may prove important to the ecology of the CP-associated dinoflagellate species. In this study, semi-purified extracts obtained from the media of a Coolia palmyrensis strain (DISL57) isolated from the U.S. Virgin Islands were assessed for bioactivity via a sodium channel specific mouse neuroblastoma cell viability assay and associated metabolites evaluated by targeted and non-targeted liquid chromatography tandem and high-resolution mass spectrometry. We found that extracts of C. palmyrensis media exhibit both veratrine enhancing bioactivity and non-specific bioactivity. LC-HR-MS analysis of the same extract fractions identified gambierone and multiple undescribed peaks with mass spectral characteristics suggestive of structural similarities to polyether compounds. These findings implicate C. palmyrensis as a potential contributor to CP and highlight extracellular toxin pools as a potentially significant source of toxins that may enter the food web through multiple exposure pathways.
Collapse
Affiliation(s)
- Alexander K Leynse
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL 36688, USA
- Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA
| | - Elizabeth M Mudge
- National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3M3Z1, Canada
| | - Andrew D Turner
- Center for the Environment, Fisheries, and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Benjamin H Maskrey
- Center for the Environment, Fisheries, and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK
| | - Alison Robertson
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL 36688, USA
- Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA
| |
Collapse
|
9
|
Huang H, Chen S, Xu Z, Wu Y, Mei L, Pan Y, Yan X, Zhou C. Comparative metabarcoding analysis of phytoplankton community composition and diversity in aquaculture water and the stomach contents of Tegillarca granosa during months of growth. MARINE POLLUTION BULLETIN 2023; 187:114556. [PMID: 36640496 DOI: 10.1016/j.marpolbul.2022.114556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Filter-feeder bivalves and phytoplankton are interdependent. Their interaction plays important role in estuarine and coastal ecosystem. The correlation between bivalve feeding and phytoplankton is highly species specificity and environment dependent. In the background of miniature and nondiatom trend of phytoplankton in coastal seawaters, how bivalve respond and how the response play roles in the phytoplankton community are poorly known. In the present study, by applying DNA metabarcoding approach based on plastid 23S rDNA, this question was addressed by comparing the phytoplankton composition in the seston and the stomach content of blood clam Tegillarca granosa sampled during the growth period from March to November 2020 in an experimental farm on tidal flat in Xiangshan Bay, East China Sea. The result showed that, a total of seven phyla, 55 genera and 73 species of phytoplankton were identified for all samples. Chlorophyta, Bacillariophyta, and Cyanobacteria were found to be three dominant phyla both in the stomach contents and seston. High diversity of pico-sized phytoplankton, which was easy overlooked by microscopy, was revealed both in seston and stomach contents. This result indicated that the clam was able to feed on the pico-sized algae. At the genus level, the most abundant genera were the pico-sized green alga Ostreococcus (6.12 %-67.88 %) in seston and Picochlorum (4.07 %-35.33 %) in the stomach contents. In addition, microalgae of high nutritional value showed trend of higher proportion in stomach contents than that in seston, especially in July and September when significant growth of T. granosa was observed during this period (the body size increased 155 %). Biodiversity of phytoplankton in the seston was totally higher than that in stomach content, however, the changes among the months showed respective trend. Especially in July when the biodiversity was the lowest in seston, that in the stomach content showed the highest. The results indicated that blood clam farming might influence the phytoplankton composition, including those of pico-sized level, although the particular species in seston were mainly correlating with the dominant environmental factors such as temperature, salinity, pH respectively. These results extend the understanding of roles that bivalve aquaculture may play in the changing of coastal phytoplankton community.
Collapse
Affiliation(s)
- Hailong Huang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Sentao Chen
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zhihui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yanhua Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Limin Mei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yuanbo Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xiaojun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Zhang J, Kong L, Zhao Y, Lin Q, Huang S, Jin Y, Ma Z, Guan W. Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119515. [PMID: 35609842 DOI: 10.1016/j.envpol.2022.119515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingming Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Gu H, Wu Y, Lü S, Lu D, Tang YZ, Qi Y. Emerging harmful algal bloom species over the last four decades in China. HARMFUL ALGAE 2022; 111:102059. [PMID: 35016757 DOI: 10.1016/j.hal.2021.102059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/14/2023]
Abstract
The first recorded micro-algae bloom in Chinese coastal waters dates back to 1933 and was caused by a mixture of Noctiluca scintillans and Skeletonema costatum sensu lato along the Zhejiang coast (the East China Sea). While well-documented harmful algal blooms (HABs) appeared to be extremely scarce from the 1950s to 1990, both the frequency and intensity have been reportedly increasing since 1990. Among them, the fish-killing HABs, mainly caused by Karenia mikimotoi, Karlodinium digitatum, Karlodinium veneficum, Margalefidinium polykrikoides, and Heterocapsa spp., have intensified. Karenia mikimotoi was responsible for at least two extremely serious events in the Pearl River Estuary in 1998 and the Taiwan Strait (in the East China Sea) in 2012, which appeared to be associated with abnormal climate conditions and excessive nutrients loading. Other major toxic algal blooms have been caused by the species responsible for paralytic shellfish poisoning (including Alexandrium catenella, Alexandrium pacificum, Gymnodinium catenatum) and diarrhetic shellfish poisoning (including Dinophysis spp., and a couple of benthic dinoflagellates). Consequent closures of shellfish farms have resulted in enormous economic losses, while consumption of contaminated shellfish has led to occasional human mortality in the Bohai Sea and the East China Sea. Expansions of these HABs species along the coastline of China have occurred over the last four decades and, due to the projected global changes in the climate and marine environments and other anthropological activities, there is potential for the emergence of new types of HABs in China in the future. This literature review aimed to present an updated overview of HABs species over the last four decades in China.
Collapse
Affiliation(s)
- Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Island and Coastal Ecosystem in the Western Taiwan Straits, Ministry of Natural Resources, Xiamen 361005, China
| | - Yiran Wu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Songhui Lü
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Douding Lu
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yuzao Qi
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Zheng R, Lin S, Yang Y, Fu W. Variability and profiles of lipophilic marine toxins in shellfish from southeastern China in 2017-2020. Toxicon 2021; 201:37-45. [PMID: 34416253 DOI: 10.1016/j.toxicon.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
A total of 1338 samples were analyzed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to study the toxin profiles of lipophilic marine toxins in bivalve mollusks collected from the southeast coast of China from 2017 to 2020. The most abundant toxin was HomoYTX, followed progressively by YTX and PTX2. Low proportions of OA, DTX-1, and DTX-2 were found. No AZA1, AZA2, and AZA3 were quantified above limit of quantitation (LOQ). The highest concentrations of HomoYTX, YTX, PTX2, OA, DTX-1, and DTX-2 were 429, 98.0, 40.3, 33.0, 22.6, and 26.5 μg/kg, respectively. Mussels (Mytilus galloprovincialis, Perna viridis), scallop (Chlamys farreri) and clam (Atrina pectinate) accumulated higher toxin levels than clams (Sinonovaculla Constricta, Ruditapes philippinarum), oyster (Crassostrea gigas) and scallop (Arca granosa). Homo YTX and PTX2 levels reached the maximum in July and June, respectively, and the OA-group peaked in August. The results provide a reliable basis for monitoring marine toxins and protecting the health of aquatic consumers.
Collapse
Affiliation(s)
- Renjin Zheng
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Shouer Lin
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yan Yang
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| | - Wusheng Fu
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, Fujian, 350001, China
| |
Collapse
|
13
|
Gu J, Yan M, Leung PTY, Tian L, Lam VTT, Cheng SH, Lam PKS. Toxicity effects of hydrophilic algal lysates from Coolia tropicalis on marine medaka larvae (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105787. [PMID: 33677168 DOI: 10.1016/j.aquatox.2021.105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Coolia tropicalis is a species of benthic and epiphytic toxic algae, which can produce phycotoxins that intoxicate marine fauna. In this study, the potential toxic effects of C. tropicalis on fish were investigated using larval marine medaka (Oryzias melastigma) as a model to evaluate fish behavior, physiological performance, and stress-induced molecular responses to exposure to two sublethal concentrations (LC10 and LC20) of hydrophilic algal lysates. Exposure to C. tropicalis lysates inhibited swimming activity, activated spontaneous undirected locomotion, altered nerve length ration, and induced early development abnormalities, such as shorter eye diameter, body as well as axon length. Consistent with these abnormalities, changes in the expression of genes associated with apoptosis (CASPASE-3 and BCL-2), the inflammatory response (IL-1β and COX-2), oxidative stress (SOD), and energy metabolism (ACHE and VHA), were also observed. This study advances our understanding of the mechanisms of C. tropicalis toxicity in marine fish in the early life stages and contributes to future ecological risk assessments of toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Li Tian
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
14
|
Leyva-Valencia I, Hernández-Castro JE, Band-Schmidt CJ, Turner AD, O’Neill A, Núñez-Vázquez EJ, López-Cortés DJ, Bustillos-Guzmán JJ, Hernández-Sandoval FE. Lipophilic Toxins in Wild Bivalves from the Southern Gulf of California, Mexico. Mar Drugs 2021; 19:md19020099. [PMID: 33572171 PMCID: PMC7914588 DOI: 10.3390/md19020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022] Open
Abstract
Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.
Collapse
Affiliation(s)
- Ignacio Leyva-Valencia
- CONACYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-4734
| | - Jesús Ernestina Hernández-Castro
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Andrew D. Turner
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Alison O’Neill
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Erick J. Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - David J. López-Cortés
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - José J. Bustillos-Guzmán
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | | |
Collapse
|