1
|
Ouyang W, Huang Y, Li C, Huang W, Yuan S, Liu H. Control of dissolved H 2 concentration enhances electron generation, transport and TCE reduction by indigenous microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177014. [PMID: 39423892 DOI: 10.1016/j.scitotenv.2024.177014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Electrokinetic enhanced bioremediation (EK-Bio) is practical for trichloroethene (TCE) dechlorination because the cathode can produce a wide range of dissolved H2 (DH) concentrations of 1.3-0 mg/L from the electrode to the aquifer. In this study, TCE dechlorination was investigated under different DH concentrations. The mechanisms were discussed by analyzing the microbial community structure and abundance of organohalide-respiring bacteria (OHRB) using 16S rRNA, and the gene abundances of key enzymes in the TCE electron transport chain using metagenomic analysis. The results showed that the moderate DH concentration of 0.19-0.53 mg/L exhibited the most pronounced TCE dechlorination, even better than the higher DH concentrations, due to the optimal redox environment, the enrichments of OHRB, reductive dehalogenase (rdhA) genes and key enzyme genes in the electron generation and transport chain. More electrons were obtained from H2 metabolism by Dehalobacter by promoting the formation of [NiFe] hydrogenase (HupS/L/C) or from glycolysis by versatile OHRB by stimulating the formation of formate and enriching formate dehydrogenase (FDH) under moderate DH conditions. In addition, the enhanced amino acid metabolism improved the vitamin K cycle for electron transport and enriched the reductive dechlorinating enzyme (RDase) genes. This study identifies the optimal DH concentration that facilitates bioremediation efficiency, provides insights into microbial community shifts and key enzymatic pathways in EK-Bio remediation.
Collapse
Affiliation(s)
- Weiwei Ouyang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Cui Li
- Hubei Ecology Polytechnic College, Wuhan, Hubei 430200, PR China
| | - Wenyi Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Songhu Yuan
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430078, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430078, PR China.
| |
Collapse
|
2
|
Yang SY, Lai CY, Zhao HP. Influence of microbial inoculation site on trichloroethylene degradation in electrokinetic-enhanced bioremediation of low-permeability soils. ENVIRONMENTAL RESEARCH 2024; 252:118899. [PMID: 38604486 DOI: 10.1016/j.envres.2024.118899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.
Collapse
Affiliation(s)
- Si-Ying Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zheng D, Xie Q, Li F, Huang W, Qi Z, Dong J, Li G, Zhang F. Spatiotemporal dynamic temperature variation dominated by ion behaviors during groundwater remediation using direct current. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124091. [PMID: 38697248 DOI: 10.1016/j.envpol.2024.124091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Direct current (DC) electric field has shown promising performance in contaminated site remediation, in which the Joule heating effect plays an important role but has been previously underappreciated. This study focuses on the spatiotemporal characteristics and mechanism of temperature change in heterogeneous porous media with applied DC. The heating process can be divided into four phases: preferential heating of the low permeability zone (LPZ), rapid heating in the middle region, temperature drop and hot zone shift, and reheating. The dynamic ion behaviors with complex interplays among reactions, electrokinetic-driven migration, and mixed convection induced an uneven redistribution of ions and dominated the heating rate and temperature distribution. The concentration of major ions near the pH jump decreased to 1% of the initial value, even though ions were continuously pumped into the heating zone. This ion depletion caused a drop in current, heating rate, and temperature. Here ions cannot be delivered rapidly into the ion-depleted zone by electromigration due to the potential flattening in the surrounding region. The presence of LPZ intensified the nonuniformity of ion redistribution, where a regional focusing of water-soluble ions was observed, and weakened the temperature rebound compared with that using homogeneous sand. These results provide a new perspective on the regulation of DC heating in site remediation.
Collapse
Affiliation(s)
- Di Zheng
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China.
| | - Qianli Xie
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Fangzhou Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Wan Huang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Zhen Qi
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Jingqi Dong
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing, 100041, PR China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing, 100015, PR China.
| |
Collapse
|
4
|
Cai Q, Shi C, Cao Z, Li Z, Zhao HP, Yuan S. Electrokinetic bioremediation of trichloroethylene and Cr/As co-contaminated soils with elevated sulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133761. [PMID: 38364580 DOI: 10.1016/j.jhazmat.2024.133761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Co-contaminants and complex subsurface conditions pose great challenges to site remediation. This study demonstrates the potential of electrokinetic bioremediation (EK-BIO) in treating co-contaminants of chlorinated solvents and heavy metals in low-permeability soils with elevated sulfate. EK-BIO columns were filled with field soils, and were fed by the electrolyte containing 20 mg/L trichloroethylene (TCE), 250 μM Cr(VI), 25 μM As(III), 10 mM lactate, and 10 mM sulfate. A dechlorinating consortium containing Dehalococcoides (Dhc) was injected several times during a 199-d treatment at ∼1 V/cm. Sulfate reduction, Cr/As immobilization, and complete TCE biodechlorination were observed sequentially. EK-BIO facilitated the delivery of lactate, Cr(VI)/As(III), and sulfate to the soils, creating favorable reductive conditions for contaminant removal. Supplementary batch experiments and metagenomic/transcriptomic analysis suggested that sulfate promoted the reductive immobilization of Cr(VI) by generating sulfide species, which subsequently enhanced TCE biodechlorination by alleviating Cr(VI) toxicity. The dechlorinating community displayed a high As(III) tolerance. Metagenomic binning analysis revealed the dechlorinating activity of Dhc and the potential synergistic effects from other bacteria in mitigating heavy metal toxicity. This study justified the feasibility of EK-BIO for co-contaminant treatment and provided mechanistic insights into EK-BIO treatment.
Collapse
Affiliation(s)
- Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Zixuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Zhengtao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China.
| |
Collapse
|
5
|
Li W, Zhang W, Dong J, Liang X, Sun C. Groundwater chlorinated solvent plumes remediation from the past to the future: a scientometric and visualization analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17033-17051. [PMID: 38334923 DOI: 10.1007/s11356-024-32080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Contamination of groundwater with chlorinated hydrocarbons has serious adverse effects on human health. As research efforts in this area have expanded, a large body of literature has accumulated. However, traditional review writing suffers from limitations regarding efficiency, quantity, and timeliness, making it difficult to achieve a comprehensive and up-to-date understanding of developments in the field. There is a critical need for new tools to address emerging research challenges. This study evaluated 1619 publications related to this field using VOSviewer and CiteSpace visual tools. An extensive quantitative analysis and global overview of current research hotspots, as well as potential future research directions, were performed by reviewing publications from 2000 to 2022. Over the last 22 years, the USA has produced the most articles, making it the central country in the international collaboration network, with active cooperation with the other 7 most productive countries. Additionally, institutions have played a positive role in promoting the publication of science and technology research. In analyzing the distribution of institutions, it was found that the University of Waterloo conducted the majority of research in this field. This paper also identified the most productive journals, Environmental Science & Technology and Applied and Environmental Microbiology, which published 11,988 and 3253 scientific articles over the past 22 years, respectively. The main technologies are bioremediation and chemical reduction, which have garnered growing attention in academic publishing. Our findings offer a useful resource and a worldwide perspective for scientists engaged in this field, highlighting both the challenges and the possibilities associated with addressing groundwater chlorinated solvent plumes remediation.
Collapse
Affiliation(s)
- Wenyan Li
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Weihong Zhang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China.
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China.
| | - Jun Dong
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Xue Liang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Chen Sun
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| |
Collapse
|
6
|
Sprocati R, Gallo A, Wienkenjohann H, Rolle M. Temperature-dependent dynamics of electrokinetic conservative and reactive transport in porous media: A model-based analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104261. [PMID: 37925812 DOI: 10.1016/j.jconhyd.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Electrokinetic techniques employ direct current electric fields to enhance the transport of amendments in low permeability porous media and have been demonstrated effective for in situ remediation of both organic contaminants and heavy metals. The application of electric potential gradients give rise to coupled chemical, hydraulic and electric fluxes, which are at the basis of the main transport mechanisms: electromigration and electroosmosis. Previous research has highlighted the significant impacts of charge interactions and fluid composition, including temperature-dependent properties such as electrolyte conductivity and density, on these transport phenomena. However, current models of electrokinetic applications often assume isothermal conditions and overlook the production of heat resulting from Joule heating. This study provides a detailed model-based investigation, systematically exploring the effects of temperature on electrokinetic conservative and reactive transport in porous media. By incorporating temperature-dependent material properties and progressively investigating the impact of temperature on each transport mechanism, we analyze the effects of temperature variations in both 1D and 2D systems. The study reveals how temperature dynamically influences the physical, chemical and electrostatic processes controlling electrokinetic transport. A temperature increase results in a higher speed of amendments delivery by both electromigration and electroosmosis and increases the kinetics of degradation reactions. The simulations also reveal a feedback mechanism in which higher aqueous conductivity results in increased Joule heating, leading to a faster temperature rise and, subsequently, to higher electrolyte conductivity. Finally, we estimate the electric energy requirements of the system at varying temperatures and show how these changes impact the rate of contaminant removal.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Andrea Gallo
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Henning Wienkenjohann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; Technical University of Darmstadt, Department of Materials and Geosciences, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany.
| |
Collapse
|
7
|
Xu G, Zhao S, Chen C, Zhang N, He J. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15112-15122. [PMID: 37772791 DOI: 10.1021/acs.est.3c04535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ning Zhang
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
8
|
Shi C, Tong M, Cai Q, Li Z, Li P, Lu Y, Cao Z, Liu H, Zhao HP, Yuan S. Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5046-5055. [PMID: 36926893 DOI: 10.1021/acs.est.3c00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as Dehalococcoides, has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spatio-temporal variations of indigenous microbial community and biodehalogenation activity of the background matrix, a fundamental aspect for understanding EK-Bio, remain unclear. To fill this gap, we investigated the variation of trichloroethylene (TCE) biodehalogenation activity in response to indigenous microbial community succession in EK-Bio by both column and batch experiments. For a 195 day EK-Bio column (∼1 V/cm, electrolyte circulation, lactate addition), biodehalogenation activity occurred first near the cathode (<60 days) and then spread to the anode (>90 days), which was controlled by electron acceptor (i.e., Fe(III)) competition and microbe succession. Amplicon sequencing and metagenome analysis revealed that iron-reducing bacteria (Geobacter, Anaeromyxobacter, Geothrix) were enriched within initial 60 d and were gradually replaced by organohalide-respiring bacteria (versatile Geobacter and obligate Dehalobacter) afterward. Iron-reducing bacteria required an initial long time to consume the competitive electron acceptors so that an appropriate reductive condition could be developed for the enrichment of organohalide-respiring bacteria and the enhancement of TCE biodehalogenation activity.
Collapse
Affiliation(s)
- Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zhengtao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zixuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| |
Collapse
|
9
|
Cai Q, Shi C, Yuan S, Tong M. Integrated anaerobic-aerobic biodegradation of mixed chlorinated solvents by electrolysis coupled with groundwater circulation in a simulated aquifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31188-31201. [PMID: 36445524 DOI: 10.1007/s11356-022-24377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.25 mg/L), 1,2-dichloroethane (DCA, 7.01 mg/L), and trichloroethylene (TCE, 4.56 mg/L). A two-dimensional tank was filled with field sandy and silty-clayed sediments to simulate aquifer conditions, a pair of electrodes was installed between an injection well and abstraction well, and groundwater circulation transported cathodic H2 and anodic O2 to produce multiple redox conditions. Microbial community analysis demonstrated that the system constructed a habitat suitable for the co-existence of aerobic and anaerobic microbes. After 50 days of treatment, 93.1%, 100%, and 87.3% of CF, 1,2-DCA, and TCE were removed without observed intermediates, respectively. Combined with compound specific isotope analysis, the degradation of 1,2-DCA and CF was mainly attributed to aerobic oxidation and reductive dechlorination, respectively, and TCE was removed by both aerobic and anaerobic biodegradation. Our findings provide a new and efficient strategy for in situ bioremediation of groundwater contaminated by mixed chlorinated solvents.
Collapse
Affiliation(s)
- Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
- Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, 430078, People's Republic of China.
| |
Collapse
|
10
|
Fernández-Cascán J, Isidro J, Guadaño J, Sáez C, Rodrigo M. Electrochemically assisted transport of chlorinated hydrocarbons from aged to clean silt. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Blue J, Boving T, Tuccillo ME, Koplos J, Rose J, Brooks M, Burden D. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. WATER 2023; 15:1-31. [PMID: 36959915 PMCID: PMC10031503 DOI: 10.3390/w15030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recalcitrant groundwater contamination is a common problem at hazardous waste sites worldwide. Groundwater contamination persists despite decades of remediation efforts at many sites because contaminants sorbed or dissolved within low-conductivity zones can back diffuse into high-conductivity zones, and therefore act as a continuing source of contamination to flowing groundwater. A review of the available literature on remediation of plume persistence due to back diffusion was conducted, and four sites were selected as case studies. Remediation at the sites included pump and treat, enhanced bioremediation, and thermal treatment. Our review highlights that a relatively small number of sites have been studied in sufficient detail to fully evaluate remediation of back diffusion; however, three general conclusions can be made based on the review. First, it is difficult to assess the significance of back diffusion without sufficient data to distinguish between multiple factors contributing to contaminant rebound and plume persistence. Second, high-resolution vertical samples are decidedly valuable for back diffusion assessment but are generally lacking in post-treatment assessments. Third, complete contaminant mass removal from back diffusion sources may not always be possible. Partial contaminant mass removal may nonetheless have potential benefits, similar to partial mass removal from primary DNAPL source zones.
Collapse
Affiliation(s)
- Julie Blue
- Eastern Research Group, Concord, MA 01742, USA
| | - Thomas Boving
- Department Geosciences/Department Civil and Environmental Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | - Michael Brooks
- U.S. Environmental Protection Agency, Ada, OK 74820, USA
| | - David Burden
- U.S. Environmental Protection Agency, Ada, OK 74820, USA
| |
Collapse
|
12
|
Gallo A, Sprocati R, Rolle M, Sethi R. Electrokinetic delivery of permanganate in clay inclusions for targeted contaminant degradation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104102. [PMID: 36372631 DOI: 10.1016/j.jconhyd.2022.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The use of electrokinetics (EK) has great potential to deliver reactants in impervious porous media, thus overcoming some of the challenges in the remediation of contaminants trapped in low-permeability zones. In this work we experimentally investigate electrokinetic transport in heterogeneous porous media consisting of a sandy matrix with a target clay inclusion. We demonstrate the efficient EK-delivery of permanganate in the target clay zone (transport velocity 0.3-0.5 m day-1) and its reactivity with Methylene Blue, a positively charged contaminant trapped within the inclusion. The delivery method was optimized using a KH2PO4/K2HPO4 buffer to attenuate the effect of electrolysis reactions in the electrode chambers, thus mitigating the propagation of pH fronts and preventing the phenomenon of permanganate stalling. The experiments showed that the buffer electrical conductivity greatly impacts the potential gradient in the heterogeneous porous medium with implications on the observed rates of electrokinetic transport (variation up to 40%). The reactive experiments provided direct evidence of the permanganate penetration within the clay and of its capability to degrade the target immobilized contaminant. The experimental results were analyzed using a process-based model, elucidating the governing transport mechanisms and highlighting the effect of different mass transfer processes on conservative and reactive electrokinetic transport.
Collapse
Affiliation(s)
- Andrea Gallo
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
13
|
Sprocati R, Rolle M. On the interplay between electromigration and electroosmosis during electrokinetic transport in heterogeneous porous media. WATER RESEARCH 2022; 213:118161. [PMID: 35152137 DOI: 10.1016/j.watres.2022.118161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Electrokinetic techniques represent a valuable approach to enhance solute transport, reactant delivery and contaminant degradation in complex environmental matrices, such as contaminated soil and groundwater, and have a great potential for the remediation of many organic and inorganic pollutants. This study investigates the complex interplay between the key electrokinetic transport mechanisms, electromigration and electroosmosis, in physically heterogeneous porous media and its impact on tracer distribution, reactant mixing and degradation efficiency. We perform experiments in a multidimensional setup, considering different types of heterogeneities, injected tracers and reactants, as well as background electrolyte pore water with different chemical composition and pH. We show that EK transport is significantly affected by the physical heterogeneities, due to the interaction between electrokinetic and hydraulic processes, and by the pore water chemistry that plays a key role on the magnitude and spatial distribution of electroosmotic fluxes. The latter affect the overall transport of charged and non-charged species, including the migration velocity of injected plumes, their spatial patterns, spreading and mixing with the background groundwater, and the extent of degradation and the spatio-temporal evolution of reactive zones in the heterogeneous porous media. Process-based numerical modeling allowed us to interpret the experimental observations and to disentangle the coupled effects of physical, chemical and electrostatic processes in the multidimensional, heterogeneous setups. Besides elucidating the mechanisms controlling electrokinetic transport, the results of this study have also important implications for practical field implementation of EK approaches in intrinsically heterogeneous subsurface systems.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs, Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Building 115, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
14
|
Rolle M, Albrecht M, Sprocati R. Impact of solute charge and diffusion coefficient on electromigration and mixing in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 244:103933. [PMID: 34872016 DOI: 10.1016/j.jconhyd.2021.103933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The application of electrokinetic techniques in porous media has great potential to enhance mass transfer rates and, thus, to mobilize contaminants and effectively deliver reactants and amendments. However, the transport mechanisms induced by the application of an external electric field are complex and entail the coupling of physical, chemical and electrostatic processes. In this study we focus on electromigration and we provide experimental evidence of the impact of compound-specific properties, such as the aqueous diffusivity and the valence of charged species, on the macroscopic electrokinetic transport. We performed a series of multidimensional experiments considering the displacement of three different tracer plumes (i.e., permanganate, allura red and new coccine) in different background electrolyte solutions. The outcomes of the experiments clearly show that both the compound-specific diffusivity and the charge of the injected and resident ions impact the transport of the selected color tracer plumes, whose evolution was monitored with image analysis. The investigated experimental scenarios led to distinct plume behavior characterized by different mass distribution, average displacement velocities, longitudinal and lateral plume spreading, shape of the invading and receding fronts, as well as dilution of the injected solutes. A numerical simulator, based on the Nernst-Planck-Poisson equations and on aqueous speciation reactions in the pore water, allowed us to quantitatively interpret the experimental results, to capture the observed patterns of plume evolution, and to illuminate the coupling between the governing physico-chemical mechanisms and the controlling role of small scale compound-specific and electrostatic properties. Finally, the model was also extended to a typical configuration of in situ electrokinetic remediation of contaminated groundwater to show the impact of such mechanisms at larger scale.
Collapse
Affiliation(s)
- Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| | - Marina Albrecht
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|