1
|
Jiang L, Zhu X, Shen Y, Wang D, Ren J, Li A, Pan Y. Control of drinking water disinfection byproducts with a novel bromide-selective anion exchange resin: Design, mechanism, and performance. WATER RESEARCH 2024; 268:122565. [PMID: 39378743 DOI: 10.1016/j.watres.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
In regions where drinking water sources containing elevated bromide levels, the formation of brominated disinfection byproducts (Br-DBPs) is enhanced, which may increase risks of cancer and birth defects. Anion exchange resin (AER) adsorption is a promising approach for reducing precursors of Br-DBPs (e.g., bromide and natural organic matter) due to its strong electrostatic force for reversible ion exchange process. However, high bromide water sources typically have high salinities, and the presence of co-existing ions (e.g., sulfate, nitrate, chloride) can significantly diminish the efficiency of conventional AERs, which use polyacrylic or polystyrene skeletons with trimethyl-ammonium functional groups. This study designed a novel AER with the polystyrene skeleton and tripentyl-ammonium functional group for the selective bromide removal, which resisted interferences from co-existing ions based on ion dehydration and ion-pairing electrostatic interactions. Column experiments with continuous high-bromide water flows demonstrated that the novel AER exhibited up to three times the operating capacity of conventional AERs, achieving reductions of 71.2 %, 44.6 %, and 67.7 % in bromide, dissolved organic carbon, and specific UV absorbance, respectively. Competitive experiments showed that the novel AER's strong sulfate interference resistance enhanced its bromide selectivity. The electrostatic interactions between AER fragments and bromide or sulfate particles were quantitatively evaluated using density functional theory calculations. Treatment with the novel AER led to reductions in total organic bromine, aliphatic Br-DBPs, and cyclic Br-DBPs by 76.7 %, 62.5 %, and 90.5 %, respectively. Notably, cytotoxicity assays using Chinese hamster ovary cells indicated a 39.7 % decrease in overall cytotoxicity of chlorinated drinking water following treatment with the novel AER.
Collapse
Affiliation(s)
- Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yifan Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dongxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiafeng Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Wu J, Zhang Y, Zhang Q, Tan F, Liu Q, Yang X. The Selectively Nontargeted Analysis of Halogenated Disinfection Byproducts in Tap Water by Micro-LC QTOFMS. TOXICS 2024; 12:630. [PMID: 39330558 PMCID: PMC11436213 DOI: 10.3390/toxics12090630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
With the rapid development of society, more and more unknown halogenated disinfection byproducts (DBPs) enter into drinking water and pose potential risks to humans. To explore the unknown halogenated DBPs in tap water, a selectively nontargeted analysis (SNTA) method was developed by conducting micro-liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (micro-LC-QTOFMS). In this method, two runs were employed: in the first run, the modes of TOFMS and precursor ion (the fragments were set as Cl35/Cl37, Br79/Br81, and I126.9) were performed, and the molecular ions or precursor ions of the halogenated organics could be obtained; in the second run, the product ion mode was conducted by setting the molecular ion screened above, and the MS/MS spectrums could be acquired to speculate concerning the structure. Two kinds of model DBPs (one kind had an aliphatic structure and the other was an aromatic compound) were used to optimize the parameters of the MS, and their MS characteristics were summarized. With this SNTA method, 15 halogenated DBPs were screened in two tap water samples and their structures were proposed. Of them, six DBPs had not been reported before and were assumed to be new DBPs. Overall, the detected halogenated DBPs were mostly acidic substances.
Collapse
Affiliation(s)
- Jing Wu
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; (J.W.); (Y.Z.); (Q.Z.); (F.T.)
| | - Yulin Zhang
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; (J.W.); (Y.Z.); (Q.Z.); (F.T.)
| | - Qiwei Zhang
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; (J.W.); (Y.Z.); (Q.Z.); (F.T.)
| | - Fang Tan
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; (J.W.); (Y.Z.); (Q.Z.); (F.T.)
| | - Qiongyu Liu
- College of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xiaoqiu Yang
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; (J.W.); (Y.Z.); (Q.Z.); (F.T.)
| |
Collapse
|
3
|
Wu DX, Lu Y, Ye B, Liang JK, Wang WL, Du Y, Wu QY. Phototransformation of Brominated Disinfection Byproducts and Toxicity Elimination in Sunlit-Ozonated Reclaimed Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1700-1708. [PMID: 38154042 DOI: 10.1021/acs.est.3c06972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.
Collapse
Affiliation(s)
- De-Xiu Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yao Lu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Bei Ye
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158540, Japan
| | - Jun-Kun Liang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Chen H, Xie J, Huang C, Liang Y, Zhang Y, Zhao X, Ling Y, Wang L, Zheng Q, Yang X. Database and review of disinfection by-products since 1974: Constituent elements, molecular weights, and structures. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132792. [PMID: 37856956 DOI: 10.1016/j.jhazmat.2023.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Since trihalomethanes were discovered in 1974, disinfection by-products (DBPs) in drinking water have attracted extensive attention. In 2011, more than 600 known DBPs were compiled; however, newly reported DBPs have not been integrated. The rapid development of mass spectrometry has led to a significant increase in the number of DBPs, therefore, there is a need to develop a database of all DBPs and their properties. Herein, a database including 6310 DBPs (651 confirmed, 1478 identified and 4142 proposed) reported between 1974 and 2022 was constructed and made available for public use at https://dbps.com.cn/main. This database can be a tool in screening new DBPs, comprehensively reviewing, and developing predictive models. In this paper, to demonstrate the functions of the database and provide useful information for this area, the origin of the collected DBPs was presented, and some basic information, including elemental composition, molecular weight, functional groups, and carbon frameworks, were comparatively analyzed. The results showed that the proportion of DBPs verified by standard compounds and frequently detected in real water is less than 7.0%, and most of DBPs remained to be identified. Approximately 88% of DBPs contain halogens, and brominated -DBPs occupied a similar ratio to chlorinated -DBPs in real water. Acids were the main functional groups of DBPs, aliphatic and aromatic compounds are the two major carbon frameworks, and the molecular weights of most DBPs ranged from 200 to 400 Da. In addition, 4142 proposed DBPs as obtained using high-resolution mass spectrometry, were characterized based on the modified van Krevelen diagram and adjusted indexes with halogens. Most of the proposed DBPs featured lignin and tannin structures, and phenolic/highly unsaturated DBPs account for the majority.
Collapse
Affiliation(s)
- Hechao Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Jidao Xie
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430078, China
| | | | - Yining Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Yulin Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Xiaoyan Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Yuhua Ling
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Lei Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
5
|
Sharma N, Zeng C, Eaton A, Karanfil T, Ghosh A, Westerhoff P. Co-Occurrence of Bromine and Iodine Species in US Drinking Water Sources That Can Impact Disinfection Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18563-18574. [PMID: 36648192 DOI: 10.1021/acs.est.2c06044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bromine and iodine species are precursors for forming disinfection byproducts in finished drinking waters. Our study incorporates spatial and temporal data to quantify concentrations of inorganic (bromide (Br-), iodide (I-), and iodate (IO3-)), organic, and total bromine (BrT) and iodine (IT) species from 286 drinking water sources and 7 wastewater effluents across the United States. Br- ranged from <5-7800 μg/L (median of 62 μg/L in surface water (SW) and 95 μg/L in groundwater (GW)). I- was detected in 41% of SW (1-72 μg/L, median = <1 μg/L) and 62% of GW (<1-250 μg/L, median = 3 μg/L) samples. The median Br-/I- ratio in SW and GW was 22 μg/μg and 16 μg/μg, respectively, in paired samples with detect Br- and I-. BrT existed primarily as Br-, while IT was present as I-, IO3-, and/or total organic iodine (TOI). Inorganic iodine species (I- and IO3-) were predominant in GW samples, accounting for 60-100% of IT; however, they contributed to only 20-50% of IT in SW samples. The unknown fraction of IT was attributed to TOI. In lakes, seasonal cycling of I-species was observed and was presumably due to algal productivity. Finally, Spearman Rank Correlation tests revealed a strong correlation between Br- and IT in SW (RBr-,IT = 0.83) following the log10 (Br-, μg/L) = 0.65 × log10 (IT, μg/L) - 0.17 relationship. Br- and I- in treated wastewater effluents (median Br- = 234 μg/L, median I- = 5 μg/L) were higher than drinking water sources.
Collapse
Affiliation(s)
- Naushita Sharma
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zeng
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Andrew Eaton
- Eaton Environmental Water Quality Consulting, LLC, Pasadena, California 91101, United States
| | - Tanju Karanfil
- Environmental Engineering & Earth Sciences, Clemson University, Anderson, South Carolina 29634, United States
| | - Amlan Ghosh
- Corona Environmental Consulting, Lewisville, Texas 75067, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Chen H, Wu J, Li Y, Zhang Y, Zhang Q, Xu G, Yang X. From mass to structure: Modified van Krevelen diagram and adjusted indexes for high-resolution mass data of organic matter. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9622. [PMID: 37706429 DOI: 10.1002/rcm.9622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Hechao Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Jing Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Yaofei Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Yulin Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Guiping Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| |
Collapse
|
7
|
Jiang S, Zhang B, Fan X, Chen Y, Wang J, Wu S, Wang L, Su X. Gut microbiome predicts selenium supplementation efficiency across different Chinese adult cohorts using hybrid modeling and feature refining. Front Microbiol 2023; 14:1291010. [PMID: 37915854 PMCID: PMC10616252 DOI: 10.3389/fmicb.2023.1291010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Selenium (Se) is an essential trace element that plays a vital role in various physiological functions of the human body, despite its small proportion. Due to the inability of the human body to synthesize selenium, there has been increasing concern regarding its nutritional value and adequate intake as a micronutrient. The efficiency of selenium absorption varies depending on individual biochemical characteristics and living environments, underscoring the importance of accurately estimating absorption efficiency to prevent excessive or inadequate intake. As a crucial digestive organ in the human body, gut harbors a complex and diverse microbiome, which has been found to have a significant correlation with the host's overall health status. To investigate the relationship between the gut microbiome and selenium absorption, a two-month intervention experiment was conducted among Chinese adult cohorts. Results indicated that selenium supplementation had minimal impact on the overall diversity of the gut microbiome but was associated with specific subsets of microorganisms. More importantly, these dynamics exhibited variations across regions and sequencing batches, which complicated the interpretation and utilization of gut microbiome data. To address these challenges, we proposed a hybrid predictive modeling method, utilizing refined gut microbiome features and host variable encoding. This approach accurately predicts individual selenium absorption efficiency by revealing hidden microbial patterns while minimizing differences in sequencing data across batches and regions. These efforts provide new insights into the interaction between micronutrients and the gut microbiome, as well as a promising direction for precise nutrition in the future.
Collapse
Affiliation(s)
- Sikai Jiang
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Bailu Zhang
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Xiaoqian Fan
- Shouguang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yuzhu Chen
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Jian Wang
- Maikeruo Medical Technology Co., Ltd., Suzhou, China
| | - Shunyao Wu
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Lijuan Wang
- Maikeruo Medical Technology Co., Ltd., Suzhou, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Wu DX, Wang WL, Du Y, He L, Wu QY. Changes in toxicity and adsorbable organic bromine concentrations in ozonated reclaimed water irradiated with sunlight. WATER RESEARCH 2023; 230:119512. [PMID: 36580801 DOI: 10.1016/j.watres.2022.119512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Disinfecting reclaimed water for safe reuse can produce toxic disinfection by-products such as adsorbable organic bromine (AOBr). Irradiating stored reclaimed water with sunlight is a "green" and free method for eliminating some toxic disinfection by-products, but the effects of irradiation with sunlight on ozonated reclaimed water containing bromide are not well understood. In this study, AOBr was found at concentrations of 171-180 (µg Br)/L in ozonated reclaimed water containing bromide at a concentration of 2 (mg Br)/L and dissolved organic carbon at a concentration of ∼5 (mg C)/L. Irradiation with sunlight degraded 53-74% of the AOBr in two reclaimed water samples in 8 h, and the pseudo-first-order rate constants (k) were 0.09-0.17 h-1. The concentration of tribromomethane, a typical Br-containing disinfection by-product, was decreased by >96% by irradiation for 8 h (k = 0.42-0.47 h-1). Irradiation with sunlight decreased the toxicity of ozonated reclaimed water to Chinese hamster ovary cells. Irradiation with sunlight decreased the degree of intracellular oxidative stress and oxidative damage caused by ozonated reclaimed water. Irradiation with sunlight for 8 h decreased cytotoxicity of the ozonated reclaimed water samples by 79% and 65%. The change in AOBr concentration correlated with the change in toxicity (R2=0.69, p<0.05). The relationships between sunlight wavelength and decreases in the AOBr concentration and toxicity were assessed, and it was found that UV in sunlight was predominantly responsible for decreasing the AOBr concentration and toxicity by reclaimed water. During irradiation for 8 h, UV was responsible for 65%-66% of the decrease in the AOBr concentration and 65-79% of the decrease in reclaimed water induced cytotoxicity. Irradiation with sunlight is a promising method for degrading AOBr and detoxifying ozonated reclaimed water during storage to allow the water to be reused.
Collapse
Affiliation(s)
- De-Xiu Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Liu He
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
9
|
Zhang W, Zhu G, Qiu D, Liu Y, Sang L, Lin X, Ma H, Zhao K, Xu Y. Effects of agricultural activities on hydrochemistry in the Shiyang River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12269-12282. [PMID: 36107297 DOI: 10.1007/s11356-022-22914-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Agricultural water accounts for more than 80% of the available water in arid areas. Agricultural activities have a great impact on surface water and groundwater. If the impact of agricultural activities on hydrochemistry is not prevented, the risk of water quality change in arid areas may be greatly intensified. Based on the hydrochemical data of the whole Shiyang River Basin from April 2014 to October 2019, this paper analyzes the impact of agricultural activities on hydrochemistry in the basin. The results show that (i) in the middle and lower reaches of farmland with high intensity of agricultural activities, the ion concentration of groundwater in summer and autumn is significantly higher than that in winter and spring due to the influence of irrigation; (ii) the runoff ion concentration in the backflow of the river reaches recharged by irrigation water is significantly higher than that of other reaches; (iii) due to strong evaporation, different types of reservoirs will lead to an overall increase in ion concentration, which is more obvious in plain reservoirs and river tail lakes. In addition, the reservoirs have a certain removal effect on nitrates.
Collapse
Affiliation(s)
- Wenhao Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Guofeng Zhu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China.
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Dongdong Qiu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yuwei Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Liyuan Sang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Xinrui Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Huiying Ma
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kailiang Zhao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yuanxiao Xu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
10
|
Wang XS, Liu YL, Li M, Song H, Huang X, Gao Z, Zhang J, Cui CW, Liu BC, Ma J, Wang L. Occurrence of Iodophenols in Aquatic Environments and the Deiodination of Organic Iodine with Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16104-16114. [PMID: 36322125 DOI: 10.1021/acs.est.2c00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Toxic and odorous iodophenols are commonly identified as disinfection by-products (DBPs) in drinking water. Herein, ng/L levels of iodophenols were identified in river water, wastewater treatment plant effluent, and medical wastewater, with the simultaneous identification of μg/L to mg/L levels of iodide (I-) and total organic iodine (TOI). Oxidation experiment suggested that the I-, TOI, and iodophenols could be oxidized by ferrate [Fe(VI)], and more than 97% of TOI had been transformed into stable and nontoxic IO3-. Fe(VI) initially cleaved the C-I bond of iodophenols and led to the deiodination of iodophenols. The resulted I- was swiftly oxidized into HOI and IO3-, with the intermediate phenolic products be further oxidized into lower molecular weight products. The Gibbs free energy change (ΔG) of the overall reaction was negative, indicating that the deiodination of iodophenols by Fe(VI) was spontaneous. In the disinfection of iodine-containing river water, ng/L levels of iodophenols and chloro-iodophenols formed in the reaction with NaClO/NH2Cl, while Fe(VI) preoxidation was effective for inhibiting the formation of iodinated DBPs. Fe(VI) exhibited multiple functions for oxidizing organic iodine, abating their acute toxicity/cytotoxicity and controlling the formation of iodinated DBPs for the treatment of iodide/organic iodine-containing waters.
Collapse
Affiliation(s)
- Xian-Shi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen518000, China
| | - Heng Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Zhi Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Jing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Chong-Wei Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Bai-Cang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu610207, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
11
|
Li Y, Pang J, Bu XH. Multi-functional metal-organic frameworks for detection and removal of water pollutions. Chem Commun (Camb) 2022; 58:7890-7908. [DOI: 10.1039/d2cc02738k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water pollutions have caused serious threats to the aquatic environment and human health, it is of great significance to monitor and control their contents in water. Compared with the traditional...
Collapse
|