1
|
Wei X, Zhu N, Li F, Li X, Wu P. Efficient low-strength diclofenac elimination via adsorption-concentration and peroxydisulfate activation mineralization by distinct pretreated biocarbon composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122393. [PMID: 39226810 DOI: 10.1016/j.jenvman.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Sodium diclofenac (DCF) widely exists in actual water matrices, which can negatively impact ecosystems and aquatic environments even at low-strength. Herein, the adsorption-concentration-mineralization process was innovatively constructed for low-strength DCF elimination by freeze-dried biocarbon and oven-dried biocarbon coupled with cobalt oxide composites derived from the same waste biomass. Surprisingly, low-strength DCF of 0.5 mg/L was adsorbed rapidly and enriched to high-strength DCF under light with a concentration efficiency of 99.67 % by freeze-dried biocarbon. Subsequently, the concentrated DCF was economically mineralized by bifunctional oven-dried biocarbon coupled with cobalt oxide composites for peroxydisulfate (PDS) activation with full PDS activation and 76.11 % mineralization efficiency. Compared with direct low-strength DCF oxidation, adsorption-concentration-mineralization consumed less energy and none PDS residues. Mechanisms confirmed that DCF was adsorbed by freeze-dried biocarbon through hydrogen bonds and π-π stacking interactions, which were switched on due to electron-induced effect by light in DCF desorption-concentration. Furthermore, nonradical pathway (electron transfer) and radical pathway (SO4•-) were involved in efficient PDS activation by oven-dried biocarbon coupled with cobalt oxide composites for concentrated DCF mineralization, and the former was more prominent, in which graphitic carbon, cobalt redox cycle and carboxy groups were the main active sites. Overall, an energy-efficient strategy was proposed for elimination of low-strength DCF in real water matrices.
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xinyu Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Cheng M, Li R, Du X, Zhang Z, Zhang H. Highly efficient removal of diclofenac sodium with polystyrene supported ionic liquid. ENVIRONMENTAL TECHNOLOGY 2024; 45:3276-3282. [PMID: 37184044 DOI: 10.1080/09593330.2023.2214856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
ABSTRACTDiclofenac sodium (DS) is now recognized as an emerging pollutant, and is one of the most commonly discovered pharmaceuticals in water due to its extensive application in the clinic. This study examined the adsorption performance of a polystyrene-supported ionic liquid material (PS-[Nim][Cl]) for the removal of diclofenac sodium (DS) from water. The data from this study showed that maximum removal of DS can be achieved even in conditions with significant pH and temperature fluctuations. The adsorption process was rapid, more than 90% of DS could be removed within the first 10 min and adsorption equilibrium could be reached in just 30 min with a high removal efficiency (>99.9%). Adsorption reached saturation with a maximum adsorption capacity of approximately 785.2 mg/g. Moreover, the presence of K+, Na+, Ca2+, Mg2+, Cl-, and H2PO4- ions had little influence on DS adsorption, even when concentrations of these ions were 10,000 times higher than that of DS in water samples. The adsorbent also showed promising performance for the treatment of environmental water samples and groundwater containing DS.
Collapse
Affiliation(s)
- Meng Cheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Xin Du
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Zihao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Muñoz-Vega E, Schulz S, Rodriguez-Escales P, Behle V, Spada L, Vogel AL, Sanchez-Vila X, Schüth C. Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12398-12410. [PMID: 37558209 PMCID: PMC10448752 DOI: 10.1021/acs.est.3c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils.
Collapse
Affiliation(s)
- Edinsson Muñoz-Vega
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Stephan Schulz
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Paula Rodriguez-Escales
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Vera Behle
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
| | - Lucas Spada
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Alexander L. Vogel
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Xavier Sanchez-Vila
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Christoph Schüth
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
- Water
Resources Management Division, IWW Water
Centre, Mülheim
an der Ruhr 45476, Germany
| |
Collapse
|
4
|
Wu B, Xu D, Wang H, Xu R, Qin N, Han J. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands. ENVIRONMENTAL RESEARCH 2022; 215:114326. [PMID: 36113575 DOI: 10.1016/j.envres.2022.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DFC) is a pharmacologically active compound frequently detected in various receiving waters. To improve the efficiency of constructed wetlands in removing DFC, biochar (BC) is added as a substrate. The study mainly involved the effect of adding wetland plant-derived BC to vertical subsurface flow constructed wetlands (VSF-CWs) on the DFC removal process. In addition, the study discussed the effects of the initial DFC concentration (0.05-1.00 mg L-1), pH (5.5-8.5), and hydraulic retention times (HRTs, 1-7 d) on the removal process and fluctuations in the microbial community. Preliminary results of the study showed optimal removal (>90%) achieved at an initial DFC concentration of 0.75-1 mg L-1, a pH of 6.5-7.5, and an HRT of 7 d. Moreover, no significant effects on the removal efficiency of conventional water quality parameters were observed. Non-metric multidimensional scaling results revealed a reshaped community structure, which was altered by the initial DFC concentration. DFC concentration is a key factor in the variation of microbial communities and controls the quantitative evolution of the species in experimental units. Therefore, the addition of BC to CWs effectively enhanced the removal efficiency of DFC and provided a viable and effective improvement of the CWs.
Collapse
Affiliation(s)
- Bin Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China; China Aneng Group First Engineering Bureau Co. Ltd, Nanning, PR China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Naibing Qin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
5
|
Sensitivity Analysis and Quantification of the Role of Governing Transport Mechanisms and Parameters in a Gas Flow Model for Low-Permeability Porous Media. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractRecent models represent gas (methane) migration in low-permeability media as a weighted sum of various contributions, each associated with a given flow regime. These models typically embed numerous chemical/physical parameters that cannot be easily and unambiguously evaluated via experimental investigations. In this context, modern sensitivity analysis techniques enable us to diagnose the behavior of a given model through the quantification of the importance and role of model input uncertainties with respect to a target model output. Here, we rely on two global sensitivity analysis approaches and metrics (i.e., variance-based Sobol’ indices and moment-based AMA indices) to assess the behavior of a recent interpretive model that conceptualizes gas migration as the sum of a surface diffusion mechanism and two weighted bulk flow components. We quantitatively investigate the impact of (i) each uncertain model parameter and (ii) the type of their associated probability distribution on the evaluation of methane flow. We then derive the structure of an effective diffusion coefficient embedding all complex mechanisms of the model considered and allowing quantification of the relative contribution of each flow mechanism to the overall gas flow.
Collapse
|