1
|
Yang H, Feng Q, Xu W, Tang Y, Bai G, Liu Y, Liu Z, Xia S, Wu Z, Zhang Y. Unraveling the nuclear isotope tapestry: Applications, challenges, and future horizons in a dynamic landscape. ECO-ENVIRONMENT & HEALTH 2024; 3:208-226. [PMID: 38655003 PMCID: PMC11035956 DOI: 10.1016/j.eehl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Nuclear isotopes, distinct atoms characterized by varying neutron counts, have profoundly influenced a myriad of sectors, spanning from medical diagnostics and therapeutic interventions to energy production and defense strategies. Their multifaceted applications have been celebrated for catalyzing revolutionary breakthroughs, yet these advancements simultaneously introduce intricate challenges that warrant thorough investigation. These challenges encompass safety protocols, potential environmental detriments, and the complex geopolitical landscape surrounding nuclear proliferation and disarmament. This comprehensive review embarks on a deep exploration of nuclear isotopes, elucidating their nuanced classifications, wide-ranging applications, intricate governing policies, and the multifaceted impacts of their unintended emissions or leaks. Furthermore, the study meticulously examines the cutting-edge remediation techniques currently employed to counteract nuclear contamination while projecting future innovations in this domain. By weaving together historical context, current applications, and forward-looking perspectives, this review offers a panoramic view of the nuclear isotope landscape. In conclusion, the significance of nuclear isotopes cannot be understated. As we stand at the crossroads of technological advancement and ethical responsibility, this review underscores the paramount importance of harnessing nuclear isotopes' potential in a manner that prioritizes safety, sustainability, and the greater good of humanity.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ren K, Pan X, Peng C, Chen J, Li J, Zeng J. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118099. [PMID: 37207457 DOI: 10.1016/j.jenvman.2023.118099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Tracking contaminants in karst aquifers is challenging because of the high heterogeneity encountered in carbonate rocks. Multi-tracer tests, combined with chemical and isotopic analyses, were conducted to solve a groundwater contamination incident within a complex karst aquifer in Southwest China. Results showed that: (1) the wastewater from a paper mill, public sewers, and septic tanks were the three main potential contaminant sources identified by chemical and isotopic methods; (2) a direct effect of the paper mill wastewater with high Na+ (up to 2230.5 mg/L) and chemical oxygen demand (COD) concentrations on spring water quality was confirmed by multi-tracer tests, which changed the water type from Ca-HCO3 in the 1970s to Ca-Na-HCO3 in the present study and resulted in a depleted carbon isotope value (-16.5‰); and (3) the studied aquifer is a highly complex karst system, due to two conduits crossed each other without mixing, contaminants traveled a long distance (up to 14 km) within the lower conduit, paper mill-contaminated groundwater flowed across a river bottom and discharged to the opposite bank, and an active subsurface divide occurred. After several months of operation, the groundwater restoration measure based on karst hydrogeologic conditions proved that cutting off contaminant sources for karst aquifer self-restore was effective in practice, which contributed to the decline in NH4+ (from 7.81 mg/L to 0.04 mg/L), Na+ (from 50.12 mg/L to 4.78 mg/L), and COD (from 16.42 mg/L to 0.9 mg/L) concentrations coupled with an increase in δ13C-DIC value (from -16.5‰ to -8.4‰) in the earlier contaminated karst spring. This study's integrated method is expected to screen and confirm contaminant sources within complex karst systems rapidly and effectively, thereby contributing to karst groundwater environmental management.
Collapse
Affiliation(s)
- Kun Ren
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China; Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin, 541004, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources&Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| | - Xiaodong Pan
- Key Laboratory of Karst Dynamics, Ministry of Natural Resources&Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China.
| | - Cong Peng
- Key Laboratory of Karst Dynamics, Ministry of Natural Resources&Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| | - Jianyao Chen
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jun Li
- College of Water Resources and Hydrology, Sichuan University, Chengdu, 610065, China
| | - Jie Zeng
- Key Laboratory of Karst Dynamics, Ministry of Natural Resources&Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
| |
Collapse
|
3
|
Neckel A, Oliveira MLS, Maculan LS, Adelodun B, Toscan PC, Bodah BW, Moro LD, Silva LFO. Terrestrial nanoparticle contaminants and geospatial optics using the Sentinel-3B OLCI satellite in the Tinto River estuary region of the Iberian Peninsula. MARINE POLLUTION BULLETIN 2023; 187:114525. [PMID: 36580843 DOI: 10.1016/j.marpolbul.2022.114525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The Tinto River is known globally for having a reddish color due to the high concentration of dissolved metals in its waters. The general objective of this study is to analyze the dispersion of nanoparticles (NPs) and ultra-fine particles in terrestrial and geospatial suspended sediments (SSs) using Sentinel-3B OLCI (Ocean Land Color Instrument) satellite images; by examining water turbidity levels (TSM_NN), suspended pollution potential (ADG_443_NN) and presence of chlorophyll-a (CHL_NN). The images were collected in the estuary of the Tinto River, in the city of Nerva, Spanish province of Huelva, between 2019 and 2021. The following hazardous elements were identified in nanoparticles and ultra-fine particles by FE-SEM/EDS: As, Cd, Ni, V, Se, Mo, Pb, Sb and Sn. Sentinel-3B OLCI satellite images detected a 2019 TSM_NN of 23.47 g-3, and a 2021 reading of 16.38 g-3.
Collapse
Affiliation(s)
- Alcindo Neckel
- Atitus Educação, 304, Passo Fundo, RS 99070-220, Brazil.
| | - Marcos L S Oliveira
- Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia; Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina-UFSC, 88040-900 Florianópolis, Brazil
| | | | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240103, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | | | - Brian William Bodah
- Atitus Educação, 304, Passo Fundo, RS 99070-220, Brazil; Yakima Valley College, Workforce Education & Applied Baccalaureate Programs, South 16th Avenue & Nob Hill Boulevard, Yakima, WA 98902, USA; Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA 99344, USA
| | | | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia.
| |
Collapse
|
4
|
Dang DH, Ma L, Ha QK, Wang W. A multi-tracer approach to disentangle anthropogenic emissions from natural processes in the St. Lawrence River and Estuary. WATER RESEARCH 2022; 219:118588. [PMID: 35605395 DOI: 10.1016/j.watres.2022.118588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The ability to differentiate anthropogenic signatures from natural processes in complex hydrological systems is critical for environmental regulation perspectives, especially to curb pollution and implement effective water management strategies. Here, we report variations in the concentrations of 57 chemical variables, including nutrients, major, trace and ultra-trace elements, as well as the concentrations of Escherichia coli in different water masses along the St. Lawrence River-Estuary continuum. The constant ratios among major elements indicate consistent carbonate and silicate weathering processes in the drainage basins. We also suggest applying Ce anomalies to trace waters of low alkalinity and low complexing capacity as the dominance of Ce3+ free ion could promote Ce oxidation, and thus negative Ce anomalies. Furthermore, the positive Eu anomalies and elevated Tl concentrations could highlight the cation exchange processes on clay particles. In the fluvial and estuarine sections of the St. Lawrence System, we demonstrate significant contributions of wastewater discharge and discuss the suitability of several wastewater tracers, e.g., excess of B, Na, K, as well as Rb/Sr and Gd anomalies. We also highlight the inputs of several minor and trace elements (e.g., Mn, Fe, Cu, Co, Ni) from south-shore tributaries to the St. Lawrence System. However, the complex anthropogenic activities in the watersheds did not allow clear source partitioning. Finally, increased mixing of different river water masses upstream of Quebec City, together with the estuarine salt front and suspended sediments, are also responsible for releasing these minor and trace elements into the aquatic media. The results presented here help support further environmental actions to curb the emission of contaminants in the St. Lawrence System and provide more robust tracers of natural and anthropogenic processes in aquatic environments.
Collapse
Affiliation(s)
- Duc Huy Dang
- School of the Environment, Trent University, Peterborough, Canada; Department of Chemistry and Water Quality Center, Trent University, Peterborough, Canada.
| | - Lan Ma
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Quang Khai Ha
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Wei Wang
- School of the Environment, Trent University, Peterborough, Canada
| |
Collapse
|