1
|
Price M, Simpson BS, Tscharke BJ, Ahmed F, Keller EL, Sussex H, Kah M, Sila-Nowicka K, Chappell A, Gerber C, Trowsdale S. Reporting population size in wastewater-based epidemiology: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176076. [PMID: 39244059 DOI: 10.1016/j.scitotenv.2024.176076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Knowledge of the number of people present in a catchment is fundamental for the assessment of spatio-temporal trends in wastewater-based epidemiology (WBE). Accurately estimating the number of people connected to wastewater catchments is challenging however, because populations are dynamic. Methods used to estimate population size can significantly influence the calculation and interpretation of population-normalised wastewater data (PNWD). This paper systematically reviews the reporting of population data in 339 WBE studies. Studies were evaluated based on their reporting of population size, the source of population data, the population calculation methods, and the uncertainties in population estimates. Most papers reported population size (96 %) and the source of population data (60 %). Fewer studies reported the uncertainties in their population data (50 %) and the methods used to calculate these estimates (28 %). This is relevant because different methods have unique strengths and limitations which can affect the accuracy of PNWD. Only 64 studies (19 %) reported all four components of population data. The reporting of population data has remained consistent in the past decade. Based on the findings, we recommend generalised reporting criteria for population data in WBE. As WBE is further mainstreamed and applied, the clear and comprehensive reporting of population data will only become increasingly important.
Collapse
Affiliation(s)
- Mackay Price
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Bradley S Simpson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences, University of Queensland, 20 Cornwall Street, Queensland 4102, Australia
| | - Fahad Ahmed
- Independent researcher, Brisbane, Queensland, Australia
| | - Emma L Keller
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Melanie Kah
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Katarzyna Sila-Nowicka
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-357, Poland
| | - Andrew Chappell
- Institute of Environmental Science and Research (ESR) Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sam Trowsdale
- School of Environment, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Wang Z, Zheng Q, O'Brien JW, Tscharke BJ, Chan G, Thomas KV, Mueller JF, Thai PK. Analysis of wastewater from 2013 to 2021 detected a recent increase in nicotine use in Queensland, Australia. WATER RESEARCH 2024; 250:121040. [PMID: 38154341 DOI: 10.1016/j.watres.2023.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Previous wastewater-based epidemiology (WBE) studies have reported decreasing trends of nicotine and tobacco use in Australia before 2017, but there is concern that increasing illicit use of nicotine in vaping products and illicit tobacco could reverse this progress. This study aimed to assess temporal trends of nicotine consumption and specifically tobacco consumption via wastewater analysis in a population in Australia between 2013 and 2021. One week of daily wastewater samples were analyzed every two months from February 2013 to December 2021 in a regional city serving ∼100,000 people. A total of 340 daily samples were analyzed for anabasine (tobacco specific biomarker) and nicotine metabolites, cotinine and hydroxycotinine, using direct injection method by liquid chromatography with tandem mass spectrometry. Daily consumption estimates were calculated from daily flow data, population estimates and previously reported excretion factors. Linear spline regression was performed to identify periods when significant change of slopes occurred and to evaluate the temporal trends. Tobacco use monitored using anabasine as a biomarker, showed a decreasing trend over the whole period with a higher rate of decrease during the first two years (2013-2014, 21 % decrease) compared to the later 7 years (2015-2021, 10 % decrease). Nicotine use, monitored using cotinine and hydroxycotinine, showed a downward trend between 2013 and 2018 (2013-2014: 18 % decrease, p < 0.05; 2015-2016: 6 % increase, p = 0.48; Feb-Dec 2017: 15 % decrease, p = 0.39) followed by a significant increase from 2018 to 2021 (40 % increase, p < 0.001). This finding suggests the increasing use of non-tobacco nicotine-based products. Additionally, the tobacco use estimate by wastewater analysis was higher than the tobacco sales data, which suggests the use of illicit tobacco in the catchment.
Collapse
Affiliation(s)
- Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Gary Chan
- Center for Youth Substance Abuse Research, The university of Queensland, Brisbane, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
3
|
Oloye FF, Xie Y, Challis JK, Femi-Oloye OP, Brinkmann M, McPhedran KN, Jones PD, Servos MR, Giesy JP. Understanding common population markers for SARS-CoV-2 RNA normalization in wastewater - A review. CHEMOSPHERE 2023; 333:138682. [PMID: 37201600 PMCID: PMC10186006 DOI: 10.1016/j.chemosphere.2023.138682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
Wastewater monitoring and epidemiology have seen renewed interest during the recent COVID-19 pandemic. As a result, there is an increasing need to normalize wastewater-derived viral loads in local populations. Chemical tracers, both exogenous and endogenous compounds, have proven to be more stable and reliable for normalization than biological indicators. However, differing instrumentation and extraction methods can make it difficult to compare results. This review examines current extraction and quantification methods for ten common population indicators: creatinine, coprostanol, nicotine, cotinine, sucralose, acesulfame, androstenedione 5-hydroindoleacetic acid (5-HIAA), caffeine, and 1,7-dimethyluric acid. Some wastewater parameters such as ammonia, total nitrogen, total phosphorus, and daily flowrate were also evaluated. The analytical methods included direct injection, dilute and shoot, liquid/liquid, and solid phase extraction (SPE). Creatine, acesulfame, nicotine, 5-HIAA and androstenedione have been analysed by direct injection into LC-MS; however, most authors prefer to include SPE steps to avoid matrix effects. Both LC-MS and GC-MS have been successfully used to quantify coprostanol in wastewater, and the other selected indicators have been quantified successfully with LC-MS. Acidification to stabilize the sample before freezing to maintain the integrity of samples has been reported to be beneficial. However, there are arguments both for and against working at acidic pHs. Wastewater parameters mentioned earlier are quick and easy to quantify, but the data does not always represent the human population effectively. A preference for population indicators originating solely from humans is apparent. This review summarises methods employed for chemical indicators in wastewater, provides a basis for choosing an appropriate extraction and analysis method, and highlights the utility of accurate chemical tracer data for wastewater-based epidemiology.
Collapse
Affiliation(s)
- Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
5
|
Zheng Q, Gerber C, Steadman KJ, Lin CY, Tscharke BJ, O'Brien JW, Hobson P, Toms LM, Mueller JF, Thomas KV, Thai PK. Improving Wastewater-Based Tobacco Use Estimates Using Anabasine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7958-7965. [PMID: 37192131 DOI: 10.1021/acs.est.3c01510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In wastewater-based epidemiology (WBE), nicotine metabolites have been used as biomarkers for monitoring tobacco use. Recently, the minor tobacco alkaloids anabasine and anatabine have been suggested as more specific biomarkers for tobacco use since nicotine use can be from both tobacco and non-tobacco sources. This study aimed to provide an in-depth evaluation of the suitability of anabasine and anatabine as WBE biomarkers of tobacco and subsequently estimate their excretion factors for WBE applications. Pooled urine (n = 64) and wastewater samples (n = 277), collected between 2009 and 2019 in Queensland, Australia, were analyzed for nicotine and its metabolites (cotinine and hydroxycotinine), as well as anabasine and anatabine. Anabasine performed as the better biomarker, showing a similar per capita load in pooled urine (2.2 ± 0.3 μg/day/person) and wastewater samples (2.3 ± 0.3 μg/day/person), while the per capita load of anatabine in wastewater was 50% higher than its load in urine. It is estimated that 0.9 μg of anabasine was excreted per cigarette smoked. Triangulation of tobacco sales data and tobacco use estimated from either anabasine or cotinine showed that anabasine-based estimates were 5% higher than sales data, while cotinine-based estimates were between 2 and 28% higher. Our results provided concrete evidence to confirm the suitability of anabasine as a specific biomarker for monitoring tobacco use by WBE.
Collapse
Affiliation(s)
- Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Kathryn J Steadman
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Chun-Yin Lin
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jake William O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Peter Hobson
- Sullivan Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD 4006, Australia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
6
|
Zhao J, Lu J, Zhao H, Yan Y, Dong H, Li W. Illicit drugs and their metabolites in urban wastewater: Analysis, occurrence and consumption in Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158457. [PMID: 36063955 DOI: 10.1016/j.scitotenv.2022.158457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The use of illicit drugs has increased considerably across the world. Wastewater-based epidemiology (WBE) of illicit drugs might help determine the types and quantity of illicit drugs consumed in a region. In this study, WBE was applied to analyze illicit drugs in five representative urban wastewater treatment plants (WWTPs) in Xinjiang, China. The collected samples were pretreated under optimized solid-phase extraction conditions and then analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The results revealed the presence of 9 of the 11 evaluated drugs; among them, the concentrations of these substances ranged as follows: METH (2.60-10.02 ng/L), MDMA (0.49-6.87 ng/L), MOR (4.53-44.75 ng/L), COD (2.24-8.30 ng/L), MTD (1.36-3.75 ng/L), COC (0.48 ng/L), THC (5.98-18.89 ng/L), BE (1.12-2.45 ng/L) and KET (1.50 ng/L). And an estimate of the per capita consumption revealed morphine (10.2 mg/d/1000inhabitants), cannabis (3.9 mg/d/1000inhabitants), 3,4-methylenedioxymethamphetamine (3.9 mg/d/1000 inhabitants), and methamphetamine (2.2 mg/d/1000 inhabitants) as the main substances of abuse in Xinjiang, China. The results of this study might be taken as a reference for future studies on the continuous monitoring of such drugs.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Haijun Zhao
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832003, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Wen Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| |
Collapse
|
7
|
Thanh BX, Vu GT, Hue TTT, Zheng Q, Chan G, Anh NTK, Thai PK. Assessing changes in nicotine consumption over two years in a population of Hanoi by wastewater analysis with benchmarking biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157310. [PMID: 35839874 DOI: 10.1016/j.scitotenv.2022.157310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Monitoring the actual change in consumption of nicotine (a proxy for smoking) in the population is essential for formulating tobacco control policies. In recent years, wastewater-based epidemiology (WBE) has been applied as an alternative method to estimate changes in consumption of tobacco and other substances in different communities around the world, with high potential to be used in resource-scarce settings. This study aimed to conduct a WBE analysis in Hanoi, Vietnam, a lower-middle-income-country setting known for high smoking prevalence. Wastewater samples were collected at two sites along a sewage canal in Hanoi during three periods: Period 1 (September 2018), Period 2 (December 2018-January 2019), and Period 3 (December 2019-January 2020). Concentrations of cotinine, 3-hydroxycotinine, and nicotine ranged from 0.73 μg/L to 3.83 μg/L, from 1.09 μg/L to 5.07 μg/L, and from 0.97 μg/L to 9.90 μg/L, respectively. The average mass load of cotinine estimated for our samples was 0.45 ± 0.09 mg/day/person, which corresponds to an estimated daily nicotine consumption of 1.28 ± 0.25 mg/day/person. No weekly trend was detected over the three monitoring periods. We found the amount of nicotine consumption in Period 1 to be significantly lower than in Period 2 and Period 3. Our WBE estimates of smoking prevalence were slightly lower than the survey data. The analysis of benchmarking biomarkers confirmed that cotinine was stable in the samples similar to acesulfame, while paracetamol degraded along the sewer canal. Further refinement of the WBE approach may be required to improve the accuracy of analyzing tobacco consumption in the poor sewage infrastructure setting of Vietnam.
Collapse
Affiliation(s)
- Bui Xuan Thanh
- Department of Public Health, University of Medicine and Pharmacy, Ho Chi Minh, Viet Nam
| | - Giang T Vu
- National Centre for Youth Substance Use Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tran Thi Thanh Hue
- Department of Pharmacology, National Institute of Drug Quality Control, Hanoi, Viet Nam; Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, Viet Nam
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Gary Chan
- National Centre for Youth Substance Use Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nguyen Thi Kieu Anh
- Department of Analytical Chemistry and Toxicology, Hanoi University of Pharmacy, Viet Nam.
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
8
|
Li D, Zheng Q, Wang Z, Ren Y, Thomas KV, Thai PK. Young population consume twice as much artificial sweetener than the general population - A wastewater-based assessment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156200. [PMID: 35618133 DOI: 10.1016/j.scitotenv.2022.156200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding artificial sweetener consumption patterns and levels in different demographics is important for formulating public health policies on controlling sugar consumption. There is a considerable knowledge gap with respect to the pattern of artificial sweetener consumption in China. To narrow this gap, wastewater analysis was used to assess the temporal patterns of consumption of seven artificial sweeteners in an urban population and a university town in a megacity in South China over a one-year period. Daily influent wastewater samples were collected from an urban catchment and weekly samples collected from a university sub-catchment. Population normalized per capita consumption of the four detected artificial sweeteners (cyclamate, acesulfame, sucralose and saccharin) in the university catchment (1.0-5.9 mg d-1 p-1) was much higher than those in urban catchment (0.5-1.3 mg d-1 p-1), indicating younger population consume more artificial sweeteners than the general population. The daily consumption of artificial sweeteners was found to be stable throughout the week in the urban catchment. Time-series analysis showed that an average increase in temperature of 1 °C was associated with an increase consumption of 33 μg d-1 p-1 for acesulfame, 15 μg d-1 p-1 for sucralose and 14 μg d-1 p-1 for saccharin. This was the first study that objectively quantified the greater consumption of artificial sweeteners (proxy for consumption of artificially sweetened food and beverages) in a younger age group when compared to the general population, which could potentially pose a risk of health related diseases.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Yuan Ren
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
9
|
Gao J, Li L, Duan L, Yang M, Zhou X, Zheng Q, Ou Y, Li Z, Lai FY. Exploring antibiotic consumption between urban and sub-urban catchments using both parent drugs and related metabolites in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154171. [PMID: 35231503 DOI: 10.1016/j.scitotenv.2022.154171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Consumption of antibiotics leads to the dissemination of antimicrobial resistance worldwide. Better knowledge of temporal and spatial consumption of antibiotics helps public health authorities to control their usage and combat antimicrobial resistance. However, measuring antibiotic consumption with population surveys, sales data, and production statistics remains challenging due to the complexity of prescription preference, patient compliance, and direct disposal of unused drugs. With the approach of wastewater-based epidemiology (WBE), this study aims to evaluate the consumption of eight commonly-used antibiotics between developed urban and developing sub-urban catchments in China and to characterise the ratios of parent drugs to metabolites in studying the consumption. Seven parent antibiotics were detected in all the wastewater samples (n = 56), whereas some metabolites were detected sporadically. The ratios of parent chemicals to metabolites varied among locations and were often higher than the ratios in pharmacokinetic studies. Estimated consumption of antibiotics ranged from 3.2 ± 2.0 mg/day/1000 inhabitants for trimethoprim to 28,400 ± 7800 mg/day/1000 inhabitants for roxithromycin in the studied catchments. Higher consumption of sulfapyridine, sulfadiazine and roxithromycin was observed in urban than suburban catchments, while consumption of sulfamethoxazole, norfloxacin, and trimethoprim was higher in suburban than in urban catchments. Using the literature data, we found more than 95% reduction of antibiotic use in an urban catchment. Our study revealed the geographical pattern in antibiotic use across different urban and suburban catchments via WBE, and the potential of monitoring parent-to-metabolite ratios for WBE in estimating antibiotic use. These results provide a basis for health authorities to plan different drug-specific control policies between urban and suburban catchments, and for future WBE studies to be aware of other sources, such as animal husbandry and disposals of unused drugs, that can influence the estimated consumption.
Collapse
Affiliation(s)
- Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lei Duan
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiuda Zheng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba 4102, Australia
| | - Yingjuan Ou
- College of Rosources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden
| |
Collapse
|
10
|
Duan L, Zhang Y, Wang B, Yu G, Gao J, Cagnetta G, Huang C, Zhai N. Wastewater surveillance for 168 pharmaceuticals and metabolites in a WWTP: Occurrence, temporal variations and feasibility of metabolic biomarkers for intake estimation. WATER RESEARCH 2022; 216:118321. [PMID: 35339048 DOI: 10.1016/j.watres.2022.118321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Wastewater-based epidemiology (WBE) is amply used for mining information about public health such as the estimation of consumption/intake of certain substances. Yet, proper biomarker selection is critical to obtain reliable data. This study measured a broad range of pharmaceuticals and metabolites in a wastewater treatment plant in Beijing, China, and evaluated their suitability as consumption estimation biomarkers. Wastewater sampling was conducted during a normal week and two holiday weeks to assess the impact of the holiday on population normalized daily mass loads (PNDLs). One hundred and forty-nine out of 168 pharmaceuticals were detected, with 94 analytes being quantified in all sampling events. Moreover, digestive drug cimetidine (<MDL∼672 ng L - 1) and anabolic steroid trenbolone (<MDL∼53 ng L - 1) were only detected during holiday weeks. PNDLs of some substances showed disparities between weekdays and weekends during the normal week. This study proposed a framework to diagnose whether a parent compound or its metabolite is suitable for intake/prevalence rate estimation. Our results support that not all the metabolites can be employed as biomarkers for back-calculation when the in-sewer stability of these compounds is unclear, such as metoprolol acid and O-desmethyl venlafaxine. Public healthcare data for drug utilization were applied to validate the prevalence of average substance use in this study. As a popular anti-epileptic ranging from hundreds to thousands of ng L - 1 in this study, the parent compound levetiracetam is more appropriate to be used in WBE under our framework, referring to public healthcare data. This WBE study illustrates the changes in pharmaceutical use and population lifestyle that stem from holidays and commutes. In addition, it can provide data support for the selection of more suitable biomarkers in WBE studies.
Collapse
Affiliation(s)
- Lei Duan
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Yizhe Zhang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Bin Wang
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| | - Gang Yu
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Giovanni Cagnetta
- Beijing Laboratory of Environmental Frontier Technology, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Nannan Zhai
- Shanghai Sciex Analytical Instrument Trading Co., Ltd Beijing Branch Company, Beijing 100015, China
| |
Collapse
|