1
|
Zhang F, Chi H, Huang X, Dong X, Xu K, Bai Y, Wang P. Fabrication of a Composite Paper-Based Material for Fog Collection and Purification Enabled by Passive Radiative Cooling and Wettability Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69839-69850. [PMID: 39627008 DOI: 10.1021/acsami.4c14666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Obtaining clean freshwater resources with high efficiency is a global concern and plays a vital role in the sustainable development of human society. In this study, purified freshwater was obtained via condensation and collection of water and organic fog using a composite paper-based material with spectral selectivity and proper wettability. By reflecting ∼91% of sunlight and radiating >96% of thermal infrared rays, the composite paper-based material can reach a daytime maximum temperature drop of 5.2 °C compared to pristine paper and 6.7 °C compared to environmental temperature. Furthermore, surface wettability can be easily adjusted by optimizing the wettability of the nanoparticles. Under the combined effect of excellent passive daytime radiative cooling performance and an appropriate wettability range, a maximum water collection rate of 332.09 mg/cm2·h under dynamic vapor atmosphere and 245.10 mg/cm2·h under static vapor atmosphere were obtained. Even for mixed organic fogs, purified water can be collected after organic fog condensation because of its high selectivity for different liquids. In addition, the composite paper-based material exhibited excellent abrasion resistance and has great potential for long-term use and reuse. This composite paper-based material can obtain freshwater via water and organic fog condensation and collection under direct sunlight, which is helpful in alleviating freshwater shortages.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hui Chi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaona Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiaotong Dong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
2
|
Song J, Dy TRN, Li M, Yan X, Zhao H, Zhang Z, Taghipour S, Zhan N, Yeung KL. Sustainable Water Management with Photocatalytic Janus Mesh: Efficient Fog Harvesting, Water Purification, and Microbial Disinfection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61331-61343. [PMID: 39445406 DOI: 10.1021/acsami.4c13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Water scarcity is a critical global challenge, especially in arid and semiarid regions. Fog harvesting has emerged as a promising solution; however, concerns about air pollution and bacterial growth in humid environments have raised doubts about the safety and sustainability of such systems. This study introduces a Janus mesh with asymmetric wettability on its two faces, fabricated through a simple and scalable method. The unique design of the Janus mesh enables the transport of water droplets from the superhydrophobic side to the hydrophilic side in a unidirectional manner, enhancing its fog harvesting efficiency. The mesh's photocatalytic properties not only elevate the fog harvesting rate to 4.7 kg·m-2h-1 but also effectively purify the harvested water by removing organic contaminants (94%) and microbial impurities (99.98%). Additionally, its inherent bactericidal activity prevents biofouling, ensuring sustained efficiency in water collection. The mesh's self-cleaning abilities through photocatalysis maintain its surface integrity, promising long-term stability for fog harvesting applications. This technological advancement in fog harvesting offers a sustainable and economical solution to water scarcity concerns, addressing safety and sustainability issues associated with existing systems. By potentially transforming the livelihoods of communities struggling with water scarcity, this innovation paves the way for a more sustainable future.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Trixie Ruth Nuñez Dy
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Meng Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Xiao Yan
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Haoying Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Zhaoxin Zhang
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Shabnam Taghipour
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - Ning Zhan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
3
|
Tian Y, Jiang Y, Zhu R, Yang X, Wu D, Wang X, Yu J, Li Y, Gao T, Li F. Solar-Driven Multistage Device Integrating Dropwise Condensation and Guided Water Transport for Efficient Freshwater and Salt Collection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7335-7345. [PMID: 38626301 DOI: 10.1021/acs.est.3c10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene-vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m-2 h-1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m-2 and a salt collection rate of 1.77 kg m-2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.
Collapse
Affiliation(s)
- Yankuan Tian
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yifei Jiang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ruishu Zhu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xin Yang
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Dequn Wu
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xueli Wang
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tingting Gao
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Faxue Li
- Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Zhou Y, Han P, Qi G, Gao D, Zhang L, Wang C, Che J, Wang Y, Tao S. Improved Water Collection from Short-Term Fog on a Patterned Surface with Interconnected Microchannels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3812-3822. [PMID: 38358300 DOI: 10.1021/acs.est.3c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Fog harvesting is considered a promising freshwater collection strategy for overcoming water scarcity, because of its environmental friendliness and strong sustainability. Typically, fogging occurs briefly at night and in the early morning in most arid and semiarid regions. However, studies on water collection from short-term fog are scarce. Herein, we developed a patterned surface with highly hydrophilic interconnected microchannels on a superhydrophobic surface to improve droplet convergence driven by the Young-Laplace pressure difference. With a rationally designed surface structure, the optimized water collection rate from mild fog could reach up to 67.31 g m-2 h-1 (6.731 mg cm-2 h-1) in 6 h; this value was over 130% higher than that observed on the pristine surface. The patterned surface with interconnected microchannels significantly shortened the startup time, which was counted from the fog contact to the first droplet falling from the fog-harvesting surface. The patterned surface was also facilely prepared via a controllable strategy combining laser ablation and chemical vapor deposition. The results obtained in outdoor environments indicate that the rationally designed surface has the potential for short-term fog harvesting. This work can be considered as a meaningful attempt to address the practical issues encountered in fog-harvesting research.
Collapse
Affiliation(s)
- Yanjun Wang
- State Key Laboratory of Fine Chemicals, Dalian Key Laboratory of Smart Chemistry, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yumeng Zhou
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Peng Han
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Guicun Qi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Dali Gao
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Lijing Zhang
- State Key Laboratory of Fine Chemicals, Dalian Key Laboratory of Smart Chemistry, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chan Wang
- Yantai Centre for Promotion of Science and Technology Innovation, Yantai 264003, China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co., Ltd., Dalian 116222, China
| | - Yuchao Wang
- State Key Laboratory of Fine Chemicals, Dalian Key Laboratory of Smart Chemistry, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Tao
- State Key Laboratory of Fine Chemicals, Dalian Key Laboratory of Smart Chemistry, Frontier Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Wang M, Liu E, Jin T, Zafar SU, Mei X, Fauconnier ML, De Clerck C. Towards a better understanding of atmospheric water harvesting (AWH) technology. WATER RESEARCH 2024; 250:121052. [PMID: 38171174 DOI: 10.1016/j.watres.2023.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Atmospheric water harvesting (AWH) technology is an emerging sustainable development strategy to deal with global water scarcity. To better understand the current state of AWH technology development, we conducted a bibliometric analysis highlighting three water harvesting technologies (fog harvesting, condensation, and sorption). By comprehensively reviewing the research progress and performing a comparative assessment of these technologies, we summarized past achievements and critically analyzed the different technologies. Traditional fog collectors are more mature, but their efficiency still needs to be improved. External field-driven fog harvesting and active condensation need to be driven by external forces, and passive condensation has high requirements for environmental humidity. Emerging bio-inspired fog harvesting and sorption technology provide new possibilities for atmospheric water collection, but they have high requirements for materials, and their commercial application is still to be further promoted. Based on the key characteristics of each technology, we presented the development prospects for the joint use of integrated/hybrid systems. Next, the water-energy relationship is used as a link to clarify the future development strategy of AWH technology in energy driving and conversion. Finally, we outlined the core ideas of AWH for both basic research and practical applications and described its limitless possibilities for drinking water supply and agricultural irrigation. This review provides an essential reference for the development and practical application of AWH technologies, which contribute to the sustainable utilization of water resources globally.
Collapse
Affiliation(s)
- Menglu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Enke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China.
| | - Tao Jin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Saud-Uz Zafar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100081, China.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| |
Collapse
|
6
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Peng Z, Fu Y, Guo Z. Origami-like 3D Fog Water Harvestor with Hybrid Wettability for Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38110-38123. [PMID: 37525393 DOI: 10.1021/acsami.3c07343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Collecting water in fog has also become a breakthrough to solve the hidden danger of water shortage in some arid areas. The three-dimensional (3D) structure fog collection material can increase the surface area in direct contact with the fog flow and reduce the quick flow of fog, which can effectively improve the fog collection efficiency. Imitating the three-dimensional structure of corrugated paper, the 3D fog collecting material with hybrid wettability was prepared by chemical and physical means. We discuss the influence of different wettability combinations on the fog collection efficiency of 3D structures and study the influence of spraying times and illumination times on the surface wettability during the construction of wettability. We also study the influence of the concavity and tip as well as the bending angle on the fog collection in the 3D structure and obtain the most reasonable concavity and convex ratio and bending angle. The superhydrophilic and superhydrophobic 3D structure fog harvesting material prepared by us performs well in the fog harvesting process, and the fog harvesting efficiency reaches 1.442 g cm-2 h-1. The fog collection efficiency is 418% of the original zinc sheet. At the same time, compared with the superhydrophilic and superhydrophobic hybrid two-dimensional (2D) plane, the increase is 168%, and compared with the superhydrophobic 3D structure, the increase is 150%.
Collapse
Affiliation(s)
- Zhouliang Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Ye Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
8
|
Choi Y, Baek K, So H. 3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting. Sci Rep 2023; 13:10691. [PMID: 37393316 PMCID: PMC10314913 DOI: 10.1038/s41598-023-37461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Freshwater acquisition methods under various environments are required because water scarcity has intensified worldwide. Furthermore, as water is an essential resource for humans, a freshwater acquisition method that can be utilized even under harsh conditions, such as waterless and polluted water environments, is highly required. In this study, a three-dimensional (3D) printing-assisted hierarchically structured surface with dual-wettability (i.e., surface with both hydrophobic and hydrophilic region) for fog harvesting was developed by mimicking the biological features (i.e., cactus spines and elytra of Namib Desert beetles) that have effective characteristics for fog harvesting. The cactus-shaped surface exhibited self-transportation ability of water droplet, derived from the Laplace pressure gradient. Additionally, microgrooved patterns of the cactus spines were implemented using the staircase effect of 3D printing. Moreover, a partial metal deposition method using wax-based masking was introduced to realize the dual wettability of the elytra of the Namib Desert beetle. Consequently, the proposed surface exhibited the best performance (average weight of 7.85 g for 10 min) for fog harvesting, which was enhanced by the synergetic effect between the Laplace pressure gradient and surface energy gradient. These results support a novel freshwater production system that can be utilized even in harsh conditions, such as waterless and polluted water environments.
Collapse
Affiliation(s)
- Yeongu Choi
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Keuntae Baek
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
9
|
Xie H, Du Y, Zhou W, Xu W, Zhang C, Niu R, Wu T, Qu J. Efficient Fabrication of Micro/Nanostructured Polyethylene/Carbon Nanotubes Foam with Robust Superhydrophobicity, Excellent Photothermality, and Sufficient Adaptability for All-Weather Freshwater Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300915. [PMID: 36970813 DOI: 10.1002/smll.202300915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The integration of fog collection and solar-driven evaporation has great significance in addressing the challenge of the global freshwater crisis. Herein, a micro/nanostructured polyethylene/carbon nanotubes foam with interconnected open-cell structure (MN-PCG) is fabricated using an industrialized micro extrusion compression molding technology. The 3D surface micro/nanostructure provides sufficient nucleation points for tiny water droplets to harvest moisture from humid air and a fog harvesting efficiency of 1451 mg cm-2 h-1 is achieved at night. The homogeneously dispersed carbon nanotubes and the graphite oxide@carbon nanotubes coating endow the MN-PCG foam with excellent photothermal properties. Benefitting from the excellent photothermal property and sufficient steam escape channels, the MN-PCG foam attains a superior evaporation rate of 2.42 kg m-2 h-1 under 1 Sun illumination. Consequently, a daily yield of ≈35 kg m-2 is realized by the integration of fog collection and solar-driven evaporation. Moreover, the robust superhydrophobicity, acid/alkali tolerance, thermal resistance, and passive/active de-icing properties provide a guarantee for the long-term work of the MN-PCG foam during practical outdoor applications. The large-scale fabrication method for an all-weather freshwater harvester offers an excellent solution to address the global water scarcity.
Collapse
Affiliation(s)
- Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weilong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhua Xu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Congyuan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
10
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Tao X, Chen X, Cai S, Yan F, Li S, Jin S, Zhu H. A multifunctional heterogeneous superwettable coating for water collection, oil/water separation and oil absorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130166. [PMID: 36265375 DOI: 10.1016/j.jhazmat.2022.130166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Herein, inspired by desert beetles, we fabricated a multifunctional heterogeneous superwettable coating (MHSC) for water collection and oily wastewater cleanup. The selective modifications of 1-octadecanethiol (ODT) treated CoO and P25 TiO2 nanoparticles (NPs) were prepared, so hydrophobic CoO NPs and superhydrophilic P25 NPs were combined on the MHSC, showing the water contact angle (WCA) of 156.5° and rolling-off angle (RA) of 6.4°. With the aid of waterborne polyurethane (WPU), five kinds of substrates (i.e., glass slide, dish, wood, fabric, sponge) spray-coated by MHSC displayed high-efficiency water collection rates (WCRs) of 18.1 ± 0.7 mg min-1 cm-2. Moreover, MHSC coated fabric manifested robust oil/water separations with separation efficiencies (SEs) > 99.7 % and fluxes ranged from 9.7 to 11.0 L m-2 s-1. Efficient oil sorption from oily water was obtained by MHSC coated sponge with oil absorption capacities (OACs) of 6.5-29.5 g g-1. Further, even dealt with the treatments of mechanical destructions, extreme temperature and UV illumination, the coated materials remained stable performances.
Collapse
Affiliation(s)
- Xianlu Tao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Xiaoyu Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Fuan Yan
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Siqi Li
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.
| |
Collapse
|
12
|
Jiang Y, Venkatesan H, Shi S, Wang C, Cui M, Zhang Q, Tan L, Hu J. Spider-capture-silk mimicking fibers with high-performance fog collection derived from superhydrophilicity and volume-swelling of gelatin knots. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-023-00112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractSpider-capture-silk (SCS) can directionally capture and transport water from humid air relying on the unique geometrical structure. Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials, it remains a big challenge to innovate bio-based SCS mimicking fibers with high-performance fog collection ability and efficiency simultaneously. Herein, we report an eco-friendly and economical fiber system for water collection by coating gelatin on degummed silk. Compared to the previously reported fibers with the best fog collection ability (~ 13.10 μL), Gelatin on silk fiber 10 (GSF10) can collect larger water droplet (~ 16.70 μL in 330 s) with ~ 98% less mass. Meanwhile, the water collection efficiency of GSF10 demonstrates ~ 72% and ~ 48% enhancement to the existing best water collection polymer coated SCS fibers and spidroin eMaSp2 coated degummed silk respectively in terms of volume-to-TCL (vapor–liquid-solid three-phase contact line) index. The simultaneous function of superhydrophilicity, surface energy gradient, and ~ 65% water-induced volume swelling of the gelatin knots are the key factors in advancing the water collection performance. Abundant availability of feedstocks and ~ 75% improved space utilization guarantee the scalability and practical application of such bio-based fiber.
Graphic Abstract
Collapse
|
13
|
Jiang L, Guo C, Fu M, Gong X, Ramakrishna S. Water harvesting on biomimetic material inspired by bettles. Heliyon 2022; 9:e12355. [PMID: 36685370 PMCID: PMC9852669 DOI: 10.1016/j.heliyon.2022.e12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Many organisms in nature such as beetles and cacti can survive in arid places by their own surface structures that are still able to collect mist. These surfaces have micro-nano structures that maintain a very low adhesion, allowing them to continuously collect and transport water. Here, we used a light curing three dimensional molding process to create a template for a water harvesting system inspired by the back of a beetle, a hydrogel-like beetle back surface for water transport. By changing the curvature structure of the water evacuation channels and altering the hydrophilic and hydrophobic properties of the surface, the designed large-scale artificial water harvesting study was made possible. The results show that if the surface has a proper curvature structure and hydrophobic density, the water collection on the super-impregnated surface is much higher than that on an ordinary hydrophobic surface. Based on this, a new efficient and environmentally friendly water collection scheme is proposed. The data show that the triangular tip structure imitating beetle-backed hydrogel surface collects the highest amount of water with a water weight of 16 g in 2 h. This study offers interesting prospects for designing a new generation of structural materials with a bionic structure distribution for high-efficiency water harvesting. The results of the study are useful for pushing the improvement of environmental-friendly water collection, transport and separation devices. Abbreviations The dorsal shape of the beetle's back is critical for water collection. In this work, while redesigning the shape of the back of the beetle, the method of 3D printing the beetle back template was used to prepare the beetle back made of hydrogel, which greatly improved the water collection performance and has certain engineering application prospects.
Collapse
Affiliation(s)
- Lian Jiang
- Jiangsu University of Technology, Changzhou, 213164, China
| | - Chi Guo
- Jiangsu Totus Technology Co., Ltd., Changzhou, 213164, China,Corresponding author.
| | - Meng Fu
- Institute of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaojing Gong
- Institute of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, 213164, China,Corresponding author.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore
| |
Collapse
|
14
|
Xu Z, Zhang Y, He Q. Study on anisotropic contact angle of rectangular convex structure on fluorine rubber surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Wu J, Yan Z, Yan Y, Li C, Dai J. Beetle-Inspired Dual-Directional Janus Pumps with Interfacial Asymmetric Wettability for Enhancing Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49338-49351. [PMID: 36268797 DOI: 10.1021/acsami.2c14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fog-harvesting devices (FHDs) have been widely explored and applied to alleviate the shortage of fresh water. However, during the fog collection process, how to maintain a balance between fog capture and water removal behaviors to enhance the water collection rate still remains a challenge. Herein, inspired by the Stenocara beetle, we combined a beetle-like Janus surface and the conventional cross-sectional Janus structure together, developed a simple spray-and-dry strategy to obtain three types of biomimetic asymmetric meshes, and explored the working modes for atmospheric fog collection. The surface wettability could be carefully controlled, and various asymmetric meshes with different water transportation behaviors were obtained. Through a detailed study of the fog collection process, we concluded that there existed three main working modes: Janus mode, hybrid mode, and Janus and hybrid mode. It was noted that the dual-directional Janus pump with the Janus and hybrid working mode balanced the fog capture and water removal ability and exhibited the highest water collection rate of 2478.73 mg m-2 h-1, which was 2.61 times more than that of the corresponding superhydrophilic mesh. Furthermore, the prepared dual-directional Janus pump showed superior mechanical durability and antibacterial ability. In general, this work was considered instrumental in the reasonable design of biomimetic asymmetric meshes and could provide references for efficient atmospheric fog harvesting.
Collapse
Affiliation(s)
- Junda Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhuo Yan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| |
Collapse
|
16
|
Peng J, Wu L, Zhang H, Wang B, Si Y, Jin S, Zhu H. Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chem Commun (Camb) 2022; 58:11201-11219. [PMID: 36125075 DOI: 10.1039/d2cc03899d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few years, bioinspired eco-friendly superhydrophobic materials (EFSMs) have made great breakthroughs, especially in the fields of environment, energy and biology, which have made remarkable contributions to the sustainable development of the natural environment. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this field. Herein, in this review, initially, we discuss the five typical superhydrophobic models, namely, the Wenzel, Cassie, Wenzel-Cassie, "lotus", and "gecko" models. Then, the existence of superhydrophobic creatures in nature and artificial EFSMs are summarized. Then, we focus on the applications of EFSMs in the fields of environment (self-cleaning, wastewater purification, and membrane distillation), energy (solar evaporation, heat accumulation, and batteries), and biology (biosensors, biomedicine, antibacterial, and food packaging). Finally, the challenges and developments of eco-friendly superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Laiyan Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, P. R. China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hongkong SAR 999077, P. R. China.
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China. .,China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Ma J, Dong Z. Biomimetic directional transport for sustainable liquid usage. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jie Ma
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial Sciences Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
- College of Chemistry and Materials Science Northwest University Xian China
| | - Zhichao Dong
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial Sciences Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
18
|
Luo Q, Peng J, Chen X, Zhang H, Deng X, Jin S, Zhu H. Recent Advances in Multifunctional Mechanical-Chemical Superhydrophobic Materials. Front Bioeng Biotechnol 2022; 10:947327. [PMID: 35910015 PMCID: PMC9326238 DOI: 10.3389/fbioe.2022.947327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, biology-inspired superhydrophobic technology has attracted extensive attention and has been widely used in self-cleaning, anti-icing, oil-water separation, and other fields. However, the poor durability restricts its application in practice; thus, it is urgent to systematically summarize it so that scientists can guide the future development of this field. Here, in this review, we first elucidated five kinds of typical superhydrophobic models, namely, Young's equation, Wenzel, Cassie-Baxter, Wenzel-Cassie, "Lotus," and "Gecko" models. Then, we summarized the improvement in mechanical stability and chemical stability of superhydrophobic surface. Later, the durability test methods such as mechanical test methods and chemical test methods are discussed. Afterwards, we displayed the applications of multifunctional mechanical-chemical superhydrophobic materials, namely, anti-fogging, self-cleaning, oil-water separation, antibacterial, membrane distillation, battery, and anti-icing. Finally, the outlook and challenge of mechanical-chemical superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Qinghua Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xiaoyu Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xia Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Hai Zhu
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| |
Collapse
|
19
|
Guo J, Huang W, Guo Z, Liu W. Design of a Venation-like Patterned Surface with Hybrid Wettability for Highly Efficient Fog Harvesting. NANO LETTERS 2022; 22:3104-3111. [PMID: 35377661 DOI: 10.1021/acs.nanolett.2c00488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by Namib Desert beetle and leaf venation, a wettability-integrated system consisting of wettability-hybrid coatings and venation-like patterns was designed and successfully fabricated via a simple, low-cost, and eco-friendly route. The as-prepared surface can construct a 3D topography with a water layer and efficiently drain through the venation-like patterns. The combination of multiple mechanisms enhances the fog harvesting ability significantly. Meanwhile, the synergistic mechanisms of fog harvesting enhancement by a wettability-integrated surface were further studied and discussed.
Collapse
Affiliation(s)
- Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Wei Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Zhu H, Cai S, Liao G, Gao ZF, Min X, Huang Y, Jin S, Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hai Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Zhong Feng Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People’s Republic of China
| | - Xuehong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Yu Huang
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| |
Collapse
|