1
|
Cheng H, Zheng X, Zhu Y, Wang P, Zhu J, Wei J, Liu Z, Huang C. Stabilization of sulfidated nano zerovalent iron with biochar: Enhanced transport and application for hexavalent chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123045. [PMID: 39481156 DOI: 10.1016/j.jenvman.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Nano zerovalent iron (nZVI) has been broadly used in the treatment of chromium (Cr) pollution. However, conventional nZVI particles are prone to surface oxidation and particle agglomeration, limiting their effectiveness in contaminant removal. To address these issues, sulfidated nZVI (S-nZVI) was synthesized on the corn stover biochar (BC) surface for rapid removal of Cr(VI) from water. Sedimentation and column transport experiments demonstrated that S-nZVI@BC exhibits excellent dispersion and transport properties, efficiently removing Cr(VI) in the pH range of 2.5-5.0 and showing minimal impact from dissolved oxygen. The Fe0, Fe(Ⅱ), and S2- components of the material, along with the leached Fe2+ ions, contributed to the Cr(VI) removal. A portion of the removed Cr(VI) was reduced to Cr(III) in solution, while another portion was adsorbed on the material's surface through precipitation, with 42.0% of Cr being adsorbed within 30 min. Cycling and water matrix interference experiments further demonstrated the material's excellent reusability and resistance to interference. Notably, the continuous Cr(VI) removal capability in column experiments and the reactivation potential of S-nZVI@BC highlight its promise for practical applications. Future studies are suggested to explore the ecotoxicological effects of the S-nZVI@BC and its capacity for the simultaneous removal of multiple contaminants.
Collapse
Affiliation(s)
- Hao Cheng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Yi Zhu
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Ping Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jie Wei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zili Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
2
|
Liu K, Li F, Zhu Z, Fang L. Nanoconfined Fe(II) releaser for long-term arsenic immobilization and its sustainability assessment. WATER RESEARCH 2024; 260:121954. [PMID: 38909421 DOI: 10.1016/j.watres.2024.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.
Collapse
Affiliation(s)
- Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhenlong Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
Deng J, Dong H, Zhang S, Zhao Q, Cheng L, Zhang H, Xiao S, Huang D. Insights into the pH-dependent mechanism of peracetic acid activation by biochar-supported zero-valent iron/cobalt bimetallic nanoparticles: The shift of reactive sites and the dual role of hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135207. [PMID: 39013319 DOI: 10.1016/j.jhazmat.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
The peracetic acid (PAA)-based water purification process is often controlled by the solution pH. Herein, we explored the usage of biochar (BC) supported zero-valent iron/cobalt nanoparticles (Fe/Co@BC) for triggering PAA oxidation of sulfamethazine (SMT), and discovered the PAA activation mechanisms at different pHs. Fe/Co@BC exhibited extraordinary PAA activation efficiency over the pH range of 3.0-8.2, effectively broadening the working pH of the zero-valent iron nanoparticles (NZVI)-PAA process. Specifically, the SMT removal efficiency increased by 8.3 times in Fe/Co@BC-PAA system compared to the NZVI-PAA system at pH 8.2. Besides, the leaching and recycling experiments indicated the improved stability and reusability of the materials. For the mechanism study, the main reactive species was •OH under acidic conditions and R-O•/Fe(IV) under neutral/alkaline conditions. More interestingly, the reactive sites on Fe/Co@BC shifted from Fe species to Co species as pH increased, and the role of H2O2 in this reaction system also shifted from a radical precursor to a radical scavenger with increasing pH. This study highlights the distinct mechanism of PAA activation by bimetallic composites under different pH conditions and provides a new efficient approach for PAA activation to degrade organic contaminants.
Collapse
Affiliation(s)
- Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Siqi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Quanling Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Longjie Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Daofen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Liang Z, Jiang C, Li Y, Liu Y, Yu J, Zhang T, Alvarez PJJ, Chen W. Single-Atom Iron Can Steer Atomic Hydrogen toward Selective Reductive Dechlorination: Implications for Remediation of Chlorinated Solvents-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11833-11842. [PMID: 38910294 DOI: 10.1021/acs.est.4c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yueyue Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Chen D, Hu X, Chen C, Gao Y, Zhou Q, Feng X, Xu X, Lin D, Xu J. Impacts of Perfluoroalkyl Substances on Aqueous and Nonaqueous Phase Liquid Dechlorination by Sulfidized Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11193-11202. [PMID: 38859757 DOI: 10.1021/acs.est.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiman Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianhai Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Fan B, Chen S, Zhu C, Zhu F, Huang D, Si D, Zhou B, Zhou D, He F, Gao S. Key role of hydrogen atoms in the preparation of sulfidated zero valent iron. WATER RESEARCH 2024; 256:121573. [PMID: 38608618 DOI: 10.1016/j.watres.2024.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Si Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Zhang Y, Fu H, Chen X, Shi S, Liu N, Tang C, Hu X. Surface wettability control and electron transport regulation in zerovalent iron for enhanced removal of emerging polystyrene microplastics-heavy metal contaminants. WATER RESEARCH 2024; 256:121602. [PMID: 38621315 DOI: 10.1016/j.watres.2024.121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.
Collapse
Affiliation(s)
- Yufei Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xi Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuaiyi Shi
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Nuo Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
8
|
Xu Y, Liu H, Wen S, Guo J, Shi X, He Q, Lin W, Gao Y, Wang R, Xue W. High performance self-assembled sulfidized nanoscale zero-valent iron for the immobilization of cadmium in contaminated sediments: Optimization, microbial response, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134022. [PMID: 38484662 DOI: 10.1016/j.jhazmat.2024.134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Sulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation. This study synthesized S-nZVI with different S and Fe precursors to investigate the effect of precursors and applied the optimal material to immobilize Cd in sediments. Characterization analysis revealed that the precursor affected the morphology, Fe0 crystallinity, and the degree of oxidation of the material. Incubation experiments demonstrated that the immobilization efficiency of Cd using S-nZVIFe3++S2- (S/Fe = 0.14) reached the peak value of 99.54%. 1% and 5% dosages of S-nZVI significantly reduced Cd concentration in the overlying water, DTPA-extractable Cd content, and exchangeable (EX) Cd speciation (P < 0.05). Cd leaching in sediment and total iron in the overlying water remained at low levels during 90 d of incubation. Notably, each treatment maintained a high Cd immobilization efficiency under different pH, water/sediment ratio, organic acid, and coexisting ion conditions. Sediment physicochemical properties, functional bacteria, and a range of adsorption, complexation and precipitation of CdS effects dominated Cd immobilization.
Collapse
Affiliation(s)
- Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
9
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Gong L, Ying S, Xia C, Pan K, He F. Carboxymethyl cellulose stabilization induced changes in particle characteristics and dechlorination efficiency of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2024; 355:141726. [PMID: 38521105 DOI: 10.1016/j.chemosphere.2024.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuaixuan Ying
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ke Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Guo J, Wang D, Shi Y, Lyu H, Tang J. Minor chromium passivation of S-ZVI enhanced the long-term dechlorination performance of trichlorethylene: Effects of corrosion and passivation on the reactivity and selectivity. WATER RESEARCH 2024; 249:120973. [PMID: 38071903 DOI: 10.1016/j.watres.2023.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
The corrosion and surface passivation of sulfidized zero-valent iron (S-ZVI) by common groundwater ions and contaminants are considered to be the most challenging aspects in the application of S-ZVI for remediation of chlorinated contaminants. This study investigated the impacts of corrosive chloride (Cl-) and passivation of hexavalent chromium (Cr(VI)) on the long-term reactivity, selectivity, corrosion behavior, and physicochemical properties during the 60-day aging process of S-ZVI. Although the co-existing of Cl- promoted the initial reactivity of S-ZVI, the rapid consumption of Fe° content shortened the reactive lifetime owing to the insufficient electron capacity. Severe passivation by Cr(VI) (30 mg L-1) preserved the Fe° content but significantly interfered with the reductive sulfur species, resulting in an increase in electron transfer resistance. In comparison, minor passivated S-ZVI (5.0 mg L-1 Cr(VI)) inhibited the hydrogen evolution while concurrently mitigating the further oxidation of the reductive iron and sulfur species, which significantly enhanced the long-term reactivity and selectivity of S-ZVI. Furthermore, the enhancement effect of minor passivation could be detected in the aging processes of one-step, two-step, and mechanochemically synthesized S-ZVI particles with different S/Fe ratios and precursors, which further verified the advantages of minor passivation. This observation is inspirable for the development of innovative strategies for environmental remediation by S-ZVI-based materials.
Collapse
Affiliation(s)
- Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dong Wang
- Environmental Protection Institute, SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Tang C, Wang X, Zhang Y, Liu N, Hu X. Corrosion behaviors and kinetics of nanoscale zero-valent iron in water: A review. J Environ Sci (China) 2024; 135:391-406. [PMID: 37778814 DOI: 10.1016/j.jes.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 10/03/2023]
Abstract
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron (nZVI) in aquatic environment is particularly significant for understanding the reactivity, longevity and stability of nZVI, as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications. Herein, this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water. Firstly, Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion. The morphological, structural, and compositional evolution of (modified-) nZVI under different environmental conditions, assisted with microscopic and spectroscopic evidence, is then summarized. Afterwards, common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water. Specifically, stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed, emphasizing their capabilities in studying the dynamic iron corrosion processes. Finally, in the future, more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties. We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment.
Collapse
Affiliation(s)
- Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xingyu Wang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nuo Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Xue W, Liu H, Li J, Chen X, Wen S, Guo J, Shi X, Cao S, Gao Y, Wang R, Xu Y. Immobilization of cadmium in river sediments by different modified nanoscale zero-valent iron: performance, mechanisms, and Fe dissolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117892-117908. [PMID: 37874516 DOI: 10.1007/s11356-023-30475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Modified nanoscale zero-valent iron (NZVI) exhibited great potential for the remediation of heavy metal contaminated river sediments, but its mechanisms and environmental risks are still unclear. This study systematically discussed the performance and the mechanisms of modified NZVI materials, i.e., sodium alginate-coated NZVI (SNZVI), rhamnolipid-coated NZVI (RNZVI), and graphene oxide-loaded NZVI (GNZVI), for the stabilization of Cd in sediment, with the exploration of their stability to Cd at various pH values and Fe dissolution rate. Compared with the control, the toxicity characteristic leaching procedure (TCLP) leachable Cd decreased by 52.66-96.28%, and the physiologically based extraction test (PBET) extractable Cd decreased by 44.68-70.21% after 56 days of incubation with the immobilization efficiency varying according to GNZVI > RNZVI > SNZVI > NZVI. Besides, the adsorption behavior of Cd on materials was fitted with the Freundlich model and classified as an endothermic, spontaneous, and chemical adsorption process. SEM-EDX, XRD, and FTIR results verified that the stabilization mechanisms of Cd were principally based on the adsorption, complexation of Cd2+ with secondary Fe minerals (including Fe2O3, γ-Fe2O3, and γ-FeOOH) and precipitation (Cd(OH)2). From the risk assessment results, it was observed that the materials were favorable for Cd stabilization at a pH range from 7 to 11, meanwhile, the leaching concentration of Fe in the overlying water was detected below the limit value. These findings pave the way to developing an effective strategy to remediate Cd contaminated river sediments.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shan Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng Yang, 421001, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
14
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Cheng Y, Dong H, Hao T. From liquid to solid: A novel approach for utilizing sulfate reduction effluent through phase transition - Effluent-induced nanoscale zerovalent iron sulfidation. BIORESOURCE TECHNOLOGY 2023; 385:129440. [PMID: 37399956 DOI: 10.1016/j.biortech.2023.129440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the use of sulfate reduction effluent (SR-effluent) to induce sulfidation on nanoscale zerovalent iron (nZVI). SR-effluent-modified nZVI achieved a 100% improvement in Cr(VI) removal from simulated groundwater, a result comparable to cases where other, more typical sulfur precursors (Na2S2O4, Na2S2O3, Na2S, K2S6, and S0) were used. Through a structural equation model analysis, amendment of nanoparticles' agglomeration (standardized path coefficient (std. path coeff.) = -0.449, p < 0.05) and hydrophobicity (std. path coeff. = 0.100, p < 0.05) and direct reaction between iron-sulfur compounds and Cr(VI) (std. path coeff. ranged from -0.195 to 0.322, p < 0.05) were primarily contributing to sulfidation-induced Cr(VI) removal enhancement. Regarding the property improvement of nZVI, the SR-effluent's corrosion radius played a crucial role in tuning the content and distribution of the iron-sulfur compounds based on the core-shell structure of the nZVI and the redox processes at the aqueous-solid interface.
Collapse
Affiliation(s)
- Yujun Cheng
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
16
|
Gao F, Zhang M, Ahmad S, Guo J, Shi Y, Yang X, Tang J. Tetrabromobisphenol A transformation by biochar supported post-sulfidated nanoscale zero-valent iron: Mechanistic insights from shell control and solvent kinetic isotope effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132028. [PMID: 37459757 DOI: 10.1016/j.jhazmat.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Post-sulfidated nanoscale zero-valent iron with a controlled FeSX shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI. These properties endowed S-nZVI/BC with highly reactive (∼8.9-13.2 times) and selective (∼58.4-228.9 times) over nZVI/BC in TBBPA transformation. BC modification improved the reactivity and selectivity of S-nZVI by 1.77 and 1.96 times, respectively. The difference of S-nZVI/BC in reactivity was related to hydrophobicity and electron transfer, particularly FeSX shell thickness and morphology. Optimal shell thickness of ∼32 nm allowed the maximum association between Fe0 core and exterior FeSX, resulting in superior reactivity. A thicker shell with abundant networks increased the roughness but decreased the surface area and electron transfer. The higher [S/Fe]surface and [S/Fe]particle were conducive to the selectivity, and [S/Fe]particle was more influential than [S/Fe]surface on selectivity upon similar hydrophobicity. The solvent kinetic isotope effects (SKIEs) exhibited that increasing [S/Fe]dose tuned the relative contributions of atomic H and electron in TBBPA debromination but failed to alter the dominant debromination pathway (i.e., direct electron transfer) in (S)-nZVI/BC systems. Mechanism of electron transfer rather than atomic H contributed to higher selectivity. This work demonstrated that S-nZVI/BC was a prospective material for the remediation of TBBPA-contaminated groundwater.
Collapse
Affiliation(s)
- Feilong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National Engineering Laboratory for Site Remediation Technologies, China.
| |
Collapse
|
17
|
Li L, Jin H, Luo N, Niu H, Cai Y, Cao D, Zhang S. Sulfurized nano zero-valent iron prepared via different methods: Effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114864. [PMID: 37011511 DOI: 10.1016/j.ecoenv.2023.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Sulfurization improves the stability and activity of nano zero-valent iron (nZVI). The sulfurized nZVI (S-nZVI) were prepared with ball milling, vacuum chemical vapor deposition (CVD) and liquid-phase reduction techniques and the corresponding products were the mixture of FeS2 and nZVI (nZVI/FeS2), well-defined core-shell structure (FeSx@Fe) or seriously oxidized (S-nZVI(aq)), respectively. All these materials were applied to eliminate 2,4,6-trichlorophenol (TCP) from water. The removal of TCP was irrelevant with the structure of S-nZVI. Both nZVI/FeS2 and FeSx@Fe showed remarkable performance for the degradation of TCP. S-nZVI(aq) possessed poor mineralization efficiency to TCP due to its bad crystallinity degree and severe leaching of Fe ions, which retarded the affinity of TCP. Desorption and quenching experiments suggested that TCP removal by nZVI and S-nZVI was based on surface adsorption and subsequent direct reduction by Fe0, oxidation by in-situ produced ROS and polymerization on the surface of these materials. In the reaction process, the corrosion products of these materials transformed into crystalline Fe3O4 and α/β-FeOOH, which enhanced the stability of nZVI and S-nZVI materials and was conductive to the electron transferring from Fe0 to TCP and strong affinity of TCP onto Fe or FeSx phases. All these were contributed to high performance of nZVI and sulfurized nZVI in removal and minerazilation of TCP in continuous recycle test.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiwen Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Science, North China University of Science and Technology, Tangshan, Hebei Province 063210, China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China.
| |
Collapse
|
18
|
Gao F, Zhang M, Zhang W, Ahmad S, Wang L, Tang J. Synthesis of carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron (CMC-S-nZVI) for enhanced reduction of nitrobenzene. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Deng J, Chen T, Arbid Y, Pasturel M, Bae S, Hanna K. Aging and reactivity assessment of nanoscale zerovalent iron in groundwater systems. WATER RESEARCH 2023; 229:119472. [PMID: 36535086 DOI: 10.1016/j.watres.2022.119472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
In this study, changes in the reactivity of nanoscale zerovalent iron (NZVI) in five different groundwater (GW) systems under anoxic and oxic conditions were examined over a wide range of aging time (0 - 60 d). p-nitrophenol (p-NP) was used as a redox-sensitive probe, whereas nalidixic acid (NA), a typical antibiotic found in the natural environment, was used as a sorbing compound. Investigation of the p-NP reduction in pure water systems showed that NZVI lost 41% and 98% of its reductive activity under anoxic and oxic conditions after 60 d, while enhancement of its reactivity was observed after short-term aging in GW (1 - 5 d), followed by a further decline. This behavior has been ascribed to the formation of secondary Fe(II)-bearing phases, including magnetite and green rust, resulting from NZVI aging in GW. Adsorption experiments revealed that GW-anoxic-aged NZVI samples exhibited a good affinity toward NA, and a greater NA adsorption (∼27 µmol g - 1) than that of pristine NZVI (∼2 µmol g - 1) at alkaline pH values. Surface complexation modeling showed that the enhanced adsorption of NA onto secondary minerals can be attributed to the Fe(II)-NA surface complexation. This considerable change in the reductive ability and the adsorption capacity of NZVI arising from groundwater corrosion calls for greater attention to be paid in assessment studies, where NZVI is injected for long-term remediation in groundwater.
Collapse
Affiliation(s)
- Junmin Deng
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Tao Chen
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Yara Arbid
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Mathieu Pasturel
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Khalil Hanna
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
| |
Collapse
|
20
|
Xu W, Zhang J, Xu T, Hu X, Shen C, Lou L. Could sulfidation enhance the long-term performance of nano-zero valent iron in the peroxymonosulfate activation to degrade 2-chlorobiphenyl? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120631. [PMID: 36370971 DOI: 10.1016/j.envpol.2022.120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation can enhance the hydrophobicity of nano-zero valent iron (nZVI) and improve its long-term degradation performance in reduction technology. However, whether sulfidation can enhance its long-term performance in sulfate radical-based advanced oxidation processes hasn't been systematically studied. Herein sulfide-modified nZVI (S-nZVI) was prepared by different sulfidation methods and S/Fe ratios. The behavior of S-nZVI on the peroxymonosulfatec (PMS) activation to degrade 2-chlorobiphenyl for continuous 5 rounds was investigated. The results showed that sulfidation couldn't always promote the long-term degradation performance. S-nZVI prepared by one-step sulfidation method with high S/Fe ratio (S-nZVIonestep-7%, S-nZVIonestep-14%) exhibited inferior degradation performance than unmodified nZVI (52.2%). This was because that the electron donor Fe0 was consumed rapidly and the crystalline lepidocrocite accumulated on the surface, thus inhibited PMS activation. In contrast, S-nZVI prepared by post-sulfidation method with high S/Fe ratio (S-nZVIpost-7%, S-nZVIpost-14%) exhibited more Fe0 residual, less FeOx accumulation, and more catalytic Fe2+ regeneration. Consequently, S-nZVIpost exhibited superior degradation capacity (69.3%). Moreover, the radical quenching experiments revealed that the primary free radicals involved in the degradation were transformed from SO4•- to •OH with prolongation of the degradation. Additionally, Fe (IV) contributed to the degradation through non-radical mechanism, especially in the S-nZVIpost-7%/PMS system.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Tao Xu
- Hangzhou Zetian Chunlai Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
21
|
Zhu J, Zhang L, Liu J, Zhong S, Gao P, Shen J. Trichloroethylene remediation using zero-valent iron with kaolin clay, activated carbon and bacteria. WATER RESEARCH 2022; 226:119186. [PMID: 36244142 DOI: 10.1016/j.watres.2022.119186] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Nanoscale particles of zero-valent iron were used to form a permeable reactive barrier whose performance in dechlorinating a solution of trichloroethylene was compared with that of a barrier formed from limestone. The iron was combined with kaolin by calcination. The test liquid contained sewage sludge, and also added NH4Cl and KH2PO4. The average removal rates of trichloroethylene and phosphorus over 365 days both exceeded 94%. Chemical oxygen demand was reduced by 92% and ammonium nitrogen by 43.6%. All were significantly greater than the removals with the limestone barrier. The ceramsite barrier retained 85% of its effectiveness even after 365 days of use. Dechloromonas sp. was the main dechlorinating bacterium, but its removal ability is limited. The removal of trichloroethylene in such a barrier mainly depends on reduction by the zero-valent iron and biodegradation. The results show that the prepared ceramsite is stable and effective in removing trichloroethylene from water. It is a promising in-situ remediation material for groundwater.
Collapse
Affiliation(s)
- Jiayan Zhu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Lishan Zhang
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China.
| | - Junyong Liu
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Shan Zhong
- School of Life and Environment Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinyou Shen
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu 210094, China
| |
Collapse
|
22
|
Chu D, Dong H, Li Y, Xiao J, Xiang S, Dong Q, Hou X. Insights into the correlation between different adsorption/oxidation/catalytic performance and physiochemical characteristics of Fe-Mn oxide-based composites. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129631. [PMID: 35872460 DOI: 10.1016/j.jhazmat.2022.129631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Fe-Mn oxide-based composites have been widely used in the solidification of heavy metals or the removal of organic pollutants, which can not only show excellent adsorption/oxidation performance, but also show catalytic activity for common oxidants. At present, the correlation between adsorption/oxidation/catalytic performance and physicochemical characteristics of these composites, and the underlying mechanisms are still unclear. Therefore, the main purpose of this review is to disclose the internal relationship between the physicochemical properties of Fe-Mn oxide-based composites and the pollutant removal performance. From the perspective of crystal phase, the basic units of Fe-Mn oxide composites are divided into Fe-Mn binary oxide (FMBO) and spinel MnFe2O4, and the two species were discussed separately in most chapters. The selected physicochemical properties mainly include the type of Fe-Mn oxide composites, surface-to-volume ratio, pore volume, pHpzc, crystal type, surface functional groups. Because the physicochemical properties that determine how effective Fe-Mn oxide material is at removing contaminants may differ as it performs different functions, we discussed the above problems under different application scenarios (adsorption, oxidation, and advanced oxidation process). Additionally, internal factor (Fe/Mn mole ratio) and external factors (pHini, co-ions and ionic strength) were analyzed, and several common synthetic strategies of these composites were presented.
Collapse
Affiliation(s)
- Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Li Y, Dong H, Xiao J, Li L, Chu D, Hou X, Xiang S, Dong Q. Insights into a novel CuS/percarbonate/tetraacetylethylenediamine process for sulfamethazine degradation in alkaline medium. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128999. [PMID: 35486998 DOI: 10.1016/j.jhazmat.2022.128999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
This work presents a novel CuS/percarbonate/tetraacetylethylenediamine (CuS/SPC/TAED) process for the degradation of sulfamethazine (SMT). Results indicated that the CuS/SPC/TAED process enabled the efficient generation of peracetic acid (PAA), which can be efficiently activated by CuS in alkaline reaction media, and 93.6% of SMT was degraded in 30 min. Mechanism study revealed that the available reactive oxygen species (ROS) including hydroxyl radical (•OH), carbonate radical (CO3•-), superoxide radical (O2•-), singlet oxygen (1O2), and organic radicals (R-O•). Among them, R-O• (acetyloxyl radical (CH3CO2•) and acetylperoxyl radical (CH3CO3•)) were confirmed to be the primary species that contributed to SMT degradation. Simultaneously, the role of sulfur species and carbonate ions were explored. It was found that the reductive O2•- and sulfur species rendered the efficient redox of Cu species. Besides, the effects of key influencing factors including SPC/TAED mole ratio, CuS dosage, initial pH, temperature, and nontarget matrix constituents on SMT degradation were examined. Finally, the degradation intermediates of SMT was identified, and the toxicity of these products was estimated by quantitative structure-activity relationship (QSAR) analysis. Overall, this work offers a new and simple strategy for antibiotic-polluted water remediation.
Collapse
Affiliation(s)
- Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
24
|
Yang S, Liu A, Liu J, Liu Z, Zhang W. Advance of Sulfidated Nanoscale Zero-Valent Iron: Synthesis, Properties and Environmental Application. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|