1
|
Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174219. [PMID: 38917908 DOI: 10.1016/j.scitotenv.2024.174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/μL DNA) and the QIAamp DNA Mini kit (238 gc/μL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/μL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.
Collapse
Affiliation(s)
- Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rebecca Falender
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Gabriel Davis
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rispa Vranka Wafula
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Melissa Sutton
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - June Bancroft
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Paul Cieslak
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Tyler Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Su Y, Gao R, Huang F, Liang B, Guo J, Fan L, Wang A, Gao SH. Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120331. [PMID: 38368808 DOI: 10.1016/j.jenvman.2024.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pathogens are ubiquitously detected in various natural and engineered water systems, posing potential threats to public health. However, it remains unclear which human-accessible waters are hotspots for pathogens, how pathogens transmit to these waters, and what level of health risk associated with pathogens in these environments. This review collaboratively focuses and summarizes the contamination levels of pathogens on the 5 water systems accessible to humans (natural water, drinking water, recreational water, wastewater, and reclaimed water). Then, we showcase the pathways, influencing factors and simulation models of pathogens transmission and survival. Further, we compare the health risk levels of various pathogens through Quantitative Microbial Risk Assessment (QMRA), and assess the limitations of water-associated QMRA application. Pathogen levels in wastewater are consistently higher than in other water systems, with no significant variation for Cryptosporidium spp. among five water systems. Hydraulic conditions primarily govern the transmission of pathogens into human-accessible waters, while environmental factors such as temperature impact pathogens survival. The median and mean values of computed public health risk levels posed by pathogens consistently surpass safety thresholds, particularly in the context of recreational waters. Despite the highest pathogens levels found in wastewater, the calculated health risk is significantly lower than in other water systems. Except pathogens concentration, variables like the exposure mode, extent, and frequency are also crucial factors influencing the public health risk in water systems. This review shares valuable insights to the more accurate assessment and comprehensive management of public health risk in human-accessible water environments.
Collapse
Affiliation(s)
- Yiyi Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Shrestha S, Malla B, Haramoto E. Estimation of Norovirus infections in Japan: An application of wastewater-based epidemiology for enteric disease assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169334. [PMID: 38103617 DOI: 10.1016/j.scitotenv.2023.169334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Noroviruses of genogroup I (NoV GI) and NoV GII are the primary causes of acute gastroenteritis (AGE) in developed countries. However, asymptomatic and untested NoV infections lead to an underestimation of AGE cases, and the lack of mandatory viral identification in clinical cases hinders precise estimation of NoV infections. Back estimation of NoV infections in the community using a wastewater-based epidemiology (WBE) approach can provide valuable insights into the disease's extent, progression, and epidemiology, aiding in developing effective control strategies. This study employed a one-step reverse transcription-quantitative PCR to quantify NoVs GI and GII in wastewater samples (n = 83) collected twice a week from June 2022 to March 2023 in Japan. All samples from the Winter-Spring (n = 27) tested positive for NoV GI and GII RNA, while 73 % and 88 % of samples from the Summer-Autumn (n = 56) were positive for NoV GI and NoV GII RNA, respectively. Significantly higher concentrations of NoV GI/GII RNA were found in the Winter-Spring season compared to the Summer-Autumn season. NoV RNA was consistently detected in wastewater throughout the year, demonstrating the persistence of AGE cases in the catchment, suggesting an endemic NoV infection. Estimates of NoV infection incorporated viral RNA concentrations, wastewater parameters, and signal persistence in a mass balance equation using Monte Carlo Simulation. The median estimated NoV GI infections per 100,000 population for Summer-Autumn was 133 and for the Winter-Spring season, it was 881. Estimated NoV GII infections were 1357 for Summer-Autumn and 11,997 for the Winter-Spring season per 100,000 population. The estimated NoV infections exceeded by 3.2 and 23.9 folds than the reported AGE cases in Summer-Autumn and Winter-Spring seasons, respectively. The seasonal trend of estimated NoV infections closely matched that of AGE cases, highlighting the utility of WBE in understanding the epidemiology of enteric infections.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan.
| |
Collapse
|
4
|
Torii S, David SC, Larivé O, Cariti F, Kohn T. Observed Kinetics of Enterovirus Inactivation by Free Chlorine Are Host Cell-Dependent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18483-18490. [PMID: 36649532 DOI: 10.1021/acs.est.2c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Virucidal efficacies of disinfectants are typically assessed by infectivity assay utilizing a single type of host cell. Enteroviruses infect multiple host cells via various entry routes, and each entry route may be impaired differently by a given disinfectant. Yet, it is unknown how the choice of host cells affects the observed inactivation kinetics. Here, we evaluated the inactivation kinetics of echovirus 11 (E11) by free chlorine, ultraviolet (UV) irradiation, and heat, using three different host cells (BGMK, RD, and A549). Inactivation rates were independent of the host cell for treatment of E11 by UV or heat. Conversely, E11 inactivation by free chlorine occurred 2-fold faster when enumerated on BGMK cells compared with RD and A549 cells. Host cell-dependent inactivation kinetics by free chlorine were also observed for echovirus 7, 9, and 13, and coxsackievirus A9. E11 inactivation by free chlorine was partly caused by a loss in host cell attachment, which was most pronounced for BGMK cells. BGMK cells lack the attachment receptor CD55 and a key subunit of the uncoating receptor β2M, which may contribute to the differential inactivation kinetics for this cell type. Consequently, inactivation kinetics of enteroviruses should be assessed using host cells with different receptor profiles.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Shannon Christa David
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Federica Cariti
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
5
|
Schoen ME, Garland J, Soller JA, Thimons SX, Jahne MA. Onsite Nonpotable Water Systems Pathogen Treatment Targets: A Comparison of Infection and Disability-Adjusted Life Years (DALYs) Risk Benchmark Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9559-9566. [PMID: 37342916 PMCID: PMC11425349 DOI: 10.1021/acs.est.3c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Pathogen log10 reduction targets for onsite nonpotable water systems were calculated using both annual infection (LRTINF) and disability-adjusted life year (LRTDALY) benchmarks. The DALY is a measure of the health burden of a disease, accounting for both the severity and duration of illness. Results were evaluated to identify if treatment requirements change when accounting for the likelihood, duration, and severity of illness in addition to the likelihood of infection. The benchmarks of 10-4 infections per person per year (ppy) and 10-6 DALYs ppy were adopted along with multilevel dose-response models for Norovirus and Campylobacter jejuni, which characterize the probability of illness given infection (Pill|inf) as dose-dependent using challenge or outbreak data. We found differences between treatment requirements, LRTINF - LRTDALY, for some pathogens, driven by the likelihood of illness, rather than the severity of illness. For pathogens with dose-independent Pill|inf characterizations, such as Cryptosporidium spp., Giardia, and Salmonella enterica, the difference, LRTINF - LRTDALY, was identical across reuse scenarios (
Collapse
Affiliation(s)
- Mary E Schoen
- Soller Environmental, LLC., 3022 King St., Berkeley, California 94703, United States
| | - Jay Garland
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati Ohio 45268, United States
| | - Jeffrey A Soller
- Soller Environmental, LLC., 3022 King St., Berkeley, California 94703, United States
| | - Sean X Thimons
- Oak Ridge Institute for Science and Education, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Michael A Jahne
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati Ohio 45268, United States
| |
Collapse
|
6
|
Jahne MA, Schoen ME, Kaufmann A, Pecson BM, Olivieri A, Sharvelle S, Anderson A, Ashbolt NJ, Garland JL. Enteric pathogen reduction targets for onsite non-potable water systems: A critical evaluation. WATER RESEARCH 2023; 233:119742. [PMID: 36848851 PMCID: PMC10084472 DOI: 10.1016/j.watres.2023.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Onsite non-potable water systems (ONWS) collect and treat local source waters for non-potable end uses such as toilet flushing and irrigation. Quantitative microbial risk assessment (QMRA) has been used to set pathogen log10-reduction targets (LRTs) for ONWS to achieve the risk benchmark of 10-4 infections per person per year (ppy) in a series of two efforts completed in 2017 and 2021. In this work, we compare and synthesize the ONWS LRT efforts to inform the selection of pathogen LRTs. For onsite wastewater, greywater, and stormwater, LRTs for human enteric viruses and parasitic protozoa were within 1.5-log10 units between 2017 and 2021 efforts, despite differences in approaches used to characterize pathogens in these waters. For onsite wastewater and greywater, the 2017 effort used an epidemiology-based model to simulate pathogen concentrations contributed exclusively from onsite waste and selected Norovirus as the viral reference pathogen; the 2021 effort used municipal wastewater pathogen data and cultivable adenoviruses as the reference viral pathogen. Across source waters, the greatest differences occurred for viruses in stormwater, given the newly available municipal wastewater characterizations used for modeling sewage contributions in 2021 and the different selection of reference pathogens (Norovirus vs. adenoviruses). The roof runoff LRTs support the need for protozoa treatment, but these remain difficult to characterize due to the pathogen variability in roof runoff across space and time. The comparison highlights adaptability of the risk-based approach, allowing for updated LRTs as site specific or improved information becomes available. Future research efforts should focus on data collection of onsite water sources.
Collapse
Affiliation(s)
- Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, CA 94703, USA
| | - Anya Kaufmann
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | - Brian M Pecson
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | | | - Sybil Sharvelle
- Colorado State University, Department of Civil and Environmental Engineering, 1372 Campus Delivery, Fort Collins, CO 80523, USA
| | - Anita Anderson
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, USA
| | | | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
7
|
Pecson B, Kaufmann A, Sharvelle S, Post B, Leverenz H, Ashbolt N, Olivieri A. Risk-based treatment targets for onsite non-potable water systems using new pathogen data. JOURNAL OF WATER AND HEALTH 2022; 20:1558-1575. [PMID: 36308499 DOI: 10.2166/wh.2022.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using local sources (roof runoff, stormwater, graywater, and onsite wastewater) to meet non-potable water demands can minimize potable water use in buildings and increase supply reliability. In 2017, an Independent Advisory Panel developed a risk-based framework to identify pathogen log reduction targets (LRTs) for onsite non-potable water systems (ONWSs). Subsequently, California's legislature mandated the development and adoption of regulations-including risk-based LRTs-for use in multifamily residential, commercial, and mixed-use buildings. A California Expert Panel was convened in 2021 to (1) update the LRT requirements using new, quantitative pathogen data and (2) propose treatment trains capable of meeting the updated LRTs. This paper presents the updated risk-based LRTs for multiple pathogens (viruses, protozoa, and bacteria) and an expanded set of end-uses including toilet flushing, clothes washing, irrigation, dust and fire suppression, car washing, and decorative fountains. The updated 95th percentile LRTs required for each source water, pathogen, and end-use were typically within 1-log10 of the 2017 LRTs regardless of the approach used to estimate pathogen concentrations. LRT requirements decreased with influent pathogen concentrations from wastewater to graywater to stormwater to roof runoff. Cost and footprint estimates provide details on the capital, operations and maintenance, and siting requirements for ONWS implementation.
Collapse
Affiliation(s)
- Brian Pecson
- Trussell Technologies, 1939 Harrison Street, Oakland, California 94612, USA E-mail:
| | - Anya Kaufmann
- Trussell Technologies, 1939 Harrison Street, Oakland, California 94612, USA E-mail:
| | - Sybil Sharvelle
- Colorado State University, Scott Bioengineering Building 246, Fort Collins, Colorado 80523, USA
| | - Brie Post
- Trussell Technologies, 1939 Harrison Street, Oakland, California 94612, USA E-mail:
| | - Harold Leverenz
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA
| | - Nicholas Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, New South Wales 2480, Australia
| | - Adam Olivieri
- EOA, Inc., 1410 Jackson Street, Oakland, California 94612, USA
| |
Collapse
|
8
|
Torii S, Corre MH, Miura F, Itamochi M, Haga K, Katayama K, Katayama H, Kohn T. Genotype-dependent kinetics of enterovirus inactivation by free chlorine and ultraviolet (UV) irradiation. WATER RESEARCH 2022; 220:118712. [PMID: 35691190 DOI: 10.1016/j.watres.2022.118712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Inactivation kinetics of enterovirus by disinfection is often studied using a single laboratory strain of a given genotype. Environmental variants of enterovirus are genetically distinct from the corresponding laboratory strain, yet it is poorly understood how these genetic differences affect inactivation. Here we evaluated the inactivation kinetics of nine coxsackievirus B3 (CVB3), ten coxsackievirus B4 (CVB4), and two echovirus 11 (E11) variants by free chlorine and ultraviolet irradiation (UV). The inactivation kinetics by free chlorine were genotype- (i.e., susceptibility: CVB5 < CVB3 ≈ CVB4 < E11) and genogroup-dependent and exhibited up to 15-fold difference among the tested viruses. In contrast, only minor (up to 1.3-fold) differences were observed in the UV inactivation kinetics. The differences in variability between the two disinfectants could be rationalized by their respective inactivation mechanisms: inactivation by UV mainly depends on the genomic size and composition, which was similar for all viruses tested, whereas free chlorine targets the viral capsid protein, which exhibited critical differences between genogroups and genotypes. Finally, we integrated the observed variability in inactivation rate constants into an expanded Chick-Watson model to estimate the overall inactivation of an enterovirus consortium. The results highlight that the distribution of inactivation rate constants and the abundance of each genotype are essential parameters to accurately predict the overall inactivation of an enterovirus population by free chlorine. We conclude that predictions based on inactivation data of a single variant or reference pathogen alone likely overestimate the true disinfection efficiency of free chlorine.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Marie-Hélène Corre
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama-shi, Ehime, Japan; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|