1
|
Zheng S, Dong J, Chen Q, Wu M, Zhu D, Cui L, Corvini PFX, Li HZ, Pan B. Elevated Toxicity and High-Risk Impacts of Small Polycyclic Aromatic Hydrocarbon Clusters on Microbes Compared to Large Clusters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39723607 DOI: 10.1021/acs.est.4c10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes. Results revealed that over 95% of PAHs can form clusters in the aquatic environment, with smaller clusters more likely to form at lower concentrations and with fewer benzene rings. To quantify the toxic effects and understand underlying mechanisms, single-cell Raman-D2O was employed to link bacterial phenotypes with transcriptomic profiles. Bacteria exposed to smaller PAH clusters showed a 1%-10% reduction in metabolic activity, which was associated with a 1.8-2.9-fold increase in intracellular reactive oxygen species (ROS). Furthermore, when exposed to smaller PAH clusters, the expression of genes related to the ROS response and efflux pumps was upregulated by up to 6.33-fold and 4.97-fold, respectively, suggesting that smaller PAH clusters pose greater toxicity to microbes. These findings underscore the potentially overlooked risks of PAH clusters in environmental systems and deepen our understanding of the environmental fate and ecological risks of these contaminants.
Collapse
Affiliation(s)
- Shuyue Zheng
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Jihong Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Philippe Frangois-Xavier Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132, Muttenz, Switzerland
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| |
Collapse
|
2
|
Zhao W, Ye C, Li J, Yu X. Increased risk of antibiotic resistance in surface water due to global warming. ENVIRONMENTAL RESEARCH 2024; 263:120149. [PMID: 39414103 DOI: 10.1016/j.envres.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
As the pace of global warming accelerates, so do the threats to human health, urgent priority among them being antibiotic-resistant infections. In the context of global warming, this review summarises the direct and indirect effects of rising surface water temperatures on the development of bacterial antibiotic resistance. First, the resistance of typical pathogens such as E. coli increased with average temperature. This is not only related to increased bacterial growth rate and horizontal gene transfer frequency at high temperatures but also heat shock responses and cumulative effects. Secondly, the acceleration of bacterial growth indirectly promotes antibiotic residues in surface water, which is conducive to the growth and spread of resistant bacteria. Furthermore, the cascading effects of global warming, including the release of nutrients into the water and the resulting increase of bacteria and algae, indirectly promote the improvement of resistance. Water treatment processes exposed to high temperatures also increase the risk of resistance in surface water. The fitness costs of antibiotic resistance under these dynamic conditions are also discussed, concluding the relationship between various factors and resistance persistence. It was expected to provide a comprehensive basis for mitigating antibiotic resistance in the face of global warming.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China.
| |
Collapse
|
3
|
Wang H, Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Mechanistic insights for efficient removal of intracellular and extracellular antibiotic resistance genes by iron-based nanocopper: Intracellular oxidative stress and internalization of nanocopper. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136745. [PMID: 39637796 DOI: 10.1016/j.jhazmat.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears. The composition of Fe-nCu particles consists of 75.90 % iron and 20.95 % copper. Fe-nCu demonstrates a unique capability in eliminating ARGs, achieving removal efficiencies of 3.75 and 4.36 logs for intracellular and extracellular ARGs, respectively. Furthermore, Fe-nCu remains stable in complex water environments and is unaffected by organic substances in the water. This material induces oxidative stress in cells within a short period, leading to an imbalance in intracellular redox levels and resulting in cell membrane damage. nCu causes severe membrane damage to E. coli, penetrating the cell due to its size advantage, which leads to the encapsulation and internalization of E. coli by the copper nanoparticles. Once inside, the nCu particles cleave DNA and disrupt the function of ARGs. This study not only provides a cost-effective material for the removal of ARGs but also offers an in-depth understanding of the action mechanism of Fe-nCu, presenting a novel pathway for inhibiting the propagation of ARGs.
Collapse
Affiliation(s)
- Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ping Yu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Shishkin AY, Fukina DG, Rumyantseva VO, Shilova EV, Ganov AS, Shalaginova IA, Kornienko PV, Suleimanov EV, Semenycheva LL, Smirnov VF. Antibacterial effect of new photocatalytically active "complex oxides/PMMA" composites under visible-light irradiation. Photochem Photobiol Sci 2024; 23:2237-2253. [PMID: 39612098 DOI: 10.1007/s43630-024-00664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
New photocatalytic materials based on complex oxides and a widely used and cheap polymer (PMMA) have been prepared. Among complex oxides previously investigated, the following have been used-RbTe1.5W0.5O6, CsTeMoO6, CsV0.625Te1.375O6, NaVMoO6, KVMoO6. For comparison, the binary oxides TiO2 and WO3 were used. The form of PMMA matrix was used as sponge and glass. The amount of powder in PMMA was selected based on retaining the polymer properties and getting the photocatalytic activity, which corresponds to 1% powder in sponge and 0.5% in glass. The "photocatalyst/PMMA" composites decompose the methylene blue under visible and UV light as well as possess antibacterial properties. The high electron-hole recombination was found out for composites photocatalysts, which significantly influences only on organic compounds decomposition in solutions. However, there is no direct dependence between effective photodegradation of simple organic molecules and antimicrobial properties. Inactivation of bacteria is determined by many factors such as active generated radicals, adsorption properties of the surface and the photocatalyst form, which can change the main active radicals. The comparison of photocatalytic action on organic solutions and bacteria of initial powders and PMMA composites allow choosing the most effective combination for further application. The most promising antimicrobial properties for composites have been obtained using compounds with β-pyrochlore structure.
Collapse
Affiliation(s)
- Andrey Yu Shishkin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Diana G Fukina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
- Institute of Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Prospect, 23, 603950, Nizhny Novgorod, Russia.
| | | | - Elena V Shilova
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander S Ganov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | | | | | | | - Vasily F Smirnov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Hu Z, Xu H, Cheng J, Zhang H, Zhao Y, Hu J, Sun Y, Huang L, Yao W, Yu Z, Xie Y. Catalyst-free regeneration of plasma-activated water via ultrasonic cavitation: Removing aggregation concealment of antibiotic-resistant bacteria with enhanced wastewater sustainability. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135705. [PMID: 39217933 DOI: 10.1016/j.jhazmat.2024.135705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Aggregation is a crucial factor in bacterial biofilm formation, and comprehending its properties is vital for managing waterborne antibiotic-resistant bacteria. In this study, we examined Methicillin-resistant Staphylococcus aureus (MRSA) cell aggregation under varying conditions and assessed the inactivation efficiency of a novel disinfection method, micro-nano bubbles plasma-activated water via ultrasonic stirring cavitation (MPAW-US), on aggregated MRSA cells. Aggregation efficiency increased over time and at low salt concentrations but diminished at higher concentrations. Elevated MRSA cell aggregation in actual water samples represented significant real-life biohazard risks. Unlike conventional disinfection, MPAW-US treatment exhibited minimal change in the inactivation rate constant despite protective outer layers. Enhanced inactivation efficiency results from the synergistic effects of increased intracellular oxidative stress damage and extracellular substance disruption, triggered by ultrasound-activated micro-nano bubbles that improve PAW reactivity and applicability. This approach neither induced MRSA cross-resistance to unfavorable conditions nor increased toxicity or regrowth potential of aggregative MRSA, utilizing ATP levels as potential regrowth capability indicators. Ultimately, this energy-efficient disinfection technology functions effectively across diverse temperature ranges, showcasing exceptional sterilization and nutritional bean sprout production after cyclic filtering, thereby promoting wastewater sustainability amidst carbon emission concerns.
Collapse
Affiliation(s)
- Zhenyang Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hongwen Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Huan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yali Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Jian Hu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen 518000, China
| | - Lijun Huang
- Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi 214142, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
6
|
An T, Yin H, Cai Y, Chen M, Sun T, Wang W, Li G. Photocatalysis Inhibits the Emergence of Multidrug-Resistant Bacteria in an Antibiotic-Resistant Bacterial Community in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17937-17947. [PMID: 39250882 DOI: 10.1021/acs.est.4c06752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Bacterial antibiotic resistance has recently attracted increasing amounts of attention. Here, an artificially antibiotic-resistant bacterial community (ARBC) combined with five different constructed antibiotic-resistant bacteria (ARB) with single antibiotic resistance, namely, kanamycin (KAN), tetracycline (TET), cefotaxime (CTX), polymyxin B (PB), or gentamicin (GEM), was studied for the stress response to photocatalysis. With photocatalytic inactivation, the transfer and diffusion of antibiotic resistance genes (ARGs) in the ARBC decreased, and fewer multidrug-resistant bacteria (MDRB) emerged in aquatic environments. After several days of photocatalytic inactivation or Luria broth cultivation, >90% ARB were transformed to antibiotic-susceptible bacteria by discarding ARGs. Bacteria with double antibiotic resistance were the dominant species (99%) of residual ARB. The changes in ARG abundance varied, decreasing for the GEM and TET resistance genes and increasing for the KAN resistance genes. The change in the antibiotic resistance level was consistent with the change in ARG abundance. Correspondingly, point mutations occurred for the KAN, CTX and PB resistance genes after photocatalytic inactivation, which might be the reason why these genes persisted longer in the studied ARBC. In summary, photocatalytic inactivation could reduce the abundance of some ARGs and inhibit the emergence of MDRB as well as block ARG transfer in the bacterial community in aquatic environments. This work highlights the advantages of long-term photocatalytic inactivation for controlling antibiotic resistance and facilitates a better understanding of bacterial communities in real aquatic environments.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongliang Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Li M, Fan Y, Ran M, Chen H, Han J, Zhai J, Wang Z, Ning C, Shi Z, Yu P. Hydrogel Coatings of Implants for Pathological Bone Repair. Adv Healthc Mater 2024; 13:e2401296. [PMID: 38794971 DOI: 10.1002/adhm.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.
Collapse
Affiliation(s)
- Mengqing Li
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Youzhun Fan
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Maofei Ran
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Haoyan Chen
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jien Han
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Jinxia Zhai
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhengao Wang
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Zhifeng Shi
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510641, Guangzhou, 510006, China
| |
Collapse
|
8
|
Xia L, Chen M, Li G, An T. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? WATER RESEARCH 2024; 262:122137. [PMID: 39059198 DOI: 10.1016/j.watres.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
9
|
Chai S, Chi Y, Sun W, Hou X, Pei S, Luo K, Lv W. Synthesis of N-doped and P-doped silicon quantum dots and their applications for tetracycline detection in the honey samples and antibacterial properties. Food Chem 2024; 450:139324. [PMID: 38615527 DOI: 10.1016/j.foodchem.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The abuse of tetracycline can lead to its residue in animal derived foods, posing many potential hazards to human health. Therefore, rapid and accurate detection of tetracycline is an important means to ensure food safety. Nitrogen doped and phosphorus doped silicon quantum dots (N-SiQDs, P-SiQDs) with remarkable optical stability were fabricated via a one-pot hydrothermal procedure in this study. Upon the excitation at 346 nm, N-SiQDs and P-SiQDs emitted fluorescence at 431 nm and 505 nm, respectively. Two SiQDs had the potential to serve as a probe for detecting low concentrations of tetracycline (TC), employing a mechanism of the static quenching effect. The calibration curves of N-SiQDs and P-SiQDs were linear within the range of 0-0.8 μM and 0-0.4 μM, the limits of detection were low as 5.35 × 10-4 μmol/L and 6.90 × 10-3 μmol/L, respectively. This method could be used successfully to detect TC in honey samples. Moreover, the remarkable antibacterial efficacy of two SiQDs could be attributed to the generation of a large number of intracellular reactive oxygen species. The SEM images showed that the structure of bacterial cell was disrupted and the surface became irregular when treated with both SiQDs. These properties enabled potential usage of SiQDs as excellent antibacterial material for different biomedical applications.
Collapse
Affiliation(s)
- Shuiqin Chai
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China.
| | - Yuting Chi
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Wanlin Sun
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Xin Hou
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Shuchen Pei
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, PR China
| | - Kang Luo
- People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404037, PR China.
| | - Wenyi Lv
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| |
Collapse
|
10
|
Bai C, Cai Y, Sun T, Li G, Wang W, Wong PK, An T. Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. WATER RESEARCH 2024; 259:121837. [PMID: 38810347 DOI: 10.1016/j.watres.2024.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.
Collapse
Affiliation(s)
- Conglin Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tong Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Yang X, Lan W, Sun X. Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. Int J Biol Macromol 2024; 273:133029. [PMID: 38852716 DOI: 10.1016/j.ijbiomac.2024.133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Chen H, Gao J, Wang Q, Liu Y, Wu L, Fu X, Guo Y, Wang H, Wang Y. The synergistic effect of periodate/ferrate (VI) system on disinfection of antibiotic resistant bacteria and removal of antibiotic resistant genes: The dominance of Fe (IV)/Fe (V). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134132. [PMID: 38554510 DOI: 10.1016/j.jhazmat.2024.134132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The proliferation of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) caused by antibiotic abuse has raised concerns about the global infectious-disease crisis. This study employed periodate (PI)/ferrate (VI) (Fe (VI)) system to disinfect Gram-negative ARB (Escherichia coli DH5α) and Gram-positive bacteria (Bacillus subtilis ATCC6633). The PI/Fe (VI) system could inactivate 1 × 108 CFU/mL of Gram-negative ARB and Gram-positive bacteria by 4.0 and 2.8 log in 30 min. Neutral and acidic pH, increase of PI dosage and Fe (VI) dosage had positive impacts on the inactivation efficiency of ARB, while alkaline solution and the coexistence of 10 mM Cl-, NO3-, SO42- and 20 mg/L humic acid had slightly negative impacts. The reactive species generated by PI/Fe (VI) system could disrupt the integrity of cell membrane and wall, leading to oxidative stress and lipid peroxidation. Intracellular hereditary substance, including DNA and ARGs (tetA), would leak into the external environment through damaged cells and be degraded. The electron spin resonance analysis and quenching experiments indicated that Fe (IV)/Fe (V) played a leading role in disinfection. Meanwhile, PI/Fe (VI) system also had an efficient removal effect on sulfadiazine, which was expected to inhibit the ARGs transmission from the source.
Collapse
Affiliation(s)
- Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hanyi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
14
|
Zhang Y, Jie Y, Li J, Yu Y, Liang P, Hao Y, Bai M. Maintenance of cell integrity during hydroxyl radical rapid inactivation of Pseudanabaena sp. and simultaneous mineralization of odor compound 2-methylisoborneol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168713. [PMID: 38007125 DOI: 10.1016/j.scitotenv.2023.168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Pseudanabaena sp. and the odor compound it produces, 2-methylisoborneol (2-MIB), has been reportedly responsible for off-flavor pollution worldwide, leading to substandard drinking water sensory indicators and serious water supply crises. In this paper, the hydroxyl radical (•OH) produced by the synergistic effect of strong ionization discharge and hydrodynamic cavitation rapidly inactivated Pseudanabaena sp. and simultaneously mineralized 2-MIB to a concentration of 2.57 ng/L, which is below the odor threshold of 10 ng/L for a total reactive oxidants (TRO) concentration of 1.2 mg/L within 12 s. Crucially, the intracellular 2-MIB level was maintained in approximately 155.26- 162.29 ng/L range, indicating that 2-MIB was not released from the cells. Based on the scanning electron microscopy (SEM) results, the integrity of Pseudanabaena sp. cells was maintained with intact membranes and no intracellular organic matters (IOM) released during •OH inactivation. In contrast, ClO2 caused severe membrane rupture and massive IOM release. Based on the gas chromatograph/mass spectrometer (GC/MS) analyses and mass spectral database, the chromatogram fitted the baseline with a TRO concentration of 4 mg/L and no peaks corresponding to intermediates were detected. Moreover, •OH could mineralize 2-MIB by opening the ring structures of 1,2,3,3-tetramethyl-4-cyclopentenone, neomenthol, and 2-methylcyclohexene-1-aldehyde to produce small-molecule compounds, finally leading to CO2 and H2O formation via three reaction pathways. Therefore, the •OH not only maintained the cell integrity of Pseudanabaena sp. during inactivation but also mineralized 2-MIB simultaneously.
Collapse
Affiliation(s)
- Yubo Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Ying Jie
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Institute of Geological Survey, Fuzhou 350013, China
| | - Jianlan Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yixuan Yu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Pengyu Liang
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yiming Hao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | | |
Collapse
|
15
|
Li X, Zhong X, Yang Z, Cai C, Zhang W, Li X, Sun X, Dong B, Xu Z. Novelty three stages for humification of sewage sludge during hyperthermophilic aerobic fermentation. ENVIRONMENTAL RESEARCH 2023; 239:117276. [PMID: 37806481 DOI: 10.1016/j.envres.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Compared with conventional aerobic fermentation (CAF), there is limited knowledge of how hyperthermophilic aerobic fermentation (HAF) enhances the humification of sewage sludge. This study compared three novel stages of organic degradation, precursors, functional groups, bacterial community, and humus synthesis mechanism in HAF with CAF. The results showed that organic matter (OM) degraded rapidly, and 68% of the degradation could be completed of stage I in HAF. Compared with the initial stage, ammonium nitrogen (NH4+-N), water-soluble organic carbon, and water-soluble total nitrogen increased by 2.83 times, 40.5 times, and 33.5 times, respectively. Cellulose and hemicellulose decreased by 29.22% and 21.85%, respectively. These results suggested that temperature (>80 °C) and Bacillus dominated accelerate the humification process by rapidly improving OM degradation. Compared with the initial value of HAF, the maximum increment of reducing sugar at stage II was 297%, and the degradation rate of cellulose was effectively increased by 21.03% compared with that of CAF. The precursors such as reducing sugars and amino acids formed humus at stage II. The content of Aryl C increased significantly during the HAF process, the degree of polymerization of humus and the aromatization degree of HA and FA increased significantly, and complex organic macromolecular material polymers were formed at stage III. The sugar-amine condensation was the mechanism of humification in the sludge HAF process. This investigation provided three new stages of insights into the synthesis of humification during the HAF process and extended the current mechanism of humification in the HAF process.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Xinru Zhong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Zao Yang
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Chen Cai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Wei Zhang
- School of Environment and Architecture. University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojie Sun
- Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zuxin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
16
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Zhang C, Wang C, Zhao X, Hakizimana I. Effect of resistance difference on distribution of antibiotics in bacterial cell and conjugative gene transfer risks during electrochemical flow through reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163142. [PMID: 36996977 DOI: 10.1016/j.scitotenv.2023.163142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
The occurrences and spread of antibiotic resistance (AR) mediated by horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) in aquatic environment have been aggravated because of the abuse of antibiotics. While the pressure of different antibiotics is known to induce the spread of AR in bacteria, whether distribution of different antibiotics in cell structure could affect HGT risks is not clear. Here, a significant difference between the distribution of tetracycline hydrochloride (Tet) and sulfamethoxazole (Sul) in cell structure during electrochemical flow through reaction (EFTR) process was firstly reported. Meanwhile, EFTR treatment possessed excellent disinfection performance and consequently controlled the HGT risks. The intracellular Tet (iTet) was discharged through efflux pumps to increase the content of extracellular Tet (eTet) due to the resistance of donor E. coli DH5α under the selective pressure of Tet, declining the damage of donor and plasmid RP4. The HGT frequency was 8.18-fold increase compared with that by EFTR treatment alone. While the secretion of intracellular Sul (iSul) was inhibited by blocking the formation of efflux pumps to inactivate the donor under the Sul pressure, and the total content of iSul and adsorbed Sul (aSul) to be 1.36-fold higher than that of eSul. Therefore, the reactive oxygen species (ROS) generation and cell membrane permeability were improved to release ARGs, and •OH attacked plasmid RP4 in the EFTR process, inhibiting the HGT risks. This study advances the awareness of the interaction between distribution of different antibiotics in cell structure and the HGT risks in the EFTR process.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
18
|
Sun J, Wen J, Wang J, Yang Y, Wang G, Liu J, Yu Q, Liu M. Unraveling the atomic-level vacancy modulation in Cu 9S 5 for NIR-driven efficient inhibition of drug-resistant bacteria: Key role of Cu vacancy position. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131082. [PMID: 36870131 DOI: 10.1016/j.jhazmat.2023.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cu9S5 possesses high hole concentration and potential superior electrical conductivity as a novel p-type semiconductor, whose biological applications remain largely unexploited. Encouraged by our recent work that Cu9S5 has enzyme-like antibacterial activity in the absence of light, which may further enhance the near infrared (NIR) antibacterial performance. Moreover, vacancy engineering can modulate the electronic structure of the nanomaterials and thus optimize their photocatalytic antibacterial activities. Here, we designed two different atomic arrangements with same VCuSCu vacancies of Cu9S5 nanomaterials (CSC-4 and CSC-3) determined by positron annihilation lifetime spectroscopy (PALS). Aiming at CSC-4 and CSC-3 as a model system, for the first time, we investigated the key role of different copper (Cu) vacancies positions in vacancy engineering toward optimizing the photocatalytic antibacterial properties of the nanomaterials. Combined with the experimental and theoretical approach, CSC-3 exhibited stronger absorption energy of surface adsorbate (LPS and H2O), longer lifetime of photogenerated charge carriers (4.29 ns), and lower reaction active energy (0.76 eV) than those of CSC-4, leading to the generation of abundant ·OH for attaining rapid drug-resistant bacteria killed and wound healed under NIR light irradiation. This work provided a novel insight for the effective inhibition of drug-resistant bacteria infection via vacancy engineering at the atomic-level modulation.
Collapse
Affiliation(s)
- Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Jinghong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jianling Wang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guichang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingyang Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Li H, Zhang R, Zhang J, Wang Q, Wang Y, Zhou J, Wang T. Conjugation transfer of plasma-induced sublethal antibiotic resistance genes under photoreactivation: Alleviation mechanism of intercellular contact. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131620. [PMID: 37196446 DOI: 10.1016/j.jhazmat.2023.131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) is a huge challenge worldwide. Information regarding underlying mechanisms of conjugation transfer of sublethal ARGs under photoreactivation is still lacking. In this study, experimental exploration and model prediction were conducted to evaluate the effects of photoreactivation on conjugation transfer of plasma-induced sublethal ARGs. The experimental results showed that reactive species (O2-•, 1O2, and •OH) generated in the plasma process led to 0.32, 1.45, 3.21, 4.10, and 3.96-log removal for tetC, tetW, blaTEM-1, aac(3)-II, and intI1 after 8 min treatment at 18 kV, respectively. Their attacks led to breakage and mineralization of ARGs-containing DNA and disturbance of bacterial metabolism. The conjugation transfer frequency increased by 0.58-fold after 48 h of photoreactivation compared with the plasma treatment, as well as the abundances of ARGs and reactive oxygen species levels. The alleviation effects of photoreactivation were independent of cell membrane permeability, but related to promotion of intercellular contact. Ordinary differential equation model predicted that the stabilization time of long-term transfer of ARGs significantly increased by 50 % after photoreactivation compared with the plasma treatment, and the conjugation transfer frequency also increased. This study firstly revealed the mechanisms of conjugation transfer of sublethal ARGs under photoreactivation.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China
| | - Ruoyu Zhang
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China; Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China
| | - Jiawei Zhang
- school of science, Xi'an Jiaotong-liverpool University, Shaanxi Province 712100, China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Zhang T, Cheng F, Chen X, Zhang YN, Qu J, Chen J, Peijnenburg WJGM. Dark repair of sunlight-inactivated tetracycline-resistant bacteria: Mechanisms and important role of bacteria in viable but non-culturable state. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131560. [PMID: 37148796 DOI: 10.1016/j.jhazmat.2023.131560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) in the environment poses a potential threat to human health, and the reactivation of inactivated ARB accelerated the spread of ARB. However, little is known about the reactivation of sunlight-inactivated ARB in natural waters. In this study, the reactivation of sunlight-inactivated ARB in dark conditions was investigated with tetracycline-resistant E. coli (Tc-AR E. coli) as a representative. Results showed that sunlight-inactivated Tc-AR E. coli underwent dark repair to regain tetracycline resistance with dark repair ratios increasing from (0.124 ± 0.012)‱ within 24 h dark treatment to (0.891 ± 0.033)‱ within 48 h. The presence of Suwannee River fulvic acid (SRFA) promoted the reactivation of sunlight-inactivated Tc-AR E. coli and tetracycline inhibited their reactivation. The reactivation of sunlight-inactivated Tc-AR E. coli is mainly attributed to the repair of the tetracycline-specific efflux pump in the cell membrane. Tc-AR E. coli in a viable but non-culturable (VBNC) state was observed and dominated the reactivation as the inactivated ARB remain present in the dark for more than 20 h. These results explained the reason for distribution difference of Tc-ARB at different depths in natural waters, which are of great significance for understanding the environmental behavior of ARB.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaobing Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
21
|
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. WATER RESEARCH 2023; 230:119508. [PMID: 36610181 DOI: 10.1016/j.watres.2022.119508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL-1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1-10 mg L-1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2- and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
22
|
Li Z, Wu D, Yu Z, Cui C, Yin D. Nontargeted metabolomic evidence for antagonism between tetracycline and its resistance bacteria underlying their obesogenic effects on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160223. [PMID: 36402327 DOI: 10.1016/j.scitotenv.2022.160223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Environmental antibiotics raise serious health concerns due to their contribution to the obesity prevalence. Moreover, antibiotics promote antibiotic-resistance bacteria (ARB) which represent another emerging pollutant. However, the interaction between antibiotic and ARB in the obesogenic effects remained unexplored. In the present study, the obesogenic effects of tetracycline antibiotic (TCH) and ARB containing tetA were studied on C. elegans, and E. coli OP50 (OP50) was referred as a normal bacterial food. Results showed that TCH stimulated nematode triglyceride contents, while ARB alone had no significant influences. The combination of TCH and ARB showed less obesogenic effects than TCH alone, showing antagonism. Biochemical assays showed that the combination of TCH and ARB showed similar effects to ARB alone, and had less increases in lipid metabolism enzymes or metabolites than those of TCH or ARB alone, supporting the antagonism. In the nontargeted metabolomic analysis, TCH with ARB showed less significantly changed metabolites (SCMs) in the nematodes than TCH or ARB alone, partially explaining the antagonism. The metabolomic results also pointed out the significant involvement of amino acids, the carboxylic acids and derivatives, and also the benzene and substituted derivatives in the obesogenic effects of TCH and ARB. The findings of the present study provided a direct support for interaction between antibiotics and ARB underlying their health risks.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Di Wu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Changzheng Cui
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
23
|
Kumari P, Lather V, Khatri S, Ahlawat P, Sehrawat H, Khatkar SP, Taxak VB, Kumar R. Computational analysis, Urbach energy and Judd-Ofelt parameter of warm Sm 3+ complexes having applications in photovoltaic and display devices. RSC Adv 2022; 12:35827-35848. [PMID: 36545065 PMCID: PMC9753104 DOI: 10.1039/d2ra05796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, six reddish orange Sm3+ complexes were synthesized using organic ligand (L) and secondary ligands having hetero atoms by a one-step significant liquid-assisted grinding method and were characterized by spectroscopic techniques. The Urbach energy and band gap energy of the complexes were inspected by a linear fit. Using a least square fitting method, the Judd-Ofelt parameter and radiative properties were also determined. Thermal analysis, colorimetric analysis, luminescence decay time and anti-microbial properties of complexes were studied. The luminescence emission spectra of binary and ternary complexes displayed three characteristic peaks at 565, 603 and 650 nm in the powder form and four peaks at 563, 605, 646 and 703 nm in a solution phase due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions respectively. The most intense transition in the solid phase (4G5/2 → 6H7/2) is accountable for orange color, and in the solution form, the highly luminescent peak (4G5/2 → 6H9/2) is responsible for reddish orange color of Sm3+ complexes. PXRD and SEM analyses suggested that the complexes possess a nanoparticle grain size with crystalline nature. The decent optoelectrical properties of title complexes in the orangish-red visible domain indicated possible applications in the manufacturing of display and optoelectronic devices.
Collapse
Affiliation(s)
- Poonam Kumari
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Vaishnavi Lather
- Shri Guru Ram Rai Institute of Medical and Health Sciences Dehradun 248001 India
| | - Savita Khatri
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Pratibha Ahlawat
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - Harkesh Sehrawat
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| | - S P Khatkar
- Department of Chemistry, Maharshi Dayanand University Rohtak 124001 India
| | - V B Taxak
- Department of Chemistry, Maharshi Dayanand University Rohtak 124001 India
| | - Rajesh Kumar
- University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak 124001 India +91 9034070027
| |
Collapse
|
24
|
Zhang J, Yang C, Hu J, Zhang Y, Lai Y, Gong H, Guo F, Li X, Ye L, Li B. Deciphering a novel chloramphenicols resistance mechanism: Oxidative inactivation of the propanediol pharmacophore. WATER RESEARCH 2022; 225:119127. [PMID: 36155007 DOI: 10.1016/j.watres.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Expanding knowledge about new types of antibiotic resistance genes is of great significance in dealing with the global antibiotic resistance crisis. Herein, a novel oxidoreductase capO was discovered to be responsible for oxidative inactivation of chloramphenicol and thiamphenicol. The antibiotic resistance mechanism was comprehensively deciphered using multi-omics and multiscale computational approaches. A 66,383 bp DNA fragment carrying capO was shared among four chloramphenicol-resistant strains, and the co-occurrence of capO with a mobile genetic element cluster revealed its potential mobility among different taxa. Metagenomic analysis of 772 datasets indicated that chloramphenicol was the crucial driving factor for the development and accumulation of capO in activated sludge bioreactors treating antibiotic production wastewater. Therefore, we should pay sufficient attention to its possible prevalence and transfer to pathogens, especially in some hotspot environments contaminated with high concentrations of chloramphenicols. This finding significantly expands our knowledge boundary about chloramphenicols resistance mechanisms.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, China
| | - Jiahui Hu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, China
| | - Fangliang Guo
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, China.
| |
Collapse
|
25
|
Yang J, Zhao ZQ, Wang M, Yu KF, Zhang T, Lin H, Zheng HB. Biodegradation of tylosin in swine wastewater by Providencia stuartii TYL-Y13: Performance, pathway, genetic background, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129716. [PMID: 35952431 DOI: 10.1016/j.jhazmat.2022.129716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Microbial bioremediation offers a solution to the problem of residual antibiotics in wastewater associated with animal farms. Efficient degradation of antibiotic residues depends upon the genetic make-up of microbial degraders, which requires a comprehensive understanding of the degradation mechanisms. In this study, a novel, efficient tylosin (TYL)-degrading bacterium, Providencia stuartii TYL-Y13 (Y13) was isolated, which could completely degrade 100 mg/L TYL within 15 h under optimal operating conditions at 40 ℃, pH 7.0 %, and 1 % (v/v) bacterial inoculation rate. Whole genome sequencing revealed that strain Y13 consists of a circular chromosome and two plasmids. A new biodegradation pathway of TYL including desugarification, hydrolysis, and reduction reactions was proposed through the analysis of biodegradation products. It was demonstrated that strain Y13 gradually decreased the biotoxicity of TYL and its metabolites based on the results of the ecological structural activity relationships (ECOSAR) model analysis and toxicity assessment. Moreover, Y13 promoted the reduction of the target macrolide resistance genes in wastewater and disappeared within 84 h. These results shed new light on the mechanism of TYL biodegradation and better utilization of microbes to remediate TYL contamination.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Min Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ke-Fei Yu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|