1
|
Tian R, Posselt M, Fenner K, McLachlan MS. Variability of Biodegradation Rates of Commercial Chemicals in Rivers in Different Regions of Europe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39466166 DOI: 10.1021/acs.est.4c07410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Biodegradation is one of the most important processes influencing the fate of organic contaminants in the environment. Quantitative understanding of the spatial variability in environmental biodegradation is still largely uncharted territory. Here, we conducted modified OECD 309 tests to determine first-order biodegradation rate constants for 97 compounds in 18 freshwater river segments in five European countries: Sweden, Germany, Switzerland, Spain, and Greece. All but two of the compounds showed significant spatial variability in rate constants across European rivers (ANOVA, P < 0.05). The median standard deviation of the biodegradation rate constant between rivers was a factor of 3. The spatial variability was similar between pristine and contaminated river segments. The longitude, total organic carbon, and clay content of sediment were the three most significant explanatory variables for the spatial variability (redundancy analysis, P < 0.05). Similarities in the spatial pattern of biodegradation rates were observed for some groups of compounds sharing a given functional group. The pronounced spatial variability presents challenges for the use of biodegradation simulation tests to assess chemical persistence. To reflect the variability in the biodegradation rate, the modified OECD 309 test would have to be repeated with water and sediment from multiple sites.
Collapse
Affiliation(s)
- Run Tian
- Department of Environmental Science (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Malte Posselt
- Department of Environmental Science (ACES), Stockholm University, 10691 Stockholm, Sweden
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
2
|
Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. WATER RESEARCH 2024; 266:122431. [PMID: 39298898 DOI: 10.1016/j.watres.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Trace organic contaminants (TrOCs) are omnipresent in wastewater treatment plants (WWTPs), yet, their removal during wastewater treatment is oftentimes incomplete and underlying biotransformation mechanisms are not fully understood. In this study, we elucidate how different factors, including pre-exposure levels and duration, influence microbial adaptation towards catabolic TrOC biodegradation and its potential role in biological wastewater treatment. Four sequencing batch reactors (SBRs) were operated in parallel in three succeeding phases, adding and removing a selection of 26 TrOCs at different concentration levels. After each phase of SBR operation, a series of batch experiments was conducted to monitor biotransformation kinetics of those same TrOCs across various spike concentrations. For half of our test TrOCs, we detected increased biotransformation in sludge pre-exposed to TrOC concentrations ≥5 µg L-1 over a 30-day period, with most significant differences observed for the insect repellent DEET and the artificial sweetener saccharin. Accordingly, 16S rRNA amplicon sequencing revealed enrichment of taxa that have previously been linked to catabolic biodegradation of several test TrOCs, e.g., Bosea sp. and Shinella sp. for acesulfame degradation, and Pseudomonas sp. for caffeine, cyclamate, DEET, metformin, paracetamol, and isoproturon degradation. We further conducted shotgun metagenomics to query for gene products previously reported to be involved in the TrOCs' biodegradation pathways. In the future, directed microbial adaptation may be a solution to improve bioremediation of TrOCs in contaminated environments or in WWTPs.
Collapse
Affiliation(s)
- Carolin Seller-Brison
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
| | - Antoine Brison
- Department of Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Yaochun Yu
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland; Department of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
3
|
Attrah M, Schärer MR, Esposito M, Gionchetta G, Bürgmann H, Lens PNL, Fenner K, van de Vossenberg J, Robinson SL. Disentangling abiotic and biotic effects of treated wastewater on stream biofilm resistomes enables the discovery of a new planctomycete beta-lactamase. MICROBIOME 2024; 12:164. [PMID: 39242535 PMCID: PMC11380404 DOI: 10.1186/s40168-024-01879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.
Collapse
Affiliation(s)
- Mustafa Attrah
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Milo R Schärer
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Mauro Esposito
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Giulia Gionchetta
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Piet N L Lens
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| | - Jack van de Vossenberg
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
| |
Collapse
|
4
|
Ge Z, Ai D, Ma Z, Li Y, Zhang J. Evolution and distribution of antibiotic resistance genes in submerged macrophytes and biofilm systems: From seasonal monitoring to mesocosm experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121947. [PMID: 39068786 DOI: 10.1016/j.jenvman.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The aquatic ecosystem has been extensively investigated as a hotspot for the spread of antibiotic resistance genes (ARGs); yet, the evolution and distribution of ARGs profiles in submerged macrophytes biofilms and surrounding water remained unclear. In this study, the dynamic distribution and seasonal variations of microbial communities and ARGs profiles were investigated, alongside their assembly processes and mutual interactions. Bacitracin and multidrug resistance genes were predominant, constituting more than 60% of the total ARGs abundance. The deterministic processes (<65%), influenced by the physicochemical properties of the river environment, governed the assembly and composition of ARGs profiles, exhibiting significant seasonal variation. The peak diversity (21 types) and abundance (0.316 copy ratios) of ARGs were detected during the summer. Proteobacteria and Actinobacteria were the dominant bacterial phyla, accounting for 38.41-85.50% and 4.03-27.09% of the microbial community, respectively. Furthermore, Proteobacteria, especially genera such as Acinetobacter, Burkholderia, and Pseudomonas, with various resistance sequences, were the primary carriers of multiple ARGs. Notably, the genetic exchanges between biofilms and surrounding water facilitated the further propagation of high-risk ARGs, posing greater ecological risks. Redundancy analysis indicated that the total nitrogen and temperature in water determined the fate of pathogenic-resistant species. These findings provided theoretical support for the mitigation of ARGs contamination in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China
| | - Yaguang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, PR China.
| |
Collapse
|
5
|
Yu Y, Trottmann NF, Schärer MR, Fenner K, Robinson SL. Substrate promiscuity of xenobiotic-transforming hydrolases from stream biofilms impacted by treated wastewater. WATER RESEARCH 2024; 256:121593. [PMID: 38631239 DOI: 10.1016/j.watres.2024.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Organic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants. We identified a positive correlation between WW percentage and biofilm biotransformation rates for the widely-used insect repellent, N,N-diethyl-meta-toluamide (DEET) and a number of other wastewater-borne contaminants with hydrolyzable moieties. Here, we conducted deep shotgun sequencing of flume biofilms and identified a positive correlation between WW percentage and metagenomic read abundances of DEET hydrolase (DH) homologs. To test the causality of this association, we constructed a targeted metagenomic library of DH homologs from flume biofilms. We screened our complete metagenomic library for activity with four different substrates, including DEET, and a subset thereof with 183 WW-related organic compounds. The majority of active hydrolases in the metagenomic library preferred aliphatic and aromatic ester substrates while, remarkably, only a single reference enzyme was capable of DEET hydrolysis. Of the 626 total enzyme-substrate combinations tested, approximately 5% were active enzyme-substrate pairs. Metagenomic DH family homologs revealed a broad substrate promiscuity spanning 22 different compounds when summed across all enzymes tested. We biochemically characterized the most promiscuous and active enzymes identified based on metagenomic analysis from uncultivated Rhodospirillaceae and Planctomycetaceae. In addition to characterizing new DH family enzymes, we exemplified a framework for linking metagenome-guided hypothesis generation with experimental validation. Overall, this study expands the scope of known enzymatic contaminant biotransformations for metagenomic hydrolases from WW-receiving stream biofilm communities.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Niklas Ferenc Trottmann
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Milo R Schärer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Serina L Robinson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| |
Collapse
|
6
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
7
|
Tian R, Posselt M, Miaz LT, Fenner K, McLachlan MS. Influence of Season on Biodegradation Rates in Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7144-7153. [PMID: 38527158 PMCID: PMC11044578 DOI: 10.1021/acs.est.3c10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Biodegradation plays a key role in the fate of chemicals in the environment. The variability of biodegradation in time can cause uncertainty in evaluating the environmental persistence and risk of chemicals. However, the seasonality of biodegradation in rivers has not yet been the subject of environmentally relevant testing and systematic investigation for large numbers of chemicals. In this work, we studied the biodegradation of 96 compounds during four seasons at four locations (up- and downstream of WWTPs located on two Swedish rivers). Significant seasonality (ANOVA, p < 0.05) of the first-order rate constant for primary biodegradation was observed for most compounds. Variations in pH and total bacterial cell count were not the major factors explaining the seasonality of biodegradation. Deviation from the classical Arrhenius-type behavior was observed for most of the studied compounds, which calls into question the application of this relationship to correct biodegradation rate constants for differences in environmental temperature. Similarities in magnitude and seasonality of biodegradation rate constants were observed for some groups of chemicals possessing the same functional groups. Moreover, reduced seasonality of biodegradation was observed downstream of WWTPs, while biodegradation rates of most compounds were not significantly different between up- and downstream.
Collapse
Affiliation(s)
- Run Tian
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Malte Posselt
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Luc T. Miaz
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| | - Kathrin Fenner
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Department
of Chemistry, University of Zürich, Zürich 8057, Switzerland
| | - Michael S. McLachlan
- Department
of Environmental Science (ACES), Stockholm
University, Stockholm 10691, Sweden
| |
Collapse
|
8
|
Liang C, Svendsen SB, de Jonge N, Carvalho PN, Nielsen JL, Bester K. Eat seldom is better than eat frequently: Pharmaceuticals degradation kinetics, enantiomeric profiling and microorganisms in moving bed biofilm reactors are affected by feast famine cycle times. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133739. [PMID: 38401210 DOI: 10.1016/j.jhazmat.2024.133739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Feast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h. The MBBR adapted to the longest FF cycle time (288 h equaling 48 × HRT) resulted in significantly higher degradation rates (up to +183%) for 12 out of 28 pharmaceuticals than a continuously fed (non-FF) reactor. However, other FF cycle times (18, 36, 72 and 144 h) only showed a significant up-regulation for 2-3 pharmaceuticals compared to the non-FF reactor. Enantioselective degradation of metoprolol and propranolol occurred in the second phase of a two phase degradation, which was different for the longer FF cycle time. N-oxidation and N-demethylation pathways of tramadol and venlafaxine differed across the FF cycle time suggestin the FF cycle time varied the predominant transformation pathways of pharmaceuticals. The abundance of bacteria in the biofilms varied considerably between different FF cycle times, which possibly caused the biofilm to remove more recalcitrant bulk organic C and pharmaceuticals under long cycle times.
Collapse
Affiliation(s)
- Chuanzhou Liang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde 4000, Denmark.
| |
Collapse
|
9
|
Yang S, Zhou H, Pang Z, Wang Y, Chao J. Microbial community structure and diversity attached to the periphyton in different urban aquatic habitats. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:445. [PMID: 38607460 DOI: 10.1007/s10661-024-12599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Periphyton is a complex community composed of diverse prokaryotes and eukaryotes; understanding the characteristics of microbial communities within periphyton becomes crucial for biogeochemical cycles and energy dynamics of aquatic ecosystems. To further elucidate the community characteristics of periphyton across varied aquatic habitats, including unpolluted ecologically restored lakes, aquaculture ponds, and areas adjacent to domestic and industrial wastewater treatment plant outfalls, we explored the composition and diversity of prokaryotic and eukaryotic communities in periphyton by employing Illumina MiSeq sequencing. Our findings indicated that the prokaryotic communities were predominantly composed of Proteobacteria (40.92%), Bacteroidota (21.01%), and Cyanobacteria (10.12%), whereas the eukaryotic communities were primarily characterized by the dominance of Bacillariophyta (24.09%), Chlorophyta (20.83%), and Annelida (15.31%). Notably, Flavobacterium emerged as a widely distributed genus among the prokaryotic community. Unclassified_Tobrilidae exhibited higher abundance in unpolluted ecologically restored lakes. Chaetogaster and Nais were enriched in aquaculture ponds and domestic wastewater treatment plant outfall area, respectively, while Surirella and Gomphonema dominated industrial sewage treatment plant outfall area. The alpha diversity of eukaryotes was higher in unpolluted ecologically restored lakes. pH and nitrogen content (NO 2 - - N ,NO 3 - - N , and TN) significantly explained the variations for prokaryotic and eukaryotic community structures, respectively. Eukaryotic communities exhibited a more pronounced response to habitat variations compared to prokaryotic communities. Moreover, the association networks revealed an intensive positive correlation between dominant Bacillariophyta and Bacteroidota. This study provided useful data for identifying keystone species and understanding their ecological functions.
Collapse
Affiliation(s)
- Songnan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Huiping Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Zhongzheng Pang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Yiqun Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China.
| |
Collapse
|
10
|
Branco RHR, Meulepas RJW, Kadlecová K, Cardoso MFS, Rijnaarts HHM, Sutton NB. Effect of dissolved organic carbon on micropollutant biodegradation by aquifer and soil microbial communities. CHEMOSPHERE 2024; 347:140644. [PMID: 37952821 DOI: 10.1016/j.chemosphere.2023.140644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Groundwater, a major source of drinking water worldwide, is often contaminated with micropollutants. Although microbial communities in aquifers and soils have the capability to biodegrade some micropollutants, this process is limited in situ. Biostimulation with dissolved organic carbon (DOC) is known to promote micropollutant biodegradation, but the role of DOC biodegradability is still poorly understood. This study investigated how three DOC types with different biodegradability (humics, dextran and acetate) affect the biodegradation of 15 micropollutants by aquifer and soil microbial communities under aerobic and nitrate reducing conditions. Although originating from different environments, both communities were able to biodegrade the same 4 micropollutants under aerobic conditions - 2,4-D, MCPP, chloridazon (CLZ) and chloridazon-desphenyl. However, DOC addition only affected MCPP biodegradation, promoting MCPP biodegradation regardless of DOC biodegradability. Biodegradation of 2,4-D, MCPP and CLZ under aerobic conditions was observed after a lag phase, whose duration differed per compound. 2,4-D was biodegraded first and fully. Aquifer community was able to degrade about half of the initial MCPP concentration (removal efficiency of 49.3 ± 11.7%). CLZ was fully biodegraded by the aquifer community, but not by the soil community, possibly due to substrate competition with organics originating from the inoculum. Therefore, the natural organic carbon present in the inocula and in environmental systems can influence micropollutant biodegradation. Under nitrate reducing conditions micropollutant biodegradation was not observed nor biostimulated by DOC addition. The results also highlight the importance of sufficient exposure time to trigger in situ micropollutant biodegradation.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Kateřina Kadlecová
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Marta F S Cardoso
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
11
|
Karakurt-Fischer S, Johnson DR, Fenner K, Hafner J. Making waves: Enhancing pollutant biodegradation via rational engineering of microbial consortia. WATER RESEARCH 2023; 247:120756. [PMID: 37898004 DOI: 10.1016/j.watres.2023.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Biodegradation holds promise as an effective and sustainable process for the removal of synthetic chemical pollutants. Nevertheless, rational engineering of biodegradation for pollutant remediation remains an unfulfilled goal, while chemical pollution of waters and soils continues to advance. Efforts to (i) identify functional bacteria from aquatic and soil microbiomes, (ii) assemble them into biodegrading consortia, and (iii) identify maintenance and performance determinants, are challenged by large number of pollutants and the complexity in the enzymology and ecology of pollutant biodegradation. To overcome these challenges, approaches that leverage knowledge from environmental bio-chem-informatics and metabolic engineering are crucial. Here, we propose a novel high-throughput bio-chem-informatics pipeline, to link chemicals and their predicted biotransformation pathways with potential enzymes and bacterial strains. Our framework systematically selects the most promising candidates for the degradation of chemicals with unknown biotransformation pathways and associated enzymes from the vast array of aquatic and soil bacteria. We substantiated our perspective by validating the pipeline for two chemicals with known or predicted pathways and show that our predicted strains are consistent with strains known to biotransform those chemicals. Such pipelines can be integrated with metabolic network analysis built upon genome-scale models and ecological principles to rationally design fit-for-purpose bacterial communities for augmenting deficient biotransformation functions and study operational and design parameters that influence their structure and function. We believe that research in this direction can pave the way for achieving our long-term goal of enhancing pollutant biodegradation.
Collapse
Affiliation(s)
- Sema Karakurt-Fischer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Jing K, Li Y, Yao C, Jiang C, Li J. Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165554. [PMID: 37454845 DOI: 10.1016/j.scitotenv.2023.165554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
13
|
Honti M, Zsugyel M, Seller C, Fenner K. Benchmarking the Persistence of Active Pharmaceutical Ingredients in River Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14684-14693. [PMID: 37729605 DOI: 10.1021/acs.est.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Assessing the persistence of organic micropollutants from field data has been notoriously laborious, requiring extensive data including emissions and chemical properties, and the application of detailed mass-balance models, which often contain parameters that are impossible to measure. To overcome some of these obstacles, we developed the concept of persistence benchmarking for large rivers that receive numerous emissions and provide enough residence time to observe the dissipation of compounds. We estimated the dissipation rate constants of 41 compounds (mostly active pharmaceutical ingredients) from five measurement campaigns in the Rhine and Danube rivers using concentration rate profiles with respect to carbamazepine. Dissipation rates clearly distinguished between known fast- and slow-degrading compounds, and campaign-specific boundary conditions had an influence on a minor subset of compounds only. Benchmarking provided reasonable estimates on summer total system half-lives in the Rhine compared to previous laboratory experiments and a mass-balance modeling study. Consequently, benchmarking can be a straightforward persistence assessment method of continuously emitted organic micropollutants in large river systems, especially when it is supported by field monitoring campaigns of proper analytical quality and spatial resolution.
Collapse
Affiliation(s)
- Mark Honti
- ELKH-BME Water Research Group, Eötvös Loránd Research Network, 1111 Budapest, Hungary
| | - Márton Zsugyel
- ELKH-BME Water Research Group, Eötvös Loránd Research Network, 1111 Budapest, Hungary
| | - Carolin Seller
- Eawag Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
14
|
Li M, Zhao T, Liang D, Dong D, Guo Z, Hua X, Zhong S. Diversity characterization of bacteria and fungi in water, sediments and biofilms from Songhua River in Northeast China. CHEMOSPHERE 2023; 338:139524. [PMID: 37467849 DOI: 10.1016/j.chemosphere.2023.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Water, sediments, and biofilms are the typical microbial carriers in natural water environments. However, comparative analysis of the distribution of bacterial and fungal communities in different carriers within the same habitat is relatively lacking. Therefore, this study employed 16 S and ITS rRNA gene sequencing to identify bacterial and fungal community structures in water, sediments, and biofilm. The results show that (1) the OTUs numbers revealed that the bacterial abundance, at the levels of species, genus, and family, followed the order of sediments > water > biofilms, while the fungal abundance order was water > sediments > biofilms. In addition, bacteria were mainly present in sediments, while fungi were mainly present in water. (2) The α diversity index (Shannon, ACE, Simpson, and Chao1) order, for bacteria was: sediments > water > biofilms, indicating that the diversity and homogeneity of bacteria in sediments were relatively higher; for fungi was: water > sediments > biofilms, indicating that the diversity and abundance of fungi in water were high. (3) The core phylum of bacterial in the water, sediments, and biofilms was Cyanobacteria (31.3-46.1%) and Actinobacteria (27.6-36.1%); Proteobacteria (35.0-41.8%), Cyanobacteria (14.7-36.6%); and Proteobacteria (63.3-69.2%), respectively. (4) The mainly colonized fungal phyla in biofilms in the water, sediments, and biofilms were Basidiomycota (29.3-38.7%) and Ascomycota (16.2-27.7%); Zygomycota (13.1-17.5%), Basidiomycota (5.6-17.6%); and Zygomycota (23.8-44.2%). (5) There were significant species differences in bacterial and fungal communities in water, sediments, and biofilm by NMDS analysis. Findings are useful for guiding significance for the Biogeochemical cycle of elements, the environmental fate of pollutants, and the study of water ecosystems.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Gong Qing Institute of Science and Technology, Nanchang, 330044, China; Jilin Agricultural Science and Technology University, Chang Chun, 130018, China; Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Tianyu Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
15
|
Lafuente E, Carles L, Walser J, Giulio M, Wullschleger S, Stamm C, Räsänen K. Effects of anthropogenic stress on hosts and their microbiomes: Treated wastewater alters performance and gut microbiome of a key detritivore ( Asellus aquaticus). Evol Appl 2023; 16:824-848. [PMID: 37124094 PMCID: PMC10130563 DOI: 10.1111/eva.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 04/03/2023] Open
Abstract
Human activity is a major driver of ecological and evolutionary change in wild populations and can have diverse effects on eukaryotic organisms as well as on environmental and host-associated microbial communities. Although host-microbiome interactions can be a major determinant of host fitness, few studies consider the joint responses of hosts and their microbiomes to anthropogenic changes. In freshwater ecosystems, wastewater is a widespread anthropogenic stressor that represents a multifarious environmental perturbation. Here, we experimentally tested the impact of treated wastewater on a keystone host (the freshwater isopod Asellus aquaticus) and its gut microbiome. We used a semi-natural flume experiment, in combination with 16S rRNA amplicon sequencing, to assess how different concentrations (0%, 30%, and 80%) of nonfiltered wastewater (i.e. with chemical toxicants, nutrients, organic particles, and microbes) versus ultrafiltered wastewater (i.e. only dissolved pollutants and nutrients) affected host survival, growth, and food consumption as well as mid- and hindgut bacterial community composition and diversity. Our results show that while host survival was not affected by the treatments, host growth increased and host feeding rate decreased with nonfiltered wastewater - potentially indicating that A. aquaticus fed on organic matter and microbes available in nonfiltered wastewater. Furthermore, even though the midgut microbiome (diversity and composition) was not affected by any of our treatments, nonfiltered wastewater influenced bacterial composition (but not diversity) in the hindgut. Ultrafiltered wastewater, on the other hand, affected both community composition and bacterial diversity in the hindgut, an effect that in our system differed between sexes. While the functional consequences of microbiome changes and their sex specificity are yet to be tested, our results indicate that different components of multifactorial stressors (i.e. different constituents of wastewater) can affect hosts and their microbiome in distinct (even opposing) manners and have a substantial impact on eco-evolutionary responses to anthropogenic stressors.
Collapse
Affiliation(s)
- Elvira Lafuente
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Louis Carles
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Jean‐Claude Walser
- Department of Environmental Systems Science D‐USYS, Genetic Diversity CentreSwiss Federal Institute of Technology (ETH), ZürichZürichSwitzerland
| | - Marco Giulio
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Simon Wullschleger
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Christian Stamm
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Katja Räsänen
- Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
16
|
Yang JH, Huang DQ, Geng YC, Ling YR, Fan NS, Jin RC. Role of quorum sensing-based regulation in development of anaerobic ammonium oxidation process. BIORESOURCE TECHNOLOGY 2023; 367:128228. [PMID: 36332868 DOI: 10.1016/j.biortech.2022.128228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Shortage of anaerobic ammonium oxidation (anammox) sludge greatly limits the extensive full-scale application of anammox-based processes. Although numerous start-up strategies have been proposed, the interaction among microbial consortia and corresponding mechanism during the process development remain unknown. In this study, three reactors were established based on different seed sludges. After 27 days, the anammox process inoculated with anammox granules and activated sludge (1:5) was firstly achieved, and the highest nitrogen removal rate was 1.17 kg N m-3 d-1. Correspondingly, the anammox activity and abundances of related functional genes increased. Notably, the dominant anammox bacteria shifted from Candidatus Kuenenia to Candidatus Brocadia. Metagenomic analysis indicated that quorum sensing-based regulation mainly contributed to the proliferation and accumulation of anammox bacteria. This work provides an insight into the quorum sensing (QS)-regulated microbial interactions in the anammox and activated sludge consortia during the process development.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| |
Collapse
|
17
|
Huang Y, Yu Z, Liu L, Che Y, Zhang T. Acesulfame Anoxic Biodegradation Coupled to Nitrate Reduction by Enriched Consortia and Isolated Shinella spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13096-13106. [PMID: 36040144 DOI: 10.1021/acs.est.2c03656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acesulfame (ACE) is considered to be an emerging pollutant associated with growing concerns. Although aerobic biodegradation of ACE has been observed in wastewater treatment plants worldwide and verified in pure cultures, limited information is available on ACE biodegradation under anoxic conditions, which are ubiquitous in natural environments. Here, we found that ACE could be mineralized completely via a process coupled with nitrate reduction by enriched consortia, with the highest degradation rate of 9.95 mg ACE/g VSS·h-1. Meanwhile, three novel ACE-degrading strains affiliated with Shinella were isolated, examined, and sequenced, revealing that the isolates could utilize ACE as the sole carbon source under both aerobic and anoxic conditions, with maximum degradation rates of 30.3 mg ACE/g VSS·h-1 and 8.92 mg ACE/g VSS·h-1, respectively. Additionally, the biodegradation of ACE was suspected to be a plasmid-mediated process based on comparative genomic analysis. In ACE-degrading consortia, 83 near-complete metagenome-assembled genomes (MAGs) were obtained via Illumina and Nanopore sequencing, showing that Proteobacteria and Bacteroidetes were the dominant phyla. Moreover, nine MAGs affiliated with Hyphomicrobiales were proposed to be the major ACE degraders in the enrichments. This study demonstrated that ACE could be degraded under anoxic conditions, providing novel insights into ACE biodegradation in the environment.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|