1
|
Ma Y, Li M, Huo Y, Zhou Y, Gu Q, Wen N, He M. Combination of oxidative and reductive effects of phenolic compounds on the degradation of aniline disinfection by-products by free radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135686. [PMID: 39236530 DOI: 10.1016/j.jhazmat.2024.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
In this study, we selected 13 phenolic compounds containing -COOH, -CHO, -OH, and -COCH3 functional groups as model compounds for dissolved organic matter (DOM), and explored the redox reactions during the co-degradation of phenolic compounds with aniline disinfection by-products (DBPs) at the molecular level. When phenolic compounds and aniline DBPs were degraded, phenoxy radicals and aniline radicals were the most important intermediates. Phenoxy radicals can degrade aniline DBPs via hydrogen atom abstraction (HAA) reactions, and the reaction rates were related to the reduction potentials of the compounds. Compounds containing electron-withdrawing groups were more likely to oxidize aniline DBPs. Aniline DBPs were more easily degraded by phenoxy radicals when they contained electron-donating groups, and the increase in the number of chlorine atoms inhibited the reaction rates of aniline DBPs degradation by phenoxy radicals. Although phenolic compounds can reduce aniline DBPs, there was no significant correlation between the reaction rates and the reduction potentials of the compounds. Considering the redox effects of phenolic compounds on aniline DBPs, co-degradation simulations showed that phenolics inhibited the degradation efficiency of aniline DBPs. This work provided new insights into the transformation mechanisms and degradation efficiencies of DOM and aniline DBPs when they were co-degraded.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Cheng S, Cui R, Zhou Y, Lei Y, Wang N, Pan Y, Yang X. The reverse-reduction effect of dissolved organic matter on the degradation of micropollutants induced by halogen radicals (Cl 2•- and Br 2•-). WATER RESEARCH 2024; 268:122720. [PMID: 39515245 DOI: 10.1016/j.watres.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Reactive halogen radicals (e.g., Cl2•- and Br2•-) greatly impact the degradation of micropollutants in natural waters and engineered water treatment systems. The ubiquitous dissolved organic matter (DOM) in real waters is known to greatly inhibit the degradation of micropollutants by reducing micropollutant's intermediate (i.e., TC•+/TC(-H)•), however, such DOM's effects on the halogen-radical-induced system have not been understood yet. The present study focuses on investigating and quantifying such inhibitory effects of DOM during Cl2•-- and Br2•--mediated process. Guanosine (Gs) was selected as a model compound. The transient spectra show that Cl2•- and Br2•- react with Gs generating intermediates (i.e., Gs•+/Gs(-H)•) via single-electron transfer. In the presence of 1.0 mgCL-1 DOM, over 70% of this oxidized Gs was reduced back to Gs. Comparing the extent of reverse-reduction inhibitory among different reaction systems, this inhibitory in Br2•- system was slightly lower than that in Cl2•- and SO4•- system, corresponding the slightly difference of inhibition factor (IF) values as SO4•- < Cl2•- < Br2•-. The reverse-reduction effect of DOM was further quantified for 19 common micropollutants. It varied significantly with IF values of 0.21-1.26 and 0.28-1.40 in Cl2•-- and Br2•--mediated process, respectively. Purines and amines generally exhibited more pronounced inhibition than phenols in both systems. A good correlation of IF values with micropollutant's reduction potential was observed, which can be applied to predict the degradation of more unstudied micropollutants. This study highlights the important role of the reverse-reduction effect of DOM on micropollutant degradation. It can significantly improve the accuracy in predicting degradation rate in advanced oxidation processes for treating water containing halides.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rui Cui
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ni Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
3
|
Luo D, Lin H, Li X, Wang Y, Ye L, Mai Y, Wu P, Ni Z, Lin Q, Qiu R. The Dual Role of Natural Organic Matter in the Degradation of Organic Pollutants by Persulfate-Based Advanced Oxidation Processes: A Mini-Review. TOXICS 2024; 12:770. [PMID: 39590951 PMCID: PMC11598379 DOI: 10.3390/toxics12110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.
Collapse
Affiliation(s)
- Dan Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Hansen Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Xingzhen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Long Ye
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Yuebang Mai
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Peihao Wu
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Beltrán FJ, Chávez AM, Jiménez-López MA, Álvarez PM. Kinetic modelling of UV C and UV C/H 2O 2 oxidation of an aqueous mixture of antibiotics in a completely mixed batch photoreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55222-55238. [PMID: 39225925 DOI: 10.1007/s11356-024-34812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The removal kinetics of an aqueous mixture of thirteen antibiotics (i.e., ampicillin, cefuroxime, ciprofloxacin, flumequine, metronidazole, ofloxacin, oxytetracycline, sulfadimethoxine, sulfamethoxazole, sulfamethazine, tetracycline, trimethoprim and tylosin) by batch UVC and UVC/H2O2 processes has been modeled in this work. First, molar absorption coefficients (ε), direct quantum yields (Φ) and the rate constants of the reaction of antibiotics with hydroxyl radical (kHO•) (model inputs) were determined for each antibiotic and compared with literature data. The values of these parameters range from 0.3 to 21.8 mM-1 cm-1 for ε, < 0.01 to 67.8 mmol·E-1 for Φ and 3.8 × 109 to 1.7 × 1010 M-1 s-1 for kHO•. Second, a regression model was developed to compute the rate constants of the reactions of the antibiotics with singlet oxygen (k1O₂) from experimental data obtained in batch UVC experiments treating a mixture of the antibiotics. k1O₂ values in the 1-50 × 106 M-1 s-1 range were obtained for the antibiotics studied. Finally, a semi-empirical kinetic model comprising a set of ordinary differential equations was solved to simulate the evolution of the residual concentration of antibiotics and hydrogen peroxide (model outputs) in a completely mixed batch photoreactor. Model predictions were reasonably consistent with the experimental data. The kinetic model developed might be combined with computational fluid dynamics to predict process performance and energy consumption in UVC and UVC/H2O2 applications at full scale.
Collapse
Affiliation(s)
- Fernando J Beltrán
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Ana M Chávez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Miguel A Jiménez-López
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain
| | - Pedro M Álvarez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
5
|
Liu Z, Su R, Xu F, Xu X, Gao B, Li Q. The Unique Fe 3Mo 3N Structure Bestowed Efficient Fenton-Like Performance of the Iron-Based Catalysts: The Double Enhancement of Radicals and Nonradicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311869. [PMID: 38266188 DOI: 10.1002/adma.202311869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Iron-based catalysts are widely used in Fenton-like water pollution control technology due to their high efficiency, but their practical applications are limited by complex preparation conditions and strong blockage of Fe2+/Fe3+ cycle during the reaction. Here, a new iron-molybdenum bimetallic carbon-based catalyst is designed and synthesized using cellulose hydrogel for adsorption of Fe and Mo bimetals as a template, and the effective iron cycle in water treatment is realized. The integrated materials (Fe2.5Mo@CNs) with "catalytic/cocatalytic" performance have higher Fenton-like activation properties and universality than the equivalent quantity iron-carbon-based composite catalysts (Fe@CNs). Through the different characterization methods, experimental verifications and theoretical calculations show that the unique Fe3Mo3N structure promotes the adsorption of persulfate and reduces the energy barrier of the reaction, further completing the double enhancement of radicals (such as SO4·-) and nonradicals (1O2 and electron transport process). The integrated "catalytic/cocatalytic" combined material is expected to provide a new promotion strategy for Fenton-like water pollution control.
Collapse
Affiliation(s)
- Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, P. R. China
| | - Ruidian Su
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, P. R. China
| | - Fei Xu
- Environmental Research Institute, Shandong University, Qingdao, 266200, P. R. China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266200, P. R. China
| |
Collapse
|
6
|
Du P, Tang K, Yang B, Mo X, Wang J. Reassessing the Quantum Yield and Reactivity of Triplet-State Dissolved Organic Matter via Global Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5856-5865. [PMID: 38516968 DOI: 10.1021/acs.est.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Measuring the quantum yield and reactivity of triplet-state dissolved organic matter (3DOM*) is essential for assessing the impact of DOM on aquatic photochemical processes. However, current 3DOM* quantification methods require multiple fitting steps and rely on steady-state approximations under stringent application criteria, which may introduce certain inaccuracies in the estimation of DOM photoreactivity parameters. Here, we developed a global kinetic model to simulate the reaction kinetics of the hv/DOM system using four DOM types and 2,4,6-trimethylphenol as the probe for 3DOM*. Analyses of residuals and the root-mean-square error validated the exceptional precision of the new model compared to conventional methods. 3DOM* in the global kinetic model consistently displayed a lower quantum yield and higher reactivity than those in local regression models, indicating that the generation and reactivity of 3DOM* have often been overestimated and underestimated, respectively. The global kinetic model derives parameters by simultaneously fitting probe degradation kinetics under different conditions and considers the temporally increasing concentrations of the involved reactive species. It minimizes error propagation and offers insights into the interactions of different species, thereby providing advantages in accuracy, robustness, and interpretability. This study significantly advances the understanding of 3DOM* behavior and provides a valuable kinetic model for aquatic photochemistry research.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kexin Tang
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohan Mo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Peng J, Pan Y, Zhou Y, Lei X, Guo Y, Lei Y, Kong Q, Cheng S, Yang X. Mechanistic Aspects of Photodegradation of Deoxynucleosides Induced by Triplet State of Effluent Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4751-4760. [PMID: 38324714 DOI: 10.1021/acs.est.3c08782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Yifan Guo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
Shao W, Zhang X, Li ZH, Xu J, Sheng GP. Electrochemical surface plasmon resonance approach to probe redox interactions between microbial extracellular polymeric substances and p-nitrophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119409. [PMID: 39492391 DOI: 10.1016/j.jenvman.2023.119409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2024]
Abstract
Microbial extracellular polymeric substances with redox functional groups play a crucial role in the bio-conversion of pollutants, which can affect their reactivity toward diverse pollutants. However, the redox interactions between microbial EPS and pollutants have not addressed in depth due to the absence of essential analytical methodologies. In this study, we have developed an electrochemical-surface plasmon resonance (EC-SPR) system to investigate the interactions between EPS and p-nitrophenol (PNP) by simultaneously monitoring the electrochemical reaction and the binding kinetics. Moreover, in vitro PNP degradation experiments were performed in the presence of EPS across varying redox states to provide further verification of PNP reduction by EPS. The results indicated that direct electrochemical treatment successfully converted raw EPS (EPSraw) into reductive EPS (EPSred) and oxidized EPS (EPSox), respectively. The EC-SPR system served as a powerful tool for probing redox interactions between EPS at distinct redox states and PNP. The binding affinity of EPS to PNP was related to the redox states of EPS, following the order of EPSred > EPSraw > EPSox. EPS exhibited the capability to reduce PNP to p-aminophenol by donating electrons, and the reductive process highly depended on the redox states of EPS, primarily determined by their electron donating capacity. Importantly, direct electrochemical reduction treatment of EPS leads to a substantial improvement in the PNP removal efficiency from 33.8% (EPSraw) to 56.9% (EPSred). This work contributes to a comprehensive understanding of the critical role of EPS redox property in the conversion of refractory pollutants in aquatic environments.
Collapse
Affiliation(s)
- Wei Shao
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Liu G, Song C, Huang Z, Jin X, Cao K, Chen F, Jin B, Rao L, Huang Q. Ultrasound enhanced destruction of tetracycline hydrochloride with peroxydisulfate oxidation over FeS/NBC catalyst: Governing factors, strengthening mechanism and degradation pathway. CHEMOSPHERE 2023; 338:139418. [PMID: 37414292 DOI: 10.1016/j.chemosphere.2023.139418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
In this study, FeS/N-doped biochar (NBC) derived from the co-pyrolysis of birch sawdust and Mohr's salt was applied to evaluate the efficiency of catalyzed peroxydisulfate (PDS) oxidation for tetracycline (TC) degradation. It is found that the combination of ultrasonic irradiation can distinctly enhance the removal of TC. This study investigated the effects of control factors such as PDS dose, solution pH, ultrasonic power, and frequency on TC degradation. Within the applied ultrasound intensity range, TC degradation increases with increasing frequency and power. However, excessive power can lead to a reduced efficiency. Under the optimized experimental conditions, the observed reaction kinetic constant of TC degradation increased from 0.0251 to 0.0474 min-1, with an increase of 89%. The removal ratio of TC also increased from ∼85% to ∼99% and the mineralization level from 45% to 64% within 90 min. Through the decomposition testing of PDS, reaction stoichiometric efficiency calculation, and electron paramagnetic resonance experiments, it is shown that the increase in TC degradation of the ultrasound-assisted FeS/NBC-PDS system was attributed to the increase in PDS decomposition and utilization, as well as the increase in SO4•- concentration. The radical quenching experiments showed that SO4•-, •OH, and O2•- radicals were the dominant active species in TC degradation. TC degradation pathways were speculated according to intermediates from HPLC-MS analysis. The test of simulated actual samples showed that dissolved organic matter, metal ions, and anions in waters can undercut the TC degradation in FeS/NBC-PDS system, but ultrasound can significantly reduce the negative impact of these factors.
Collapse
Affiliation(s)
- Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Chuangfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Zilin Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Li Rao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
10
|
Zhou Y, Lei Y, Kong Q, Lei X, Peng J, Xie Y, Cheng S, Gao Y, Qiu J, Yang X. Reactions of neonicotinoids with peroxydisulfate: The generation of neonicotinoid anion radicals and activation pathway to form sulfate radicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131081. [PMID: 36848840 DOI: 10.1016/j.jhazmat.2023.131081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
To activate persulfate to generate reactive species such as sulfate radical (SO4•-) for micropollutants abatement, external energy or chemicals are often needed. In this study, a novel SO4•- formation pathway was reported during the oxidation of neonicotinoids by peroxydisulfate (S2O82-, PDS) without any other chemical additions. Thiamethoxam (TMX) was used as a representative neonicotinoid and SO4•- was the dominant specie contributing to its degradation during PDS oxidation at neutral pH. TMX anion radical (TMX•-) was found to activate PDS to generate SO4•- with the second-order reaction rate constant determined to be (1.44 ± 0.47)× 106 M-1s-1 at pH 7.0 by using laser flash photolysis. TMX•- was generated from the TMX reactions with superoxide radical (O2•-), which was formed from the hydrolysis of PDS. This indirect PDS activation pathway via anion radicals was also applicable to other neonicotinoids. The formation rates of SO4•- were found to negatively linearly correlated with Egap (LUMO-HOMO). The DFT calculations indicated the energy barrier of anion radicals to activate PDS was greatly reduced compared to the parent neonicotinoids. The pathway of anion radicals' activation of PDS to form SO4•- improved the understanding of PDS oxidation chemistry and provided some guidance to enhance oxidation efficiency in field applications.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yufeng Xie
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Junlang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Chen X, Wang J, Wu H, Zhu Z, Zhou J, Guo H. Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130996. [PMID: 36867904 DOI: 10.1016/j.jhazmat.2023.130996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the "trade-off" performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.
Collapse
Affiliation(s)
- Xingyu Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoyu Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jianfei Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China.
| |
Collapse
|
12
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|