1
|
Yang Y, Kang Z, Xu G, Wang J, Yu Y. MgO anchored N-doping biochar enhances the bensulfuron-methyl biodegradation by Acinetobacter YH0317: Higher reactive oxygen species level and bacterial viability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135797. [PMID: 39265391 DOI: 10.1016/j.jhazmat.2024.135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Bensulfuron-methyl (BSM) is a typical broad-spectrum sulfonylurea herbicide and the runoff of BSM residues from agricultural regions poses a significant threat to the ecosystem. Here we develop a bacteria-material hybrid system constructed by Acinetobacter YH0317 and Mg(NO3)2 modified biochar (MBC) for efficiently degrading BSM under various conditions including pH and temperature. Results showed that BSM biodegradation efficiency by YH0317&MBC (96.7 %) was significantly higher than YH0317&BC (79.5 %) and YH0317 (43.9 %) at 15 °C after 7 d of incubation. The addition of MBC significantly increased the reactive oxygen species (ROS) level, which was significantly higher than group YH0317. Moreover, the bacterial viability, extracellular polymeric substances (EPS) production, and membrane permeability of YH0317 were also enhanced with the addition of MBC. The electron paramagnetic resonance (EPR) and quenching experiments revealed that singlet oxygen (1O2) was the dominant active substance produced by MBC. The YH0317&MBC could effectively remove the BSM, and reduce the oxidative stress to soybean, which was beneficial to the growth of soybean through hydroponic experiment. This study establishes a microorganism-material system that efficiently removes BSM in aquatic environments and emphasizes the importance of ROS in pollution removal by the hybrid system.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Yang Y, Kang Z, Xu G, Yu Y. Nitrogen and magnesium codoped biochar activates periodate to remediate bensulfuron methyl-contaminated water at low temperature: Performance, mechanisms, and phytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135803. [PMID: 39259995 DOI: 10.1016/j.jhazmat.2024.135803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Bensulfuron methyl (BSM), a typical sulfonylurea herbicide, has been widely used worldwide for weed suppression and crop protection. Nevertheless, the long-term and prolonged usage led to residues in environment, resulting in the reduction of crop yields and even threatening food security. In this study, the nitrogen/magnesium codoped biochar (NMg-BC) was prepared via two-step pyrolysis method to activate periodate (PI) for BSM degradation. The results demonstrated BSM degradation rate was 87.9 % within 10 min by NMg-BC/PI system at 15 ℃. The system exhibited the favorable tolerance to environmental changes (pH, temperature, anions, and humic acids), presenting high removal efficiency of BSM. Radicals (IO3•) and non-radicals (1O2 and electron transfer) pathways contributed to the degradation of BSM, while the latter performed a crucial role in BSM degradation. Theoretical calculations further confirmed doped of N and Mg changed the electron configuration and electrostatic potential (ESP) distribution of biochar, which was beneficial to provide more active sites for PI activation. Hydroponic experiments showed that NMg-BC/PI system could effectively degrade BSM, and its residue had no significant effect on the length and weight of soybean. The study provides a promising approach for the pollutant remediation in cold regions.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Song Q, Kong F, Liu BF, Song X, Ren HY. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100420. [PMID: 38765891 PMCID: PMC11099330 DOI: 10.1016/j.ese.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic pollutants constitute a significant category of persistent organic pollutants due to their widespread presence in the environment, which is primarily attributed to the expansion of agricultural and industrial activities. These pollutants are characterized by their persistence, potent toxicity, and capability for long-range dispersion, emphasizing the importance of their eradication to mitigate environmental pollution. While conventional methods for removing chlorinated organic pollutants encompass advanced oxidation, catalytic oxidation, and bioremediation, the utilization of biochar has emerged as a prominent green and efficacious method in recent years. Here we review biochar's role in remediating typical chlorinated organics, including polychlorinated biphenyls (PCBs), triclosan (TCS), trichloroethene (TCE), tetrachloroethylene (PCE), organochlorine pesticides (OCPs), and chlorobenzenes (CBs). We focus on the impact of biochar material properties on the adsorption mechanisms of chlorinated organics. This review highlights the use of biochar as a sustainable and eco-friendly method for removing chlorinated organic pollutants, especially when combined with biological or chemical strategies. Biochar facilitates electron transfer efficiency between microorganisms, promoting the growth of dechlorinating bacteria and mitigating the toxicity of chlorinated organics through adsorption. Furthermore, biochar can activate processes such as advanced oxidation or nano zero-valent iron, generating free radicals to decompose chlorinated organic compounds. We observe a broader application of biochar and bioprocesses for treating chlorinated organic pollutants in soil, reducing environmental impacts. Conversely, for water-based pollutants, integrating biochar with chemical methods proved more effective, leading to superior purification results. This review contributes to the theoretical and practical application of biochar for removing environmental chlorinated organic pollutants.
Collapse
Affiliation(s)
- Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Guo Y, Chen M, Gao T, Lin J, Zhang J, Chen T, Guo Y, Hua S. Interaction and band structure-determined inhibition of negative Cr (VI) and positive Fe (III) for antibiotic photodegradation by nitrogen-doped dissolved black carbon. CHEMOSPHERE 2024; 364:143234. [PMID: 39222692 DOI: 10.1016/j.chemosphere.2024.143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The influences of the positive Fe3+ and the negative Cr2O72- on the tetracycline (TC) photodegradation by N-doped dissolved black carbon (NDBC) have been investigated in this work. A series of samples (NDBC300, NDBC400 and NDBC500) have been extracted from the corresponding biochar. NDBC400 has the best photodegradation performance (79%) for TC under visible light irradiation. Adding Cr2O72- and Fe3+ can reduces TC photodegradation efficiency into 37% and 53%, respectively. This maybe from that Cr2O72- has stronger interaction with NDBC400 than Fe3+ since it can quench more fluorescence intensity of NDBC400 than Fe3+. Furthermore, Cr2O72- can reduce the steady-state concentration of 3NDBC400*, 1O2 and •OH, whereas Fe3+can just reduce the steady-state concentration of 3NDBC400* and increase the concentration of •OH. This may explain why Cr2O72- has stronger inhibit performance of TC photodegradation by NDBC400 than Fe3+. The band structures of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- are constructed. And the VB of NDBC400-Fe3+ has a stronger ability to produce •OH than NDBC400. In summary, coupling interaction and band structure characterization of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- can explain well why Cr2O72 has stronger inhibition effect than Fe3+ and Fe3+ can increase the concentration of •OH. This work provides a deep insight for the photochemical behavior of dissolved black carbon and the transformation behavior of the co-existed metal ions and antibiotics.
Collapse
Affiliation(s)
- Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, PR China.
| | - Mengxia Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, PR China
| | - Tianhao Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, PR China
| | - Jiayi Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, PR China
| | | | - Ting Chen
- Key Laboratory of Environmental Engineering of Jiangsu Province, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Ying Guo
- Key Laboratory of Environmental Engineering of Jiangsu Province, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, PR China
| | - Shugui Hua
- School of Life Science, Chemistry & Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211200, PR China.
| |
Collapse
|
5
|
Deng S, Yang Y, Han X, Liu Q, Li M, Su J, Jiang Y, Xi B, Liu Y. Unlocking the potential of surface modification with phosphate on ball milled zero-valent iron reactivity:Implications for radioactive metal ions removal. WATER RESEARCH 2024; 260:121912. [PMID: 38875858 DOI: 10.1016/j.watres.2024.121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Numerous investigations have illuminated the profound impact of phosphate on the adsorption of uranium, however, the effect of phosphate-mediated surface modification on the reactivity of zero-valent iron (ZVI) remained enigmatic. In this study, a phosphate-modified ZVI (P-ZVIbm) was prepared with a facile ball milling strategy, and compared with ZVIbm, the U(VI) removal amount (435.2 mg/g) and efficiency (3.52×10-3 g·mg-1·min-1) of P-ZVIbm were disclosed nearly 2.0 and 54 times larger than those of ZVIbm respectively. The identification of products revealed that the adsorption mechanism dominated the removal process for ZVIbm, while the reactive modified layer strengthened both the adsorption pattern and reduction performance on P-ZVIbm. DFT calculation result demonstrated that the binding configuration shifted from bidentate binuclear to multidentate configuration, further shortening the Fe-U atomic distance. More importantly, the electron transferred is more accessible through the surface phosphate layer, and selectively donated to U(VI), accounting for the elevated reduction performance of P-ZVIbm. This investigation explicitly underscores the critical role of ZVI's surface microenvironment in the domain of radioactive metal ion mitigation and introduces a novel methodology to amplify the sequestration of U(VI) from aqueous environments.
Collapse
Affiliation(s)
- Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yu Yang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xu Han
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiyuan Liu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingxiao Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Su
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yonghai Jiang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - YuHui Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
6
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
7
|
Cao H, Mao J, Tratnyek PG, Xu W. Role of Nitrogenous Functional Group Identity in Accelerating 1,2,3-Trichloropropane Degradation by Pyrogenic Carbonaceous Matter (PCM) and Sulfide Using PCM-like Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10752-10763. [PMID: 38848107 PMCID: PMC11191598 DOI: 10.1021/acs.est.3c11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/19/2024]
Abstract
Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.
Collapse
Affiliation(s)
- Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Jingdong Mao
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Paul G. Tratnyek
- OHSU/PSU
School of Public Health, Oregon Health &
Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
8
|
Chen Y, Tian L, Liu W, Mei Y, Xing QJ, Mu Y, Zheng LL, Fu Q, Zou JP, Wu D. Controllable Pyridine N-Oxidation-Nucleophilic Dechlorination Process for Enhanced Dechlorination of Chloropyridines: The Cooperation of HCO 4- and HO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4438-4449. [PMID: 38330552 DOI: 10.1021/acs.est.3c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.
Collapse
Affiliation(s)
- Ying Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Mei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qiu-Ju Xing
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yi Mu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ling-Ling Zheng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, P. R. China
| |
Collapse
|
9
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
10
|
Wei C, Tao S, Zhu D. New Mechanism via Dichlorocarbene Intermediate for Activated Carbon-Mediated Reductive Dechlorination of Carbon Tetrachloride by Sulfide in Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15223-15231. [PMID: 37771096 DOI: 10.1021/acs.est.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Although activated carbon (AC) is widely used as an adsorbent and barrier for contaminated sediment remediation, little attention has been paid to its mediation effects on reductive dechlorination of chlorinated solvents by commonly presenting sulfide. Here, we reported that highly porous, graphitized AC (250 mg L-1) suspended in deoxygenated aqueous solutions could increase the pseudo-first-order rate constant of sulfide-induced dechlorination of carbon tetrachloride (CCl4) by more than 1 order of magnitude. Carbon disulfide (CS2) was the only main product, with no production of chloroform or dichloromethane. The minimum promotion of CCl4 reduction observed with electro-conductive but nonporous graphite and a microporous but electro-insulative resin (XAD-4) indicates that graphitic carbons and micropores both play key roles in AC-mediated dechlorination of CCl4 by sulfide. The detection of dichlorocarbene (:CCl2) by free radical trapping experiments combined with the high suitability of the Langmuir-Hinshelwood model led us to propose a new mediation mechanism: CCl4 molecules adsorbed within the deep regions of AC micropores formed by graphitic carbons accept two electrons transferred from sulfide to form :CCl2, which is impeded from hydrolysis and hydrogenolysis by the hydrophobic micropore and further reacts with sulfide to generate CS2. Consistently, the production of :CCl2 was very low when AC was replaced with graphite or XAD-4. The proposed mechanism was further validated by the enhanced mediation effects of another two carbonaceous materials (template-synthesized mesoporous carbon and covalent triazine-based framework) that are electro-conductive and have well-developed micropore structures. These findings highlight the importance of pore properties of carbonaceous materials as mediators or catalysts for reductive dechlorination reactions and shed light on the development of coupled adsorption-reaction systems for remediation.
Collapse
Affiliation(s)
- Chenhui Wei
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Xue Y, Jia Y, Liu S, Yuan S, Ma R, Ma Q, Fan J, Zhang WX. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132106. [PMID: 37506648 DOI: 10.1016/j.jhazmat.2023.132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
A shift beyond conventional environmental remediation to a sustainable pollutant upgrading conversion is extremely desirable due to the rising demand for resources and widespread chemical contamination. Electrochemical reduction processes (ERPs) have drawn considerable attention in recent years in the fields of oxyanion reduction, metal recovery, detoxification and high-value conversion of halogenated organics and benzenes. ERPs also have the potential to address the inherent limitations of conventional chemical reduction technologies in terms of hydrogen and noble metal requirements. Fundamentally, mechanisms of ERPs can be categorized into three main pathways: direct electron transfer, atomic hydrogen mediation, and electrode redox pairs. Furthermore, this review consolidates state-of-the-art non-noble metal cathodes and their performance comparable to noble metals (e.g., Pd, Pt) in electrochemical reduction of inorganic/organic pollutants. To overview the research trends of ERPs, we innovatively sort out the relationship between the electrochemical reduction rate, the charge of the pollutant, and the number of electron transfers based on the statistical analysis. And we propose potential countermeasures of pulsed electrocatalysis and flow mode enhancement for the bottlenecks in electron injection and mass transfer for electronegative pollutant reduction. We conclude by discussing the gaps in the scientific and engineering level of ERPs, and envisage that ERPs can be a low-carbon pathway for industrial wastewater detoxification and valorization.
Collapse
Affiliation(s)
- Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shuan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Shiyin Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Raner Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|