1
|
Lee J, Jung H, Jun BM, Yoon Y, Choi JS, Rho H. Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems. CHEMOSPHERE 2024; 370:144034. [PMID: 39733947 DOI: 10.1016/j.chemosphere.2024.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid. NaDCC tablets, originally developed for drinking water disinfection, offer advantages in terms of transport, storage, and safety compared with conventional liquid formulations. A comparative evaluation of cleaning agents was conducted on hollow fiber membranes used in GDM systems, with the concentration and contact times optimized for each chemical. NaOCl demonstrated the highest permeability recovery, reaching 48.29% at 500 mg L-1 after 12 h, followed closely by NaDCC, with a recovery of 46.55% under similar conditions. Conversely, SLS, acetic acid, and citric acid presented significantly lower recovery rates, with maximum flux restorations of 14.57%, 14.90%, and 16.73%, respectively. These results highlight the comparable performance of NaDCC and NaOCl in addressing organic fouling while offering practical advantages such as greater stability and reduced chemical handling risks. This study highlights the efficacy of NaDCC as a viable detergent for GDM systems, and also provides a comprehensive comparative analysis of the water permeability performances of commercial detergents such as NaOCl, which cause various ecotoxicities, and suggests the feasibility of NaDCC as a chemical detergent in practical membrane processes. Our findings contribute to the development of more sustainable and cost-effective membrane-cleaning protocols that enhance long-term operational efficiency and minimize environmental impacts.
Collapse
Affiliation(s)
- Jonghun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea
| | - Hyejin Jung
- Department of Environmental Engineering, Yonsei University, Yonseidae-gil 1, Wonju, Gangwon, 26493, Republic of Korea
| | - Byung-Moon Jun
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - June-Seok Choi
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Hojung Rho
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Lee CS, Lee H, Sinha S, Farsad A, Westerhoff P, Rho H. Mini-cores of activated carbon block simulate full-sized performance for removing organics and arsenate from drinking water ✰. WATER RESEARCH 2024; 267:122461. [PMID: 39299139 DOI: 10.1016/j.watres.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Activated carbon block (ACB) filters are widely used in point-of-use (POU) drinking technology to remove tastes, odors, and organic compounds from drinking water, and when modified can even remove inorganic pollutants (e.g., arsenate, lead, copper). To introduce ACB technologies to the POU market, thorough assessment and testing are required to meet the National Sanitary Foundation 53 certification. Testing to gain this certification can be costly and time-consuming and is usually only done on the final product before commercial distribution. We developed and explored how a cylindrical "plug" cored from an ACB can be used in a mini-core apparatus with low water volumes, to mimic full-sized ACB performance. These mini-cores allow the same outside-in radial flow conditions as the full-sized ACB. After addressing potential hydraulic channeling problems, tests with chloroform or arsenate confirmed the ability of the mini-core ACB "plugs" to mimic the performance of full-sized cartridge unit. The benefit of the mini-core ACB "plug" lab-scale approach lays the foundation for testing methodologies that can evaluate a range of pollutants, water chemistries, or material modifications using a small fraction of water compared to full-sized ACB filter. Overall, the development of a mini-core ACB testing apparatus is a key advancement towards sustainable water purification, impacting environmental health, resource conservation, and global access to safe water.
Collapse
Affiliation(s)
- Chung-Seop Lee
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Environmental R&D Center, Institute of Environmental Science & Technology, SK Innovation, 325 Expo‑ro Yuseong‑gu, Daejeon 305‑712, South Korea
| | - Heuidae Lee
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Shahnawaz Sinha
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Alireza Farsad
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
4
|
Luo Y, Qiu R, Zhang X, Li F. Biofouling behaviors of reverse osmosis membrane in the presence of trace plasticizer for circulating cooling water treatment: Characteristics and mechanisms. WATER RESEARCH 2024; 260:121937. [PMID: 38878313 DOI: 10.1016/j.watres.2024.121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Reverse osmosis (RO) system has been increasingly applied for circulating cooling water (CCW) reclamation. Plasticizers, which may be dissolved into CCW system in plastic manufacturing industry, cannot be completely removed by the pretreatment prior to RO system, possibly leading to severe membrane biofouling. Deciphering the characteristics and mechanisms of RO membrane biofouling in the presence of trace plasticizers are of paramount importance to the development of effective fouling control strategies. Herein, we demonstrate that exposure to a low concentration (1 - 10 μg/L) of three typical plasticizers (Dibutyl phthalate (DBP), Tributyl phosphate (TBP) and 2,2,4-Trimethylpentane-1,3-diol (TMPD)) detected in pretreated real CCW promoted Escherichia coli biofilm formation. DBP, TBP and TMPD showed the highest stimulation at 5 or 10 μg/L with biomass increasing by 55.7 ± 8.2 %, 35.9 ± 9.5 % and 32.2 ± 14.7 % respectively, relative to the unexposed control. Accordingly, the bacteria upon exposure to trace plasticizers showed enhanced adenosine triphosphate (ATP) activity, stimulated extracellular polymeric substances (EPS) excretion and suppressed intracellular reactive oxygen species (ROS) induction, causing by upregulation of related genes. Long-term study further showed that the RO membranes flowing by the pretreated real CCW in a polypropylene plant exhibited a severer biofouling behavior than exposed control, and DBP and TBP parts played a key role in stimulation effects on bacterial proliferation. Overall, we demonstrate that RO membrane exposure to trace plasticizers in pretreated CCW can upregulate molecular processes and physiologic responses that accelerate membrane biofouling, which provides important implications for biofouling control strategies in membrane-based CCW treatment systems.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Riji Qiu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Li Y, Dai J, Ma Y, Yao Y, Yu D, Shen J, Wu L. The mitigation potential of synergistic quorum quenching and antibacterial properties for biofilm proliferation and membrane biofouling. WATER RESEARCH 2024; 255:121462. [PMID: 38493743 DOI: 10.1016/j.watres.2024.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Biofouling has been a persistent problem hindering the application of membranes in water treatment, and quorum quenching has been identified as an effective method for mitigating biofouling, but surface accumulation of live bacteria still induces biofilm secretion, which poses a significant challenge for sustained prevention of membrane biofouling. In this study, we utilized quercetin, a typical flavonoid with the dual functions of quorum quenching and bacterial inactivation, to evaluate its role in preventing biofilm proliferation and against biofouling. Quercetin exhibited excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the decreased bioactivity was positively correlated with the quercetin concentration, with inhibition rates of 53.1 % and 57.4 %, respectively, at the experimental concentrations. The RT-qPCR results demonstrated that quercetin inhibited AI-2 of E. coli and AGR of S. aureus mediated quorum sensing system, and reduced the expression of genes such as adhesion, virulence, biofilm secretion, and key regulatory proteases. As a result, the bacterial growth cycle was retarded and the biomass and biofilm maturation cycles were alleviated with the synergistic effect of quorum quenching and antibacterial activity. In addition, membrane biofouling was significantly declined in the dynamic operation experiments, dead cells in the biofilm overwhelmingly dominated, and the final normalized water fluxes were increased by more than 49.9 % and 34.5 % for E. coli and S. aureus, respectively. This work demonstrates the potential for mitigating biofouling using protocols that quorum quenching and inactivate bacteria, also provides a unique and long-lasting strategy to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Jixiang Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
6
|
Jun BM, Chae SH, Kim D, Jung JY, Kim TJ, Nam SN, Yoon Y, Park C, Rho H. Adsorption of uranyl ion on hexagonal boron nitride for remediation of real U-contaminated soil and its interpretation using random forest. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134072. [PMID: 38522201 DOI: 10.1016/j.jhazmat.2024.134072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Acid leaching has been widely applied to treat contaminated soil, however, it contains several inorganic pollutants. The decommissioning of nuclear power plants introduces radioactive and soluble U(VI), a substance posing chemical toxicity to humans. Our investigation sought to ascertain the efficacy of hexagonal boron nitride (h-BN), an highly efficient adsorbent, in treating U(VI) in wastewater. The adsorption equilibrium of U(VI) by h-BN reached saturation within a mere 2 h. The adsorption of U(VI) by h-BN appears to be facilitated through electrostatic attraction, as evidenced by the observed impact of pH variations, acidic agents (i.e., HCl or H2SO4), and the presence of background ions on the adsorption performance. A reusability test demonstrated the successful completion of five cycles of adsorption/desorption, relying on the surface characteristics of h-BN as influenced by solution pH. Based on the experimental variables of initial U(VI) concentration, exposure time, temperature, pH, and the presence of background ions/organic matter, a feature importance analysis using random forest (RF) was carried out to evaluate the correlation between performances and conditions. To the best of our knowledge, this study is the first attempt to conduct the adsorption of U(VI) generated from real contaminated soil by h-BN, followed by interpretation of the correlation between performance and conditions using RF. Lastly, a. plausible adsorption mechanism between U(VI) and h-BN was explained based on the experimental results, characterizations, and a. comparison with previous adsorption studies on the removal of heavy metals by h-BN.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Jun-Young Jung
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Tack-Jin Kim
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Chemical and Environmental Science, Korea Army Academy, Yeong-Cheon 495 Hoguk-ro, Gokyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Mamba PP, Msagati TAM, Mamba BB, Motsa MM, Nkambule TTI. The removal of pathogenic bacteria and dissolved organic matter from freshwater using microporous membranes: insights into biofilm formation and fouling reversibility. BIOFOULING 2024; 40:245-261. [PMID: 38639133 DOI: 10.1080/08927014.2024.2339438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.
Collapse
Affiliation(s)
- Phumlile P Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Machawe M Motsa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| |
Collapse
|
8
|
Zhao Z, Luo YH, Wang TH, Sinha S, Ling L, Rittmann B, Alvarez P, Perreault F, Westerhoff P. Phenotypic and Transcriptional Responses of Pseudomonas aeruginosa Biofilms to UV-C Irradiation via Side-Emitting Optical Fibers: Implications for Biofouling Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15736-15746. [PMID: 37802050 DOI: 10.1021/acs.est.3c04658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 μW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yi-Hao Luo
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China
| | - Tzu-Heng Wang
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Shahnawaz Sinha
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Bruce Rittmann
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Pedro Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - François Perreault
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|