1
|
Ding R, Ouyang Z, Dong P, Su T, Wang J, Guo X. Insights into the photoreactivity mechanisms of micro-sized rubber particles with different structure: The crucial role of reactive oxygen species and released dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135250. [PMID: 39032182 DOI: 10.1016/j.jhazmat.2024.135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Micro-sized rubber particles (MRPs), as a significant component of tire wear particles (TWPs), increasingly garnered attention due to the potential ecological risks. However, the impact of photoaging of MRPs and the characteristics of the dissolved organic matter (DOM) derived from MRPs on the photoreactivity of co-existing pollutants is remain unclear. To bridge this knowledge gap, this study selected MRPs with different structure including butadiene rubber (BR), styrene butadiene rubber (SBR) and nitrile butadiene rubber (NBR) and took tetracycline (TC) as the target pollutant to firstly study potential effects of structural characteristics and active components of MRPs on TC photodegradation process under simulated sunlight irradiation. The results indicated that BR, NBR and SBR enhanced TC photodegradation to varying extents, with SBR having the most pronounced effect. This effect was attributed mainly to the high electron transport capacity and the generation of more triple excited DOM (3DOM*) of SBR, thereby producing more active species (•OH and 1O2) and significantly promoting TC photodegradation. Additionally, the unsaturated bonds and aromatic groups in MRPs-DOM was identified as another crucial factor influencing their photoreactivity. This study will provide a new perspective for understanding the potential ecological effects between MRPs and co-existing pollutants in the natural environment.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Pingshu Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Shen L, Zhou J, Ma Y, Su Q, Mao H, Su E, Tang KHD, Wang T, Zhu L. Characterization of the Bioavailability of Per- and Polyfluoroalkyl Substances in Farmland Soils and the Factors Impacting Their Translocation to Edible Plant Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15790-15798. [PMID: 39172077 DOI: 10.1021/acs.est.4c04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, various crops and farmland soils were collected from the Fen-Wei Plain, China, to investigate the bioavailability of perfluoroalkyl substances (PFAS), their accumulation in edible plant tissues, and the factors impacting their accumulation. PFAS were frequently detected in all of the crops, with total concentrations ranging from 0.61 to 35.8 ng/g. The results of sequential extractions with water, basic methanol, and acidic methanol indicate that water extraction enables to characterize the bioavailability of PFAS in soil to edible plant tissues more accurately, especially for the shorter-chain homologues. The bioavailability of PFAS was remarkably enhanced in the rhizosphere (RS) soil, with the strongest effect observed for leafy vegetables. The water-extracted Σ16PFAS in RS soil was strongly correlated with the content of dissolved organic carbon in the soil. Tannins and lignin, identified as the main components of plant root exudates by Fourier transform-ion cyclotron resonance mass spectrometry, were found to enhance the bioavailability of PFAS significantly. Redundancy analysis provided strong evidence that the lipid and protein contents in edible plant tissues play important roles in the accumulation of short- and long-chain PFAS, respectively. Additionally, the high water demand of these tissues during the growth stage greatly facilitated the translocation of PFAS, particularly for the short-chain homologues and perfluorooctanoic acid.
Collapse
Affiliation(s)
- Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Yujing Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qian Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Heshun Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Eryuan Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
3
|
Li T, Ruan M, Cao Y, Feng W, Song F, Bai Y, Zhao X, Wu F. Molecular-level insights into the temperature-dependent formation dynamics and mechanism of water-soluble dissolved organic carbon derived from biomass pyrolysis smoke. WATER RESEARCH 2024; 252:121176. [PMID: 38295460 DOI: 10.1016/j.watres.2024.121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Water soluble organic carbon (WSOC) derived from biomass pyrolytic smoke is deposited through atmospheric aerosols, negatively affecting aquatic ecological quality and safety. However, the temperature-dependent molecular diversity and dynamic formation of smoke-derived WSOC remain poorly understood in water. Herein, we explored the molecular-level formation mechanism of pyrolytic smoke-derived WSOC in water to explain the evolution, heterogeneous correlations, and sequential responses of molecules and functional groups to increasing pyrolysis temperature. Two-dimensional correlation spectroscopy was used to innovatively establish the characteristic correlations between spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry. Temperature-dependent formation of WSOC exhibited diversity in absorbance/fluorescent components, unique/common molecules, and their chemical parameters, showing the simultaneous formation and degradation reactions. The common WSOC molecules with lower and higher degrees of oxidation showed significant positive and negative correlations with the fluorescent components, respectively. The primary sequential response of WSOC molecules to increasing pyrolysis temperature (lignin-like molecules → unsaturated hydrocarbons, condensed aromatic molecules → lipid-like/aliphatic-/peptide-like molecules) corresponded to the temperature response of functional groups (carboxylic/alcoholic → polysaccharides → aromatics/amides/phenolic/aliphatic groups), demonstrating well synergistic relationships between them. These novel findings will contribute to the comprehensive understanding and assessments of potential environmental behavior or risks of WSOC in aquatic ecosystems.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingqi Ruan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuhan Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Wan D, Song G, Mi W, Tu X, Zhao Y, Bi Y. Insights into the Enhanced Photogeneration of Hydroxyl Radicals from Chlorinated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:805-815. [PMID: 38156625 DOI: 10.1021/acs.est.3c08257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (•OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their •OH photogeneration capabilities. These compounds demonstrated a substantial capacity for •OH production, exhibiting quantum yields of 0.1-5.9 × 10-3 through direct photolysis under 305 nm and 0.2-9.5 × 10-3 through a triplet sensitizer (4-benzoylbenzoic acid)-inducing reaction under 365 nm LED irradiation. Moreover, the chlorinated compounds exhibited higher light absorption and •OH quantum yields compared to those of their unchlorinated counterparts. The •OH photogeneration capacity of these compounds exhibited a positive correlation with their triplet state one-electron oxidation potentials. Molecular-level compositional analysis revealed that aromatic structures rich in hydroxyl and carboxyl groups (e.g., O/C > 0.5 with H/C < 1.5) within DOM serve as crucial sources of •OH, and chlorination of these compounds significantly enhances their capacity to generate •OH upon irradiation. This study provides novel insights into the enhanced photogeneration of •OH from chlorinated DOM, which is helpful for understanding the fate of trace pollutants in chlorinated waters.
Collapse
Affiliation(s)
- Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Wujuan Mi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Xiaojie Tu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Yafei Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
5
|
Li Z, Samonte PRV, Cao H, Miesel JR, Xu W. Assess the formation of disinfection by-products from pyrogenic dissolved organic matter (pyDOM): impact of wildfire on the water quality of forest watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165496. [PMID: 37451447 DOI: 10.1016/j.scitotenv.2023.165496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Wildfires can release pyrogenic dissolved organic matter (pyDOM) into the forest watershed, which may pose challenges for water treatment operations downstream due to the formation of disinfection by-products (DBPs). In this study, we systematically assessed the physio-chemical properties of pyDOM (e.g., electron-donating and -accepting capacities; EDC and EAC) and their contributions to DBP formation under different disinfection scenarios using (1) ten lab samples produced from various feedstocks and pyrolysis temperatures, and (2) pre- and post-fire field samples with different burning severities. A comprehensive suite of DBPs-four trihalomethanes (THMs), nine haloacetic acids (HAAs), and seven N-nitrosamines-were included. The formations of THM and HAA showed an up to 5.7- and 8.9-fold decrease as the pyrolysis temperature increased, while the formation of N-nitrosamines exhibited an up to 6.6-fold increase for the laboratory-derived pyDOM. These results were supported by field pyDOM samples, where the post-fire samples consistently showed a higher level of N-nitrosamine formation (i.e., up to 5.3-fold), but lower THMs and HAAs compared to the pre-fire samples. To mimic environmental reducing conditions, two field samples were further reduced electrochemically and compared with Suwannee River natural organic matter (SRNOM) to evaluate their DBP formation. We found increased DBP formation in pyDOM samples following electrochemical reduction but not for SRNOM, which showed increased N-nitrosamines but decreased THMs and HAAs post-electrochemical reduction. Furthermore, this study reported for the first time the formation of two previously overlooked N-nitrosamines (i.e., nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA)) in both laboratory and field pyDOM samples, raising concerns for drinking water safety given their higher toxicity as compared to the regulated counterparts. Results from this study provide new insights for DBP mitigation during post-fire recovery, which are particularly relevant to communities that rely on forest watersheds as their drinking water sources.
Collapse
Affiliation(s)
- Zhao Li
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Pamela Rose V Samonte
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Han Cao
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Jessica R Miesel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 220 Trowbridge Rd, East Lansing, MI 48824, United States of America
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America.
| |
Collapse
|