1
|
Liu Y, Su B, Wu B. The impact of wastewater treatment plants on the composition and toxicity of pollutants in urban rivers in Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176358. [PMID: 39306123 DOI: 10.1016/j.scitotenv.2024.176358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Widespread wastewater pollution is one of the biggest challenges threatening the ecological health of rivers. It is crucial to identify the toxic changes of effluents after entering urban rivers as well as the toxic substances in the complex chemical mixtures found in these urban rivers. This study used HepG2 cell line for cytotoxicity test to evaluate the ecological impact of effluents on urban rivers. Water samples were collected from the Xingwu River and Yunliang River in Nanjing, China. The bacterial communities in the lower reaches of urban rivers were altered due to the differences in total nitrogen and nitrate nitrogen. The complex chemical mixtures collected in the urban rivers were divided into 10 fractions, >100 chemicals were screened in each fraction. The substances with LC50 < 1000 mg/L were listed as toxic substances, and the number of toxic substances dominated the toxicity of urban rivers. Our study highlights toxicity as a comprehensive indicator for assessing river pollutants and reveals relationship between the number of toxic substance and river toxicity. These findings have direct implications for the monitoring and management of environmental stressors and the protection of aquatic organisms and human health.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Sun S, Liang M, Fan D, Gu W, Wang Z, Shi L, Geng N. Occurrence and profiles of perfluoroalkyl substances in wastewaters of chemical industrial parks and receiving river waters: Implications for the environmental impact of wastewater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173993. [PMID: 38879026 DOI: 10.1016/j.scitotenv.2024.173993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
A total of 17 groups of wastewaters from the chemical industrial parks and matched receiving river waters were collected in the east of China. The measured total concentrations of 21 analyzed PFAS analogues (∑21PFAS) in the influents and effluents of the wastewater treatment plants (WWTPs) were in the range of 0.172-20.6 μg/L (mean: 18.2 μg/L, median: 3.9 μg/L) and 0.167-93.6 μg/L (mean: 10.8 μg/L, median: 1.12 μg/L), respectively, which were significantly higher than those observed in the upstream (range: 0.0158-7.05 μg/L, mean: 1.09 μg/L, median: 0.482 μg/L) and downstream (range: 0.0237-1.82 μg/L, mean: 0.697 μg/L, median: 0.774 μg/L) receiving waters. Despite the concentrations and composition profiles of PFAS varied in the water samples from different sampling sites, PFOA was generally the major PFAS analogue in the research areas, mainly due to the history of PFOA production and usage as well as the specific exemptions. The calculated concentration ratios of the short-chain PFCAs and PFSAs to their respective predecessors (PFOA and PFOS) in most of the samples far exceeded 1, indicating a shift from legacy PFOA and PFOS to short-chain PFAS in the research areas. Correlation network analysis and the calculated concentration ratios of PFAS in the effluents versus influents indicated transformation may have occurred during the water treatment processes and PFAS could not be efficiently removed in the WWTPs. Wastewater discharge of chemical industrial parks is a vital source of PFAS dispersed into the aquatic environment.
Collapse
Affiliation(s)
- Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Mengyuan Liang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Deling Fan
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Wen Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhen Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Mu H, Yang Z, Chen L, Gu C, Ren H, Wu B. Suspect and nontarget screening of per- and polyfluoroalkyl substances based on ion mobility mass spectrometry and machine learning techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132669. [PMID: 37797577 DOI: 10.1016/j.jhazmat.2023.132669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
High-resolution mass spectrometry (HRMS)-based suspect and nontarget screening techniques are powerful tools for the comprehensive identification of per- and polyfluoroalkyl substances (PFASs), but the interference of complex matrices (especially for wastewater) pose an analytical challenge. This study explored the potential of combining ion mobility spectrometry (IMS) with HRMS and machine learning techniques to achieve the rapid and accurate suspect and nontarget screening of PFAS in wastewater. There were fewer interfering peaks and a clearer spectrum in the data acquired by IMS-HRMS than conventional HRMS. The introduction of collision cross section (CCS) in PFAS homologous series search could filter out 63% of false positive results. Retention time and CCS prediction models were helpful in improving the confidence for PFAS qualitative identification and the random forest algorithm combined with RDKit descriptor performed best for CCS prediction. With the inclusion of extra dimensional information, this study also proposed a comprehensive and concise confidence assignment criterion to better convey the certainty of the qualitative identification of PFAS. Finally, a total of 56 potential PFASs were identified in the wastewater sample using the newly developed method and 45 of them were identified outside reference standards, emphasizing the importance of suspect and nontarget screening for PFAS.
Collapse
Affiliation(s)
- Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhongchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Song XC, Canellas E, Dreolin N, Goshawk J, Lv M, Qu G, Nerin C, Jiang G. Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21485-21502. [PMID: 38091506 PMCID: PMC10753811 DOI: 10.1021/acs.est.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.
Collapse
Affiliation(s)
- Xue-Chao Song
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Meilin Lv
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, 110819 Shenyang, China
| | - Guangbo Qu
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Guibin Jiang
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
5
|
Liu Y, Su B, Mu H, Zhang Y, Chen L, Wu B. Effects of point and nonpoint source pollution on urban rivers: From the perspective of pollutant composition and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132441. [PMID: 37703739 DOI: 10.1016/j.jhazmat.2023.132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Wastewater discharge is considered to be one of the anthropogenic factors affecting the water quality of urban rivers. The source and composition of wastewater are complex and diverse, and it is difficult to evaluate its effect on water quality and ecological health of receiving waters. Environmental DNA method can determine all species living in waters by examining DNA sequences, reflecting the impact of water quality changes on aquatic systems. In this study, water samples from two urban rivers were collected in dry and wet seasons, and the composition of pollutants was investigated by nontarget screening. Based on the pollutant composition, compound toxicity prediction and concentration addition model were used to predict the toxicity changes of pollutants in the urban rivers. More than 1500 suspect organic pollutants were nontarget screened, and silafluofen was found to be a major toxicity contributor. Environmental DNA analysis was combined with water quality measure and pollutant toxicity prediction to reveal the effects of pollutants from different sources on aquatic ecosystems. Fish diversity was negatively correlated with the mixed toxicity of organic pollutants, suggesting potential ecological risk in these two urban rivers. Our study developed a water quality assessment method based on pollutant composition and toxicity, and the potential risk of nonpoint source pollutants on aquatic ecosystems should not be neglected.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|