1
|
Tang S, Qian J, Lu B, He Y, Liu Y, Xu K, Shen J. Adsorption and uptake of functionalized nanoplastics (NPs) by wetland plant (Sphagnum): A unique pathway for polystyrene-NPs reduction in non-vascular plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175367. [PMID: 39127200 DOI: 10.1016/j.scitotenv.2024.175367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Wetlands are sources and sinks for nanoplastics (NPs), where adsorption and uptake by plants constitute a crucial pathway for NPs accumulation. This study found that Sphagnum exhibited a high potential (~89.75 %) to intercept NPs despite the lack of root systems and stomata. Two pathways for 100nm polystyrene NPs accumulation in Sphagnum were located: (i) Spiral interception and foliar adsorption. Efficient adsorption is credited to the micro/nano-interlocked leaf structure, which is porous, hydrophilic and rough. (ii) Intracellular enrichment through pores. Fluorescence tracking indicates pseudo-leaves (lateral > cephalic branches) as primary organs for internalization. Accumulation of differently functionalized NPs was characterized: PS-Naked-NPs (PS), PS-COOH-NPs (PC) and PS-NH2-NPs (PN) were all largely retained by pathway (i), while pathway (ii) mainly uptake PN and PC. Unlike PS aggregation in transparent cells, PC enrichment in chloroplast cells and PN in intercellular spaces reduced pigment content and fluorescence intensity. Further, the effects of the accumulated NPs on the ecological functions of Sphagnum were evaluated. NPs reduce carbon flux (assimilation rate by 57.78 %, and respiration rate by 33.50%), significantly decreasing biomass (PS = 13.12 %, PC = 26.48 %, PN = 35.23 %). However, toxicity threshold was around 10 μg/mL, environmental levels (≤1 μg/mL) barely affected Sphagnum. This study advances understanding of the behavior and fate of NPs in non-vascular plants, and provides new perspectives for developing Sphagnum substrates for NPs interception.
Collapse
Affiliation(s)
- Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Kailin Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
2
|
Le VG, Nguyen MK, Ngo HH, Barceló D, Nguyen HL, Um MJ, Nguyen DD. Microplastics in aquaculture environments: Current occurrence, adverse effects, ecological risk, and nature-based mitigation solutions. MARINE POLLUTION BULLETIN 2024; 209:117168. [PMID: 39454401 DOI: 10.1016/j.marpolbul.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Microplastics pose detrimental effects on the environment, aquatic products, and human health. This comprehensive analysis highlights the repercussions of microplastic contamination within aquaculture. Microplastics in aquaculture are primarily from land-based plastic waste, tourism-related disposal, shipping activities, fisheries/aquaculture, and atmospheric deposition. In aquaculture environments, microplastics have the potential to discharge harmful additives, attract pollutants, degrade the aquaculture setting, and induce toxicological effects. These particles pose ecological risks and can impact human health. Assessing the destiny of microplastics in aquaculture ecosystems is crucial to determining the role of aquaculture in contributing to microplastic contamination within the watershed. It particularly emphasizes the ecological consequences for aquaculture species and the subsequent health threats for humans. The review strongly supports strict regulations to control and limit microplastic presence within aquaculture ecosystems. Clear regulations are essential for reducing microplastics in aquaculture, thereby ensuring food safety. A novel nature-based solution is proposed using methods like microplastic biofilters, biodegradation, and wetlands. These innovations can be conducted in aquatic ecosystems to serve as microplastic biofilters, effectively eliminating waterborne microplastics. In the future, however, it is crucial to develop additional emergency treatment measures to avoid the potential negative impacts of microplastics on both aquaculture and human health.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada.
| | - M Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
3
|
Li C, Shi Y, Zhu W, Luo D, Bai X, Krause S. A low-impact nature-based solution for reducing aquatic microplastics from freshwater ecosystems. WATER RESEARCH 2024; 268:122632. [PMID: 39432996 DOI: 10.1016/j.watres.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Effective nature-based solutions (NBS) and strategies for freshwater microplastic (MP) pollution are beneficial for reducing ecological and human health risks. This study proposed an innovative NBS for the in-situ retention of aquatic MPs. By evaluating the tolerance and MP retention efficiency of different submerged macrophytes, Myriophyllum aquaticum was identified as a well-suited system for optimization as NBS for operational MP retainment practice. The response surface method and artificial neural network modeling were applied to determine the optimal operational strategy of this solution, which was determined to be at a flow rate of 60 L/h, aeration intensity of 5 m3/(m2·h), and plant density of 190 plants/m2. Under this strategy, an average MP retention of 93.38% was achieved for the actual tested lake. The retention of MPs was particularly effective for particle sizes larger than 100 μm (especially films and fragments) and for the 4 polymer types. At the same time, also total nitrogen and phosphorus levels in the treated waters were reduced by 80.0% and 78.4% respectively, reflecting the added environmental value for water purification. This NBS provides a feasible strategy for mitigating MP pollution, but further research is needed on its long-term applicability and potential ecological effects in a wider range of specific environments, and effective development of plant harvesting cycle strategies is also essential to achieve long-lasting MP pollution removal.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, 69622, Villeurbanne, France
| |
Collapse
|
4
|
Büngener L, Galvão A, Postila H, Heiderscheidt E. Microplastic retention in green walls for nature-based and decentralized greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125047. [PMID: 39357553 DOI: 10.1016/j.envpol.2024.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
In wastewater treatment, two issues have recently received increased attention: nature-based solutions for addressing urban water stress through decentralized treatment and re-use; and emerging pollutants such as microplastics (MPs). At the interface of these, this study investigated living green walls for greywater treatment and their potential for MP removal. A large, pilot-scale green wall was irrigated with greywater (a mix of water collected from laundry, dishwasher, bathroom sinks, and synthetic greywater), and effluent from planted and unplanted sections was compared. MPs >50 μm were analyzed using μRaman spectroscopy and supplementary fluorescence microscopy imaging. The green wall proved efficient for the reduction of chemical oxygen demand (COD) (around 80%), removal of total suspended solids (TSS) (around 90%) and MPs, especially for MPs of the non-polar, hydrophobic polymer type polystyrene and MPs sized 100-500 μm. MP removal was improved in the planted (50-60%) compared to the unplanted section (20%), especially for the size fraction 100-500 μm. Physical filtration by the green wall growing media (a mix of perlite with a grain size of 1-5 mm, and coconut fiber), which was further enhanced by plant roots decreasing the effective pore size, can be considered the most important removal mechanism. Charge-mediated adsorption cannot be expected as MPs and growing media mix were both negatively charged at the prevailing water pH (7-8). Fluorescence imaging for MP analysis, using a merged UV/blue light fluorograph, overestimated MP concentrations in greywater (hundreds of MPs per sample were identified by fluorescence imaging versus tens of MPs by μRaman spectroscopy) and would benefit from further improvement before it can be reliably applied as a cheaper and faster alternative methodology for MP analysis.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland.
| | - Ana Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| |
Collapse
|
5
|
Lee J, Kim YS, Ju K, Jeong JW, Jeong S. The significant impact of MPs in the industrial/municipal effluents on the MPs abundance in the Nakdong River, South Korea. CHEMOSPHERE 2024; 363:142871. [PMID: 39019177 DOI: 10.1016/j.chemosphere.2024.142871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Owing to extensive plastic consumption, wastewater from households, business establishments, and industrial activities have been recognised as a significant contributor to microplastics (MPs) in aquatic environments. This case study represents the first investigation of MPs in the Nakdong River, Republic of Korea, that traverses through the largest industrial complex midstream and densely populated cities of Daegu and Busan downstream before flowing into the sea. Monitoring of MP abundance in effluents discharged from three municipal, two industrial, and one livestock wastewater treatment plant (WWTP) into the Nakdong River was conducted over four seasons from August 2022 to April 2023. Identification and quantification of MPs were performed using micro-Fourier transform infrared spectrometry. Seasonal variation in MPs in the Nakdong River was found to be strongly influenced by the nearest upstream WWTPs and rivers, exhibiting a linear relationship that decreased gradually with increasing distance from the WWTPs. The average concentrations of MPs in the six effluent sources ranged from 101 ± 13 to 490 ± 240 particles/L during the yearly monitoring period, while MP concentrations in the river ranged between 79 ± 25 and 120 ± 43 particles/L. Industrial effluents contained higher amounts of discharged MPs (314 ± 78 particles/L) than municipal sources (201 ± 61 particles/L). Notably, two municipal WWTPs, located in the highly densely populated city, discharged the highest total MP amounts per day and released the greatest volumes of effluents. This study provides valuable insights into the monitoring and impact of effluents on MPs in rivers, which could inform MP treatment and management strategies for in river and marine environments.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan, 46241, South Korea
| | - Yong-Soon Kim
- Water Quality Research Institute, Busan Water Authority, Busan, 47210, South Korea.
| | - KwangYong Ju
- Water Quality Research Institute, Busan Water Authority, Busan, 47210, South Korea
| | - Jae-Won Jeong
- Water Quality Research Institute, Busan Water Authority, Busan, 47210, South Korea
| | - Sanghyun Jeong
- Institute for Environment and Energy, Pusan National University, Busan, 46241, South Korea; Department of Environmental Engineering, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
6
|
Li F, Huang D, Wang G, Cheng M, Chen H, Zhou W, Xiao R, Li R, Du L, Xu W. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171658. [PMID: 38490411 DOI: 10.1016/j.scitotenv.2024.171658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.
Collapse
Affiliation(s)
- Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
7
|
Wang Y, Liu X, Han W, Jiao J, Ren W, Jia G, Huang C, Yang Q. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 400:130649. [PMID: 38570098 DOI: 10.1016/j.biortech.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Microplastics in wastewater have been investigated globally, but less research on the migration and transformation of microplastics throughout wastewater and sludge treatment. This study investigated the fate of microplastics in a reclaimed wastewater treatment plant and a centralized sludge treatment center with thermal hydrolysis and anaerobic digestion. The results exhibited that the effluent microplastics of this reclaimed wastewater treatment plant were 0.75 ± 0.26 items/L. Approximately 98 % of microplastics were adsorbed and precipitated into sludge. After thermal hydrolysis, anaerobic digestion and plate and frame dewatering, the removal rate of microplastics was 41 %. Thermal hydrolysis was the most effective method for removing microplastics. Polypropylene, polyamide and polyethylene were widely detected in wastewater and sludge. 30 million microplastics were released into the downstream river and 51.80 billion microplastics entered soil through sludge cake daily. Therefore, substantial microplastics still entered the natural environment despite the high microplastics removal rate of reclaimed wastewater and sludge treatment.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Weipeng Han
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiatong Jiao
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Wenyang Ren
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Gaofeng Jia
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
9
|
Li Y, He J, Li Y, Sun Z, Du H, Wang D, Zhang P, Li H. Abundance, characteristics, and removal of microplastics in the Cihu Lake-wetland microcosm system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:278-287. [PMID: 37452547 PMCID: wst_2023_202 DOI: 10.2166/wst.2023.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Sewage treatment plants (STPs) are significant routes through which microplastics (MPs) are released into the aquatic environment. Constructed wetland is an effective facility for deep treatment of tailwater. At present, research on the removal of MPs in the tailwater of STPs by multi-stage constructed wetlands is limited. This work investigated and analyzed the removal characteristics of MPs in the tailwater treatment system of Cihu wetland park in Huangshi, Hubei Province of China. The abundance/removal of MPs in the Cihu Lake-wetland microcosm system was investigated. The results showed that the multi-stage constructed wetlands achieved a total removal rate of 94.7% for MPs with 2.2 particles/L MPs in the effluent. The removal rates of MPs reached 89 and 37.5%, respectively, in the (horizontal/vertical) subsurface flow constructed wetland and surface flow constructed wetland. The abundance of MPs in receiving water of Cihu Lake substantially decreased due to the dilution of wetland effluents. This study partially bridged the knowledge gap hypothesis on the treatment of MPs in tailwater by multi-stage constructed wetlands.
Collapse
Affiliation(s)
- Yuxiao Li
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China; These authors contributed equally to this paper. E-mail:
| | - Jiaqing He
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China; These authors contributed equally to this paper
| | - Yixin Li
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China; These authors contributed equally to this paper
| | - Zhiquan Sun
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongliang Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Peng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Haixiao Li
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| |
Collapse
|