1
|
Wu G, Wan Q, Lu J, Wen G. Impact of metal ions on PMS/Cl - disinfection efficacy: Enhancing or impeding microbial inactivation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176087. [PMID: 39255943 DOI: 10.1016/j.scitotenv.2024.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.
Collapse
Affiliation(s)
- Gehui Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Cao S, Wan Q, Cao R, Wang J, Huang T, Wen G. Solar/ClO 2 system inactivates fungal spores in drinking water: Synergy, efficiency and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174886. [PMID: 39032749 DOI: 10.1016/j.scitotenv.2024.174886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The risk of fungal pollution in drinking water has been paid attention. Solar/chlorine dioxide (ClO2) combined system is an environment-friendly, economical and efficient disinfection method, especially for countries and regions that are economically backward and still exposed to unsafe drinking water. In this paper, the kinetics, influencing factors, mechanism and regrowth potential of inactivated Aspergillus niger (A. niger) spores by solar/ClO2 were reported for the first time. The inactivation curve can be divided into three stages: instant inactivation within 1-2 min, slow linear inactivation and finally a tail. The synergistic factors produced by solar/ClO2 in terms of log reduction and maximum inactivation rate were 1.194 and 1.112, respectively. The inhibitory effect on the regrowth of A. niger spores inactivated by solar/ClO2 was also stronger than that by ClO2 alone. Strongly oxidizing reactive species produced by solar/ClO2 accelerated the accumulation of endogenic reactive oxygen species (ROS) caused by oxidation stress of A. niger spores, improving the inactivation ability of the system. The inactivation order of A. niger spores was: loss of culturability, accumulation of intracellular ROS, loss of membrane integrity, leakage of intracellular species and change of morphology. The inactivation performance of solar/ClO2 was better than solar/chlor(am)ine according to the comparison of inactivation efficiency and regrowth potential. Results also suggested that solar/ClO2 process was more suitable for the treatment of ground water sources.
Collapse
Affiliation(s)
- Shulei Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
3
|
Zahid MT, Mustafa G, Sajid R, Razzaq A, Waheed M, Khan MA, Hwang JH, Park YK, Chung WJ, Jeon BH. Surviving chlorinated waters: bleaching sensitivity and persistence of free-living amoebae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48073-48084. [PMID: 39017868 DOI: 10.1007/s11356-024-34379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.
Collapse
Affiliation(s)
- Muhammad Tariq Zahid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Ghulam Mustafa
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Romasa Sajid
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Ayesha Razzaq
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Muzdalfa Waheed
- Department of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jae-Hoon Hwang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Young Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Woo Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Yin Q, Ji Y, Guo Y, Manoli K, Chen W, Zhang L, Yu X, Feng M. Environmental fate and risk evolution of calcium channel blockers from chlorine-based disinfection to sunlit surface waters. WATER RESEARCH 2024; 249:120968. [PMID: 38070349 DOI: 10.1016/j.watres.2023.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Organic micropollutants present in disinfected wastewater and discharged to sunlit surface waters may be transformed by multiple processes, such as chlorination due to the presence of chlorine residuals, solar irradiation as well as solar-irradiated chlorine residues. This study reports, for the first time, the multi-scenario degradation kinetics, transformation products, and risk evolution of calcium channel blockers (CCBs), a class of emerging pharmaceutical contaminants with worldwide prevalence in natural waters and wastewater. It was found that the chlorination of the studied CCBs (amlodipine (AML) and verapamil (VER)) was dominated by the reaction of HOCl with their neutral species, with second-order rate constants of 6.15×104 M-1 s-1 (AML) and 7.93×103 M-1 s-1 (VER) at pH 5.0-11.0. Bromination is much faster than chlorination, with the measured kapp,HOBr values of 2.94×105 M-1 s-1 and 6.58×103 M-1 s-1 for AML and VER, respectively, at pH 7.0. Furthermore, both CCBs would undergo photolytic attenuations with hydroxyl and carbonate radicals as the dominant reactive species in water. Notably, free chlorine mainly contributed to their abatement during the solar/chlorine treatment. Additionally, the halogen addition on the aromatic ring was observed during chlorination and bromination of the two CCBs. Cyclization was observed under solar irradiation only, while the aromatic ring was opened in the solar/chlorine system. Some products generated by the three transformation processes exhibited non-negligible risks of high biodegradation recalcitrance and toxicity, potentially threatening the aquatic environment and public health. Overall, this study elucidated the environmental fate of typical CCBs under different transformation processes to better understand the resulting ecological risks in these environmental scenarios.
Collapse
Affiliation(s)
- Qian Yin
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Guo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|