1
|
Wang Y, Wang M, You H, Chen C, Zhang J, Li T, Gan N. Magnetic poly(phages) encoded probes-based dual-mode assay for rapid determination of live Escherichia coli and Hafnia paralvei based on microfluidic chip and ATP bioluminescence meter. Mikrochim Acta 2024; 191:765. [PMID: 39601866 DOI: 10.1007/s00604-024-06809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
A dual-mode assay was developed for screening and detecting live Escherichia coli (E. coli) and Hafnia paralvei (H. paralvei) (as two typical pathogens in aquatic environments) based on magnetic poly(phages) encoded probes (MPEP). The probes were prepared by grafting a large number of phages targeting different target bacteria on a long-chain DNA structure, respectively. They could specifically capture and enrich E. coli and H. paralvei by magnetic separation. Then, different DNA signal tags with different lengths conjugate with the corresponding MPEP-bacteria complex and form two kinds of sandwich structures, respectively. After that, the captured E. coli and H. paralvei were lysed to release both adenosine triphosphate (ATP) and DNA signal tags. The measurement includes two steps. Firstly, a portable ATP bioluminescence meter was employed to rapidly screen the positive samples that contain either of the two target bacteria. Secondly, only positive samples were injected into the microfluidic chip which could detect various DNA signal tags for accurate quantification of the target bacteria. The assay demonstrated high sensitivity (3 CFU/mL for E. coli and 5 CFU/mL for H. paralvei), high specificity (strain identification), signal amplification (20-fold), and short time (≤ 35 min). It can be applied to detect other pathogens solely by changing the relative phage in MPEP. Furthermore, the proposed dual-mode assay provides a wide prospect for rapid screening and accurate determination of live foodborne pathogens. Clinical Trial Number: nbdxms-20240322.
Collapse
Affiliation(s)
- Ye Wang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ming Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chao Chen
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Jing Zhang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Tianhua Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
3
|
Lortholarie M, Do Nascimento J, Bonnard I, Catteau A, Le Guernic A, Boudaud N, Gantzer C, Guérin S, Geffard A, Palos-Ladeiro M. Assessment of the viral contamination of fecal origin over a wide geographical area using an active approach with Dreissena polymorpha. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122122. [PMID: 39168003 DOI: 10.1016/j.jenvman.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Biomonitoring appears to be a key approach to assess chemical or microbiological contaminations. The freshwater mussel, Dreissena polymorpha (D. polymorpha), is a suitable tool already used to monitor chemical and, more recently, microbiological pollution. In the present study, we used this sentinel species to monitor viral contamination of fecal origin over a wide geographical distribution. An active approach was implemented based on caging of calibrated and pathogen-free organisms with the same exposure conditions, allowing spatio-temporal comparisons between different water bodies. In addition, different types of sites were selected to investigate the range of environmental concentrations that D. polymorpha are able to translate. Different viral genome targets were measured: norovirus genogroup I and II (NoV GI and GII) and F-specific RNA bacteriophages belonging to the genogroup -I and -II (FRNAPH-I and -II). Total infectious FRNAPH were also monitored. D. polymorpha was able to translate a wide range of concentrations for all the viral targets studied, meaning that this sentinel species can be used for both low and highly anthropised sites. Moreover, D. polymorpha caging proved effective in achieving gradients of viral contamination of fecal origin pressure and to highlight the contribution of tributaries to the main rivers. D. polymorpha provided spatial and temporal variations of the viral contamination. It allowed to highlight the prevalence of the FRNAPH-I and -II genogroups according to the caging site. FRNAPH-II was found to be dominant in urban areas and FRNAPH-I in rural areas. This strategy uses the caging of the sentinel species D. polymorpha on selected sites with standardised analysis methods has proven to be a promising tool for characterizing viral contamination at both large and very fine scales.
Collapse
Affiliation(s)
- Marjorie Lortholarie
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Antoine Le Guernic
- Université catholique de l'ouest, Biology of Organisms Stress Health Environment (BIOSSE), Angers, France
| | | | - Christophe Gantzer
- LCPME UMR 7564, Université de Lorraine - CNRS, 405 rue de Vandoeuvre, 54600, Villers-lès-Nancy, France
| | - Sabrina Guérin
- Service public de l'assainissement francilien (SIAAP), Direction Innovation, Colombes, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
4
|
Huang X, Chen X, Xian Y, Jiang F. Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs. Carbohydr Res 2024; 542:109205. [PMID: 38981321 DOI: 10.1016/j.carres.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Xingyin Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China.
| |
Collapse
|
5
|
Do Nascimento J, Palos Ladeiro M, Bonnard I, Gantzer C, Boudaud N, Lopes C, Geffard A. Assessing viral freshwater hazard using a toxicokinetic model and Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123420. [PMID: 38272165 DOI: 10.1016/j.envpol.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk. Spatial and temporal variability of surface waters can lead to underestimate this risk, in particular in the case of low loading. The use of bivalve mollusks as accumulating systems appears as a promising alternative, as recently highlighted with the freshwater mussel Dreissena polymorpha, but its capacity to accumulate and depurate FRNAPH needs to be better understood and described. The purpose of this study is to characterise the kinetics of accumulation and elimination of infectious FRNAPH by D. polymorpha in laboratory conditions, formalised by a toxico-kinetic (TK) mechanistic model. Accumulation and depuration experiments were performed at a laboratory scale to determine the relationship between the concentration of infectious FRNAPH in water and the concentration accumulated by D. polymorpha. The mussels accumulated infectious FRNAPH (3-5.4 × 104 PFU/g) in a fast and concentration-dependent way in only 48 h, as already recently demonstrated. The second exposure demonstrated that the kinetics of infectious FRNAPH depuration by D. polymorpha was independent to the exposure dose, with a T90 (time required to depurate 90 % of the accumulated concentration) of approximately 6 days. These results highlight the capacities of D. polymorpha to detect and reflect the viral pollution in an integrative way and over time, which is not possible with point water sampling. Different TK models were fitted based on the concentrations measured in the digestive tissues (DT) of D. polymorpha. The model has been developed to formalise the kinetics of phage accumulation in mussels tissues through the simultaneous estimation of accumulation and depuration rates. This model showed that accumulation depended on the exposure concentration, while depuration did not. Standardized D. polymorpha could be easily transplanted to the environment to predict viral concentrations using the TK model defined in the present study to predict the level of contamination of bodies of water on the basis of the level of phages accumulated by the organisms. It will be also provide a better understanding of the dynamics of the virus in continental waters at different time and spatial scales, and thereby contribute to the protection of freshwater resources.
Collapse
Affiliation(s)
- Julie Do Nascimento
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Christophe Gantzer
- LCPME UMR 7564, Université de Lorraine - CNRS, 405 rue de Vandoeuvre, 54600, Villers-lès-Nancy, France
| | | | - Christelle Lopes
- Université de Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, 69622, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France.
| |
Collapse
|