1
|
Männlin J, San Antonio-Arce V, Reinacher PC, Scheiwe C, Shah MJ, Urbach H, Schulze-Bonhage A. Safety profile of subdural and depth electrode implantations in invasive EEG exploration of drug-resistant focal epilepsy. Seizure 2023; 110:21-27. [PMID: 37302157 DOI: 10.1016/j.seizure.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
PURPOSE To analyze the safety profile of subdural and depth electrode implantation in a large monocentric cohort of patients of all ages undergoing intracranial EEG exploration because of drug resistant focal epilepsy diagnosed and implanted by a constant team of epileptologists and neurosurgeons. METHODS We retrospectively analyzed data from 452 implantations in 420 patients undergoing invasive presurgical evaluation at the Freiburg Epilepsy Center from 1999 to 2019 (n = 160 subdural electrodes, n = 156 depth electrodes and n = 136 combination of both approaches). Complications were classified as hemorrhage with or without clinical manifestations, infection-associated and other complications. Furthermore, possible risk factors (age, duration of invasive monitoring, number of electrode contacts used) and changes in complication rates during the study period were analyzed. RESULTS The most frequent complications in both implantation groups were hemorrhages. Subdural electrode explorations caused significantly more symptomatic hemorrhages and required more operative interventions (SDE 9.9%, DE 0.3%, p < 0.05). Hemorrhage risk was higher for grids with 64 contacts than for smaller grids (p < 0.05). The infection rate was very low (0,2%). A transient neurological deficit occurred in 8.8% of all implantations and persisted for at least 3 months in 1.3%. Transient, but not persistent neurological deficits were more common in patients with implanted subdural electrodes than in the depth electrode group. CONCLUSION The use of subdural electrodes was associated with a higher risk of hemorrhage and transient neurological symptoms. However persistent deficits were rare with either approach, demonstrating that intracranial investigations using either subdural electrodes or depth electrodes carry acceptable risks in patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Julia Männlin
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany.
| | - Victoria San Antonio-Arce
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Mukesch Johannes Shah
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Andreas Schulze-Bonhage
- Freiburg Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany; Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Germany.
| |
Collapse
|
2
|
Song S, Fallegger F, Trouillet A, Kim K, Lacour SP. Deployment of an electrocorticography system with a soft robotic actuator. Sci Robot 2023; 8:eadd1002. [PMID: 37163609 DOI: 10.1126/scirobotics.add1002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrocorticography (ECoG) is a minimally invasive approach frequently used clinically to map epileptogenic regions of the brain and facilitate lesion resection surgery and increasingly explored in brain-machine interface applications. Current devices display limitations that require trade-offs among cortical surface coverage, spatial electrode resolution, aesthetic, and risk consequences and often limit the use of the mapping technology to the operating room. In this work, we report on a scalable technique for the fabrication of large-area soft robotic electrode arrays and their deployment on the cortex through a square-centimeter burr hole using a pressure-driven actuation mechanism called eversion. The deployable system consists of up to six prefolded soft legs, and it is placed subdurally on the cortex using an aqueous pressurized solution and secured to the pedestal on the rim of the small craniotomy. Each leg contains soft, microfabricated electrodes and strain sensors for real-time deployment monitoring. In a proof-of-concept acute surgery, a soft robotic electrode array was successfully deployed on the cortex of a minipig to record sensory cortical activity. This soft robotic neurotechnology opens promising avenues for minimally invasive cortical surgery and applications related to neurological disorders such as motor and sensory deficits.
Collapse
Affiliation(s)
- Sukho Song
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Laboratory of Sustainability Robotics, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Kyungjin Kim
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Remick M, Akwayena E, Harford E, Chilukuri A, White GE, Abel TJ. Subdural electrodes versus stereoelectroencephalography for pediatric epileptogenic zone localization: a retrospective cohort study. Neurosurg Focus 2022; 53:E4. [DOI: 10.3171/2022.7.focus2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE
The objective of this study was to compare the relative safety and effectiveness of invasive monitoring with subdural electrodes (SDEs) and stereoelectroencephalography (sEEG) in pediatric patients with drug-resistant epilepsy.
METHODS
A retrospective cohort study was performed in 176 patients who underwent invasive monitoring evaluations at UPMC Children’s Hospital of Pittsburgh between January 2000 and September 2021. To examine differences between SDE and sEEG groups, independent-samples t-tests for continuous variables and Pearson chi-square tests for categorical variables were performed. A p value < 0.1 was considered statistically significant.
RESULTS
There were 134 patients (76%) in the SDE group and 42 (24%) in the sEEG group. There was a difference in the proportion with complications (17.9% in the SDE group vs 7.1% in the sEEG group, p = 0.09) and resection (75.4% SDE vs 21.4% sEEG, p < 0.01) between SDE and sEEG patients. However, there was no observable difference in the rates of postresection seizure freedom at 1-year clinical follow-up (60.2% SDE vs 75.0% sEEG, p = 0.55).
CONCLUSIONS
These findings reveal a difference in rates of surgical complications and resection between SDEs and sEEG. Larger prospective, multi-institutional pediatric comparative effectiveness studies may further explore these associations.
Collapse
Affiliation(s)
| | | | | | | | | | - Taylor J. Abel
- Departments of Neurological Surgery,
- Bioengineering, University of Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Chan AY, Lien BV, Brown NJ, Gendreau J, Beyer RS, Yang CY, Choi EH, Hsu FP, Vadera S. Utility of adding electrodes in patients undergoing invasive seizure localization: A case series. Ann Med Surg (Lond) 2022; 80:104139. [PMID: 35846863 PMCID: PMC9284396 DOI: 10.1016/j.amsu.2022.104139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Surgery can be an effective treatment for epilepsy if the seizure onset is adequately localized. Invasive monitoring is used if noninvasive methods are inconclusive. Initial invasive monitoring may fail if the pre-surgical hypothesis regarding location of epileptic foci is wrong. At this point, a decision must be made whether to remove all electrodes without a clearly defined location of onset or to implant additional electrodes with the aim of achieving localization by expanding coverage. Methods Electrodes were placed according to a hypothesis derived from noninvasive monitoring techniques in adult patients with long term epilepsy. Seizure onset was not clearly localized at the end of the invasive monitoring period in ten patients, and additional electrodes were placed based on a new hypothesis that incorporated data from the invasive monitoring period. Results Successful localization was achieved in nine patients. There were no complications with adding additional electrodes. At final follow up, four patients were seizure free while four others had at least a 50% reduction in seizures after undergoing surgical intervention. Conclusion Seizure foci were localized safely in 90% of adult patients with long term epilepsy after implanting additional electrodes and expanding coverage. Patients undergoing invasive monitoring without clear localization should have additional electrodes placed to expand monitoring coverage as it is safe and effective.
Collapse
Affiliation(s)
- Alvin Y. Chan
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
- Corresponding author. Department of Neurological Surgery, University of California, Irvine 200 S. Manchester Avenue, Suite 201, Orange, CA, 92868, United States.
| | - Brian V. Lien
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Nolan J. Brown
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Julian Gendreau
- Johns Hopkins Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD, 21218, United States
| | - Ryan S. Beyer
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Chen Yi Yang
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Elliot H. Choi
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Frank P.K. Hsu
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| | - Sumeet Vadera
- Department of Neurological Surgery, University of California, 200 South Manchester Avenue, Suite 201, Orange, CA, 92868, United States
| |
Collapse
|
5
|
Park SH, Jung IH, Chang KW, Oh MK, Chang JW, Kim SH, Kang HC, Kim HD, Chang WS. Epidural grid, a new methodology of invasive intracranial EEG monitoring: A technical note and experience of a single center. Epilepsy Res 2022; 182:106912. [PMID: 35339854 DOI: 10.1016/j.eplepsyres.2022.106912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Subdural grid monitoring (SDG) has the advantage to provide continuous coverage over a larger area of cortex, direct visualization of electrode location and functional mapping. However, SDG can cause direct irritation of the cortex or postoperative headaches due to cerebrospinal fluid (CSF) leakage. Epidural grid monitoring (EDG) without opening the dura is thought to reduce the possibility of these complications. We report our experience with EDG. METHODS We described our surgical technique of EDG in invasive intracranial electroencephalography (iEEG) monitoring. A retrospective review of 30 patients who underwent grid placement of iEEG between March 2019 and December 2020 was performed to compare SDG and EDG. RESULTS Of the 30 patients, 10 patients underwent SDG and 20 patients underwent EDG. There was no difference in age between SDG and EDG groups (p = 0.13). Also, there was no difference in the number of grid electrodes, craniotomy size, number of electrodes per craniotomy area and postoperative complication rate (p = 0.32, 0.84, 0.58 and 0.40). However, the maximum number of electrodes that have been undermined from the bone margin was much higher in SDG group (SDG 4.6 ± 2.2 vs. EDG 2.0 ± 0.9; p = 0.001). The demand for postoperative analgesics was significantly lower in EDG group (SDG 13.4 ± 9.1 vs. EDG 4.1 ± 4.3; p = 0.012); and the demand for postoperative antiemetics also tended to be low (SDG 4.6 ± 3.6 vs. EDG 1.8 ± 1.6; p = 0.078). CONCLUSIONS There was no significant difference in craniotomy and electrode insertion between the two groups; however, the EDG group showed less postoperative headache and nausea. Though not in direct contact with the cortex, the quality of the electrophysiological signal received through the electrode in EDG is comparable to that of the SDG. The EDG enables to detect the onset of seizure and delineate the epileptogenic zone sufficiently. Moreover, functional mapping is possible with EDG. Therefore, EDG has the sufficient potential to replace SDG for monitoring of the lateral surface of brain.
Collapse
Affiliation(s)
- So Hee Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In-Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Maeng Keun Oh
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hee Kim
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heung Dong Kim
- Department of Pediatric, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Salehi A, Yang PH, Smyth MD. Single-center cost comparison analysis of stereoelectroencephalography with subdural grid and strip implantation. J Neurosurg Pediatr 2022; 29:568-574. [PMID: 35180694 DOI: 10.3171/2022.1.peds21523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Use of invasive stereoelectroencephalography (SEEG) has gained traction recently. However, scant research has investigated the costs and resource utilization of SEEG compared with subdural grid (SDG)-based techniques in pediatric patients. Here, the authors have presented a retrospective analysis of charges associated with SEEG and SDG monitoring at a single institution. METHODS The authors performed a retrospective case series analysis of pediatric patients with similar characteristics in terms of age, sex, seizure etiology, and epilepsy treatment strategy who underwent SEEG or SDG monitoring and subsequent craniotomy for resection of epileptogenic focus at St. Louis Children Hospital, St. Louis, Missouri, between 2013 and 2020. Financial data, including hospital charges, supplies, and professional fees (i.e., those related to anesthesia, neurology, neurosurgery, and critical care), were adjusted for inflation to 2020 US dollars. RESULTS The authors identified 18 patients (9 underwent SEEG and 9 underwent SDG) with similar characteristics in terms of age (mean [range] 13.6 [1.9-21.8] years for SDG patients vs 11.9 [2.4-19.6] years for SEEG patients, p = 0.607), sex (4 females underwent SDG vs 6 females underwent SEEG, p = 0.637), and presence of lesion (5 patients with a lesion underwent SDG vs 8 underwent SEEG, p = 0.294). All patients underwent subsequent craniotomy for resection of epileptogenic focus. SEEG patients were more likely to have a history of status epilepticus (p = 0.029). Across 1 hospitalization for each SDG patient and 2 hospitalizations for each SEEG patient, SEEG patients had a significantly shorter mean operating room time (288 vs 356 minutes, p = 0.015), mean length of stay in the ICU (1.0 vs 2.1 days, p < 0.001), and tended to have a shorter overall length of stay in the hospital (8.4 vs 10.6 days, p = 0.086). Both groups underwent invasive monitoring for similar lengths of time (5.2 days for SEEG patients vs 6.4 days for SDG patients, p = 0.257). Time to treatment from the initial invasive monitoring evaluation was significantly longer in SEEG patients (64.6 vs 6.4 days, p < 0.001). Neither group underwent readmission within the first 30 days after hospital discharge. Seizure outcomes and complication rates were similar. After adjustment for inflation, the average total perioperative charges were $104,442 for SDG and $106,291 for SEEG (p = 0.800). CONCLUSIONS Even though 2 hospitalizations were required for SEEG and 1 hospitalization was required for SDG monitoring, patients who underwent SEEG had a significantly shorter average length of stay in the ICU and operating room time. Surgical morbidity and outcomes were similar. Total perioperative charges for invasive monitoring and resection were approximately 2% higher for SEEG patients when corrected for inflation, but this difference was not statistically significant.
Collapse
Affiliation(s)
- Afshin Salehi
- 1Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri.,2Department of Neurological Surgery, Division of Pediatric Neurosurgery, University of Nebraska Medical Center, Omaha Children's Hospital, Omaha, Nebraska; and
| | - Peter H Yang
- 1Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew D Smyth
- 1Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri.,3Department of Neurosurgery, Johns Hopkins University, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| |
Collapse
|
7
|
Lepard JR, Dupépé E, Davis M, DeWolfe J, Agee B, Bentley JN, Riley K. Surgically treatable adult epilepsy: a changing patient population. Experience from a level 4 epilepsy center. J Neurosurg 2021; 135:1765-1770. [PMID: 34049280 DOI: 10.3171/2020.10.jns201629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Invasive monitoring has long been utilized in the evaluation of patients for epilepsy surgery, providing localizing information to guide resection. Stereoelectroencephalography (SEEG) was introduced at the authors' level 4 epilepsy surgery program in 2013, with responsive neurostimulation (RNS) becoming available the following year. The authors sought to characterize patient demographics and epilepsy-related variables before and after SEEG introduction to understand whether differences emerged in their patient population. This information will be useful in understanding how SEEG, possibly in conjunction with RNS availability, may have changed practice patterns over time. METHODS This is a retrospective cohort study of consecutive patients who underwent surgery for epilepsy from 2006 to 2018, comprising 7 years before and 5 years after the introduction of SEEG. The authors performed univariate analyses of patient characteristics and outcomes and used generalized estimating equations logistic regression for predictive analysis. RESULTS A total of 178 patients were analyzed, with 109 patients in the pre-SEEG cohort and 69 patients in the post-SEEG cohort. In the post-SEEG cohort, more patients underwent invasive monitoring for suspected bilateral seizure onsets (40.6% vs 22.0%, p = 0.01) and extratemporal seizure onsets (68.1% vs 8.3%, p < 0.0001). The post-SEEG cohort had a higher proportion of patients with seizures arising from eloquent cortex (14.5% vs 0.9%, p < 0.001). Twelve patients underwent RNS insertion in the post-SEEG group versus none in the pre-SEEG group. Fewer patients underwent resection in the post-SEEG group (55.1% vs 96.3%, p < 0.0001), but there was no significant difference in rates of seizure freedom between cohorts for those patients having undergone a follow-up resection (53.1% vs 59.8%, p = 0.44). CONCLUSIONS These findings demonstrate that more patients with suspected bilateral, eloquent, or extratemporal epilepsy underwent invasive monitoring after adoption of SEEG. This shift occurred coincident with the adoption of RNS, both of which likely contributed to increased patient complexity. The authors conclude that their practice now considers invasive monitoring for patients who likely would not previously have been candidates for surgical investigation and subsequent intervention.
Collapse
|
8
|
Cho K, Chang WS, Kim HD, Chang JW, Kim SH, Lee JS, Kang HC. Robot-Assisted Stereoelectroencephalography for Pediatric Epilepsy Surgery: The First Case in Korea. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2021.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Miller C, Schatmeyer B, Landazuri P, Uysal U, Nazzaro J, Kinsman MJ, Camarata PJ, Ulloa CM, Hammond N, Pearson C, Shah V, Cheng JJ. sEEG for Expansion of a Surgical Epilepsy Program: Safety and Efficacy in 152 Consecutive Cases. Epilepsia Open 2021; 6:694-702. [PMID: 34388309 PMCID: PMC8633478 DOI: 10.1002/epi4.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/13/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objective Stereoelectroencephalography (sEEG) is an intracranial encephalography method of expanding use. The need for increased epilepsy surgery access has led to the consideration of sEEG adoption by new or expanding surgical epilepsy programs. Data regarding safety and efficacy are uncommon outside of high‐volume, well‐established centers, which may be less applicable to newer or low‐volume centers. The objective of this study was to add to the sEEG outcomes in the literature from the perspective of a rapidly expanding center. Methods A retrospective chart review of consecutive sEEG cases from January 2016 to December 2019 was performed. Data extraction included demographic data, surgical data, and outcome data, which pertinently examined surgical method, progression to therapeutic procedure, clinically significant adverse events, and Engel outcomes. Results One hundred and fifty‐two sEEG procedures were performed on 131 patients. Procedures averaged 10.5 electrodes for a total of 1603 electrodes. The majority (84%) of patients progressed to a therapeutic procedure. Six clinically significant complications occurred: three retained electrodes, two hemorrhages, and one failure to complete investigation. Only one complication resulted in a permanent deficit. Engel 1 outcome was achieved in 63.3% of patients reaching one‐year follow‐up after a curative procedure. Significance New or expanding epilepsy surgery centers can appropriately consider the use of sEEG. The complication rate is low and the majority of patients progress to therapeutic surgery. Procedural safety, progression to therapeutic intervention, and Engel outcomes are comparable to cohorts from long‐established epilepsy surgery programs.
Collapse
Affiliation(s)
- Christopher Miller
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Bryan Schatmeyer
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Patrick Landazuri
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Utku Uysal
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jules Nazzaro
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael J Kinsman
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J Camarata
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Carol M Ulloa
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nancy Hammond
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Caleb Pearson
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Vishal Shah
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jennifer J Cheng
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
10
|
Bonda DJ, Pruitt R, Theroux L, Goldstein T, Stefanov DG, Kothare S, Karkare S, Rodgers S. Robot-assisted stereoelectroencephalography electrode placement in twenty-three pediatric patients: a high-resolution analysis of individual lead placement time and accuracy at a single institution. Childs Nerv Syst 2021; 37:2251-2259. [PMID: 33738542 DOI: 10.1007/s00381-021-05107-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We describe a detailed evaluation of predictors associated with individual lead placement efficiency and accuracy for 261 stereoelectroencephalography (sEEG) electrodes placed for epilepsy monitoring in twenty-three children at our institution. METHODS Intra- and post-operative data was used to generate a linear mixed model to investigate predictors associated with three outcomes (lead placement time, lead entry error, lead target error) while accounting for correlated observations from the same patients. Lead placement time was measured using electronic time-stamp records stored by the ROSA software for each individual electrode; entry and target site accuracy was measured using postoperative stereotactic CT images fused with preoperative electrode trajectory planning images on the ROSA computer software. Predictors were selected from a list of variables that included patient demographics, laterality of leads, anatomic location of lead, skull thickness, bolt cap device used, and lead sequence number. RESULTS Twenty-three patients (11 female, 48%) of mean age 11.7 (± 6.1) years underwent placement of intracranial sEEG electrodes (median 11 electrodes) at our institution over a period of 1 year. There were no associated infections, hemorrhages, or other adverse events, and successful seizure capture was obtained in all monitored patients. The mean placement time for individual electrodes across all patients was 6.56 (± 3.5) min; mean target accuracy was 4.5 (± 3.5) mm. Lesional electrodes were associated with 25.7% (95% CI: 6.7-40.9%, p = 0.02) smaller target point errors. Larger skull thickness was associated with larger error: for every 1-mm increase in skull thickness, there was a 4.3% (95% CI: 1.2-7.5%, p = 0.007) increase in target error. Bilateral lead placement was associated with 26.0% (95% CI: 9.9-44.5%, p = 0.002) longer lead placement time. The relationship between placement time and lead sequence number was nonlinear: it decreased consistently for the first 4 electrodes, and became less pronounced thereafter. CONCLUSIONS Variation in sEEG electrode placement efficiency and accuracy can be explained by phenomena both within and outside of operator control. It is important to keep in mind the factors that can lead to better or worse lead placement efficiency and/or accuracy in order to maximize patient safety while maintaining the standard of care.
Collapse
Affiliation(s)
- David J Bonda
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Rachel Pruitt
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Liana Theroux
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Todd Goldstein
- Center for 3D Design and Innovation, Northwell Health, Manhasset, NY, USA
| | - Dimitre G Stefanov
- Department of Biostatistics, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Sanjeev Kothare
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Shefali Karkare
- Division of Pediatric Neurology, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA
| | - Shaun Rodgers
- Division of Pediatric Neurosurgery, Cohen Children's Medical Center, Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY, USA.
| |
Collapse
|
11
|
Arzumanov G, Zhao K, Danish SF. Commentary: Difficult-to-Localize Epilepsy After Stereoelectroencephalography: Technique, Safety, and Efficacy of Placing Additional Electrodes During the Same Admission. Oper Neurosurg (Hagerstown) 2021; 20:E247-E248. [PMID: 33377152 DOI: 10.1093/ons/opaa401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Grant Arzumanov
- Department of Neurosurgery, Rutgers University; New Jersey Medical School, Rutgers University; Robert Wood Johnson Medical School, Newark and New Brunswick, New Jersey
| | - Kevin Zhao
- Department of Neurosurgery, Rutgers University; New Jersey Medical School, Rutgers University; Robert Wood Johnson Medical School, Newark and New Brunswick, New Jersey
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers University; New Jersey Medical School, Rutgers University; Robert Wood Johnson Medical School, Newark and New Brunswick, New Jersey
| |
Collapse
|
12
|
Fiani B, Jarrah R, Doan T, Shields J, Houston R, Sarno E. Stereoelectroencephalography versus Subdural Electrode Implantation to Determine Whether Patients with Drug-resistant Epilepsy Are Candidates for Epilepsy Surgery. Neurol Med Chir (Tokyo) 2021; 61:347-355. [PMID: 33967179 PMCID: PMC8258005 DOI: 10.2176/nmc.ra.2020-0361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a chronic condition that affects about 50 million individuals worldwide. While its challenges are profound, there are increasing instances where antiepileptic drugs (AEDs) fail to provide relief to epileptic manifestations. For these pharmacoresistant cases, epilepsy surgery often is an effective route for treatment. However, the complexity and challenges associated with presurgical evaluations have prevented more widespread utilization of epilepsy surgery in pharmacoresistant cases. While preliminary work-ups and non-invasive diagnostic imaging have allowed for limited identification of the epileptogenic zone (EZ), there is yet to be an established pre-determined algorithm for surgical evaluation of patients with epilepsy. However, two modalities are currently being used for localization of the EZ and in determining candidates for surgery: stereoelectroencephalography (SEEG) and subdural electrodes (SDEs). SDE has been used in the United States for decades; however, SEEG now provides a less invasive option for mapping brain regions. We seek to address which intracranial monitoring technique is superior. Through a review of the outcomes of various clinical studies, SEEG was found to have greater safety and efficiency benefits than SDE, such as lower morbidity rates, lower prevalence of neurological deficits, and shorter recovery times. Moreover, SEEG was also found to have further functional benefits by allowing for deeper targeting of cerebral tissue along with bilateral hemispheric monitoring. This has led to increased rates of seizure freedom and control among SEEG patients. Nevertheless, further studies on the limitations and advancements of SEEG and SDE are still required to provide a more comprehensive understanding regarding their application.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center
| | | | | | | | | | - Erika Sarno
- Michigan State University College of Osteopathic Medicine
| |
Collapse
|
13
|
Fallegger F, Schiavone G, Pirondini E, Wagner FB, Vachicouras N, Serex L, Zegarek G, May A, Constanthin P, Palma M, Khoshnevis M, Van Roost D, Yvert B, Courtine G, Schaller K, Bloch J, Lacour SP. MRI-Compatible and Conformal Electrocorticography Grids for Translational Research. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003761. [PMID: 33977054 PMCID: PMC8097365 DOI: 10.1002/advs.202003761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Indexed: 05/23/2023]
Abstract
Intraoperative electrocorticography (ECoG) captures neural information from the surface of the cerebral cortex during surgeries such as resections for intractable epilepsy and tumors. Current clinical ECoG grids come in evenly spaced, millimeter-sized electrodes embedded in silicone rubber. Their mechanical rigidity and fixed electrode spatial resolution are common shortcomings reported by the surgical teams. Here, advances in soft neurotechnology are leveraged to manufacture conformable subdural, thin-film ECoG grids, and evaluate their suitability for translational research. Soft grids with 0.2 to 10 mm electrode pitch and diameter are embedded in 150 µm silicone membranes. The soft grids are compatible with surgical handling and can be folded to safely interface hidden cerebral surface such as the Sylvian fold in human cadaveric models. It is found that the thin-film conductor grids do not generate diagnostic-impeding imaging artefacts (<1 mm) nor adverse local heating within a standard 3T clinical magnetic resonance imaging scanner. Next, the ability of the soft grids to record subdural neural activity in minipigs acutely and two weeks postimplantation is validated. Taken together, these results suggest a promising future alternative to current stiff electrodes and may enable the future adoption of soft ECoG grids in translational research and ultimately in clinical settings.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Elvira Pirondini
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Fabien B. Wagner
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
- Present address:
Institut des Maladies Neurodégénératives – CNRS UMR 5293Université de BordeauxCentre Broca Nouvelle‐Aquitaine146 rue Léo Saignat – CS 61292 – Case 28, Bordeaux cedexBordeaux33076France
| | - Nicolas Vachicouras
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Ludovic Serex
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Gregory Zegarek
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Adrien May
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Paul Constanthin
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Marie Palma
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | | | - Dirk Van Roost
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
- Department of NeurosurgeryGhent UniversityGhent9000Belgium
| | - Blaise Yvert
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Karl Schaller
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Jocelyne Bloch
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Stéphanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| |
Collapse
|
14
|
Consales A, Casciato S, Asioli S, Barba C, Caulo M, Colicchio G, Cossu M, de Palma L, Morano A, Vatti G, Villani F, Zamponi N, Tassi L, Di Gennaro G, Marras CE. The surgical treatment of epilepsy. Neurol Sci 2021; 42:2249-2260. [PMID: 33797619 DOI: 10.1007/s10072-021-05198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
In 2009, the Commission for Epilepsy Surgery of the Italian League Against Epilepsy (LICE) conducted an overview about the techniques used for the pre-surgical evaluation and the surgical treatment of epilepsies. The recognition that, in selected cases, surgery can be considered the first-line approach, suggested that the experience gained by the main Italian referral centers should be pooled in order to provide a handy source of reference. In light of the progress made over these past years, some parts of that first report have accordingly been updated. The present revision aims to harmonize the general principles regulating the patient selection and the pre-surgical work-up, as well as to expand the use of epilepsy surgery, that still represents an underutilized resource, regrettably. The objective of this contribution is drawing up a methodological framework within which to integrate the experiences of each group in this complex and dynamic sector of the neurosciences.
Collapse
Affiliation(s)
- Alessandro Consales
- Division of Neurosurgery, IRCCS Giannina Gaslini Children's Hospital, Genoa, Italy
| | - Sara Casciato
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology "M. Malpighi", Bellaria Hospital, Bologna, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University, Chieti, Italy
| | | | - Massimo Cossu
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Luca de Palma
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Giampaolo Vatti
- Department of Neurological and Sensorial Sciences, University of Siena, Siena, Italy
| | - Flavio Villani
- Division of Neurophysiology and Epilepsy Centre, IRCCS San Martino Policlinic Hospital, Genoa, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Laura Tassi
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Giancarlo Di Gennaro
- Epilepsy Surgery Centre, IRCCS Neuromed, Via Atinense, 18, 86170, Pozzilli, IS, Italy.
| | - Carlo Efisio Marras
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
15
|
Yazdani M, Reagan J, Kocher M, Antonucci M, Taylor J, Edwards J, Vandergrift WA, Spampinato MV. Safety of MRI in the localization of implanted intracranial electrodes for refractory epilepsy. J Neuroimaging 2021; 31:551-559. [PMID: 33783916 DOI: 10.1111/jon.12848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE This is an observational study to evaluate the safety of magnetic resonance imaging (MRI) to localize subdural grids and depth electrodes in patients with refractory epilepsy using a 1.5 Tesla MR scanner. METHODS We implemented an optimized MRI protocol providing adequate image quality for the assessment of subdural grids and depth electrodes, while minimizing the specific absorption rate (SAR). We reviewed all MRI studies performed in patients with subdural grids and depth electrodes between January 2010 and October 2018. Image quality was graded as acceptable or nonacceptable for the assessment of intracranial device positioning. We reviewed the medical record and any imaging obtained after intracranial implant removal for adverse event or complication occurring during and after the procedure. RESULTS Ninety-nine patients with refractory epilepsy underwent MRI scans using a magnetization-prepared rapid acquisition of gradient echo sequence and a transmit-receive head coil with depth electrodes and subdural grids in place. Two patients underwent two separate depth electrode implantations for a total of 101 procedures and MRI scans. No clinical adverse events were reported during or immediately after imaging. Image quality was graded as acceptable for 97 MRI scans. Review of follow-up CT and MRI studies after implant removal, available for 70 patients, did not demonstrate unexpected complications in 69 patients. CONCLUSION In our experience, a low SAR MRI protocol can be used to safely localize intracranial subdural grids and depth electrode in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Milad Yazdani
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Justin Reagan
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Madison Kocher
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Michael Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - James Taylor
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Jonathan Edwards
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | | | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
16
|
Abstract
BACKGROUND Patients with temporal lobe epilepsy (TLE) originating from different seizure onset zones had distinct electrophysiological characteristics and surgical outcomes. In this study, we aimed to investigate the relationship between the origin and prognosis of TLE, and the stereoelectroencephalography (SEEG) features. METHODS Thirty patients with TLE, who underwent surgical treatment in our functional neurosurgery department from January 2016 to December 2017, were enrolled in this study. All patients underwent anterior temporal lobectomy after an invasive pre-operative evaluation with SEEG. Depending on the epileptic focus location, patients were divided into those with medial temporal lobe seizures (MTLS) and those with lateral temporal lobe seizures (LTLS). The Engel classification was used to evaluate operation effectiveness, and the Kaplan-Meier analysis was used to detect seizure-free duration. RESULTS The mean follow-up time was 25.7 ± 4.8 months. Effectiveness was 63.3% for Engel I (n = 19), 13.3% for Engel II, 3.3% for Engel III, and 20.0% for Engel IV. According to the SEEG, 60.0% (n = 18) had MTLS, and 40.0% (n = 12) had LTLS. Compared with the MTLS group, the operation age of those with LTLS was significantly greater (26.9 ± 6.9 vs. 29.9 ± 12.5 years, t = -0.840, P = 0.009) with longer epilepsy duration (11.9 ± 6.0 vs. 17.9 ± 12.1 years, t = -1.801, P = 0.038). Patients with MTLS had a longer time interval between ictal onset to seizure (67.3 ± 59.1 s vs. 29.3 ± 24.4 s, t = 2.017, P = 0.008). The most common SEEG ictal pattern was a sharp/spike-wave rhythm in the MTLS group (55.6%) and low-voltage fast activity in the LTLS group (58.3%). Compared with the LTLS group, patients with MTLS had a more favorable prognosis (41.7% vs. 77.8%, P = 0.049). Post-operative recurrence was more likely to occur within three months after the operation for both groups, and there appeared to be a stable long-term outcome. CONCLUSION Patients with MTLS, who accounted for three-fifths of patients with TLE, showed a more favorable surgical outcome.
Collapse
|
17
|
Howard CW, Aboelnazar NS, Salem N, Syed N, Willetts L. Linear oblique craniectomy: A novel method of minimally invasive subdural grid insertion. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2020. [DOI: 10.1177/2514183x20973085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Many countries rely upon subdural grid electroencephalography in the planning of epilepsy surgeries. However, craniotomy for subdural grid implantation is known to result in a variety of complications and requires diligence from the surgical team. We describe a minimally invasive method of subdural grid insertion, termed the linear oblique craniectomy, designed to mitigate complications and increase ease of subdural grid insertion. Objective: To demonstrate feasibility of minimally invasive subdural grid insertion utilizing skull anatomy. Methods: Three fresh frozen and embalmed human cadavers underwent surface landmarking and craniectomy to introduce a 4 × 5 cm2 subdural grid over the Sylvian fissure. Anteroposterior lens-shaped craniectomy measured 5 cm in length with 1 cm maximal width. The dura mater was longitudinally incised, and subdural grids were introduced over the Sylvian fissure. Results: The total area of the craniectomy created by the linear oblique approach consists of only approximately 20% of the total area removed by the traditional approach to access the Sylvian fissure for mesial temporal epilepsy monitoring/preoperative planning. The locations of the grids were evaluated by MRI and computed tomography scans postoperatively to ensure accurate alignment with the Sylvian fissure. Conclusion: In this cadaveric study, we demonstrate the linear oblique craniectomy procedure that provides an alternative approach to subdural grid implantation with significantly decreased invasiveness. This surgical approach has the potential of reducing complication rates of subdural grid insertion for surface monitoring of the brain activity and/or neuromachine interface analysis and is associated with significant reduction of surgical time.
Collapse
Affiliation(s)
- Calvin W Howard
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nader S Aboelnazar
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Noor Salem
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Ministry of Higher Education, Kuwait City, Kuwait
| | - Naweed Syed
- Department of Cell Biology and Anatomy, University of Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Lian Willetts
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Alberta, Canada
| |
Collapse
|
18
|
Kim LH, Parker JJ, Ho AL, Feng AY, Kumar KK, Chen KS, Ojukwu DI, Shuer LM, Grant GA, Graber KD, Halpern CH. Contemporaneous evaluation of patient experience, surgical strategy, and seizure outcomes in patients undergoing stereoelectroencephalography or subdural electrode monitoring. Epilepsia 2020; 62:74-84. [PMID: 33236777 DOI: 10.1111/epi.16762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Intracranial electrographic localization of the seizure onset zone (SOZ) can guide surgical approaches for medically refractory epilepsy patients, especially when the presurgical workup is discordant or functional cortical mapping is required. Minimally invasive stereotactic placement of depth electrodes, stereoelectroencephalography (SEEG), has garnered increasing use, but limited data exist to evaluate its postoperative outcomes in the context of the contemporaneous availability of both SEEG and subdural electrode (SDE) monitoring. We aimed to assess the patient experience, surgical intervention, and seizure outcomes associated with these two epileptic focus mapping techniques during a period of rapid adoption of neuromodulatory and ablative epilepsy treatments. METHODS We retrospectively reviewed 66 consecutive adult intracranial electrode monitoring cases at our institution between 2014 and 2017. Monitoring was performed with either SEEG (n = 47) or SDEs (n = 19). RESULTS Both groups had high rates of SOZ identification (SEEG 91.5%, SDE 88.2%, P = .69). The majority of patients achieved Engel class I (SEEG 29.3%, SDE 35.3%) or II outcomes (SEEG 31.7%, SDE 29.4%) after epilepsy surgery, with no significant difference between groups (P = .79). SEEG patients reported lower median pain scores (P = .03) and required less narcotic pain medication (median = 94.5 vs 594.6 milligram morphine equivalents, P = .0003). Both groups had low rates of symptomatic hemorrhage (SEEG 0%, SDE 5.3%, P = .11). On multivariate logistic regression, undergoing resection or ablation (vs responsive neurostimulation/vagus nerve stimulation) was the only significant independent predictor of a favorable outcome (adjusted odds ratio = 25.4, 95% confidence interval = 3.48-185.7, P = .001). SIGNIFICANCE Although both SEEG and SDE monitoring result in favorable seizure control, SEEG has the advantage of superior pain control, decreased narcotic usage, and lack of routine need for intensive care unit stay. Despite a heterogenous collection of epileptic semiologies, seizure outcome was associated with the therapeutic surgical modality and not the intracranial monitoring technique. The potential for an improved postoperative experience makes SEEG a promising method for intracranial electrode monitoring.
Collapse
Affiliation(s)
- Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathon J Parker
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Austin Y Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin K Kumar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Disep I Ojukwu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence M Shuer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford, Stanford, CA, USA
| | - Kevin D Graber
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Tong BA, Esquenazi Y, Johnson J, Zhu P, Tandon N. The Brain is Not Flat: Conformal Electrode Arrays Diminish Complications of Subdural Electrode Implantation, A Series of 117 Cases. World Neurosurg 2020; 144:e734-e742. [PMID: 32949797 DOI: 10.1016/j.wneu.2020.09.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intracranial recordings are integral to evaluating patients with pharmacoresistant epilepsy whom noninvasive testing fails to localize seizure focus. Although stereo-electroencephalography is the preferred method of intracranial recordings in most centers, subdural electrode (SDE) implantation is necessary in selected cases. OBJECTIVE To identify imaging correlates that predict SDE complications (extra-axial fluid collections [EFCs]), and determine if modifications that diminish stiffness of electrode sheets reduce complications. METHODS A prospective epilepsy surgery database was used to identify adults undergoing craniotomy for SDE implantation over a 14-year period. EFCs and midline shift were measured via magnetic resonance imaging and computed tomography imaging. Correlation analyses and multivariable logistic regression explored associations between use of conformal arrays, serial order of patients, previous ipsilateral intracranial surgery, midline shift, number of SDEs, and neurologic complications. RESULTS A total of 111 consecutive patients (59 female) underwent 117 craniotomies (mean, 115 electrode contacts) for SDE implantation. There were 8 surgical complications, 3 in the first 17 (17.7%). and 5 (after electrode modifications) in a subsequent 100 craniotomies (5.0%). We noted an increase in electrode numbers implanted over time (P < 0.001) and decreased midline shift with conformal grids (ρ = - 0.32; P < 0.001). A multivariable regression showed that midline shift correlated with complications (odds ratio, 2.32; 95% confidence interval, 1.12-4.78; P = 0.023). CONCLUSIONS Hemorrhagic complications after SDE implantation are difficult to detect because of artifact from electrodes, but predictable by prominent midline shift (>4 mm). Risks inherent to SDE implantation may be minimized using conformal grids. With symptomatic EFCs, a single electrode cable exit site allows hematoma evacuation without terminating intracranial recordings.
Collapse
Affiliation(s)
- Brian A Tong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Jessica Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Ping Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas, USA; Texas Institute of Restorative Neurotechnologies, UT Health, Houston, Texas, USA.
| |
Collapse
|
20
|
Foundations of the Diagnosis and Surgical Treatment of Epilepsy. World Neurosurg 2020; 139:750-761. [DOI: 10.1016/j.wneu.2020.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
|
21
|
Joswig H, Lau JC, Abdallat M, Parrent AG, MacDougall KW, McLachlan RS, Burneo JG, Steven DA. Stereoelectroencephalography Versus Subdural Strip Electrode Implantations: Feasibility, Complications, and Outcomes in 500 Intracranial Monitoring Cases for Drug-Resistant Epilepsy. Neurosurgery 2020; 87:E23-E30. [DOI: 10.1093/neuros/nyaa112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/16/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
Both stereoelectroencephalography (SEEG) and subdural strip electrodes (SSE) are used for intracranial electroencephalographic recordings in the invasive investigation of patients with drug-resistant epilepsy.
OBJECTIVE
To compare SEEG and SSE with respect to feasibility, complications, and outcome in this single-center study.
METHODS
Patient characteristics, periprocedural parameters, complications, and outcome were acquired from a pro- and retrospectively managed databank to compare SEEG and SSE cases.
RESULTS
A total of 500 intracranial electroencephalographic monitoring cases in 450 patients were analyzed (145 SEEG and 355 SSE). Both groups were of similar age, gender distribution, and duration of epilepsy. Implantation of each SEEG electrode took 13.9 ± 7.6 min (20 ± 12 min for each SSE; P < .01). Radiation exposure to the patient was 4.3 ± 7.7 s to a dose area product of 14.6 ± 27.9 rad*cm2 for SEEG and 9.4 ± 8.9 s with 21 ± 22.4 rad*cm2 for SSE (P < .01). There was no difference in the length of stay (12.2 ± 7.2 and 12 ± 6.3 d). The complication rate was low in both groups. No infections were seen in SEEG cases (2.3% after SSE). The rate of hemorrhage was 2.8% for SEEG and 1.4% for SSE. Surgical outcome was similar.
CONCLUSION
SEEG allows targeting deeply situated foci with a non-inferior safety profile to SSE and seizure outcome comparable to SSE.
Collapse
Affiliation(s)
- Holger Joswig
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
- HMU Health and Medical University Potsdam, Department of Neurosurgery, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Jonathan C Lau
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Mahmoud Abdallat
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Neurosurgery, University of Jordan, Amman, Jordan
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Richard S McLachlan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
22
|
Hyslop A, Duchowny M. Electrical stimulation mapping in children. Seizure 2020; 77:59-63. [DOI: 10.1016/j.seizure.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/01/2022] Open
|
23
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
24
|
Taussig D, Chipaux M, Fohlen M, Dorison N, Bekaert O, Ferrand-Sorbets S, Dorfmüller G. Invasive evaluation in children (SEEG vs subdural grids). Seizure 2020; 77:43-51. [DOI: 10.1016/j.seizure.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022] Open
|
25
|
Kim LH, Parker JJ, Ho AL, Pendharkar AV, Sussman ES, Halpern CH, Porter B, Grant GA. Postoperative outcomes following pediatric intracranial electrode monitoring: A case for stereoelectroencephalography (SEEG). Epilepsy Behav 2020; 104:106905. [PMID: 32028127 DOI: 10.1016/j.yebeh.2020.106905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/15/2019] [Accepted: 01/06/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND For patients with medically refractory epilepsy, intracranial electrode monitoring can help identify epileptogenic foci. Despite the increasing utilization of stereoelectroencephalography (SEEG), the relative risks or benefits associated with the technique when compared with the traditional subdural electrode monitoring (SDE) remain unclear, especially in the pediatric population. Our aim was to compare the outcomes of pediatric patients who received intracranial monitoring with SEEG or SDE (grids and strips). METHODS We retrospectively studied 38 consecutive pediatric intracranial electrode monitoring cases performed at our institution from 2014 to 2017. Medical/surgical history and operative/postoperative records were reviewed. We also compared direct inpatient hospital costs associated with the two procedures. RESULTS Stereoelectroencephalography and SDE cohorts both showed high likelihood of identifying epileptogenic zones (SEEG: 90.9%, SDE: 87.5%). Compared with SDE, SEEG patients had a significantly shorter operative time (118.7 versus 233.4 min, P < .001) and length of stay (6.2 versus 12.3 days, P < .001), including days spent in the intensive care unit (ICU; 1.4 versus 5.4 days, P < .001). Stereoelectroencephalography patients tended to report lower pain scores and used significantly less narcotic pain medications (54.2 versus 197.3 mg morphine equivalents, P = .005). No complications were observed. Stereoelectroencephalography and SDE cohorts had comparable inpatient hospital costs (P = .47). CONCLUSION In comparison with subdural electrode placement, SEEG results in a similarly favorable clinical outcome, but with reduced operative time, decreased narcotic usage, and superior pain control without requiring significantly higher costs. The potential for an improved postoperative intracranial electrode monitoring experience makes SEEG especially suitable for pediatric patients.
Collapse
Affiliation(s)
- Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Jonathon J Parker
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Eric S Sussman
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, United States of America
| | - Brenda Porter
- Department of Neurology, Stanford University School of Medicine, United States of America; Division of Pediatric Neurology, Lucile Packard Children's Hospital Stanford, United States of America
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, United States of America; Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford, United States of America.
| |
Collapse
|
26
|
Feng AY, Ho AL, Kim LH, Sussman ES, Pendharkar AV, Iv M, Yeom KW, Halpern CH, Grant GA. Utilization of Novel High-Resolution, MRI-Based Vascular Imaging Modality for Preoperative Stereoelectroencephalography Planning in Children: A Technical Note. Stereotact Funct Neurosurg 2020; 98:1-7. [PMID: 32062664 DOI: 10.1159/000503693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Stereoelectroencephalography (SEEG) is a powerful intracranial diagnostic tool that requires accurate imaging for proper electrode trajectory planning to ensure efficacy and maximize patient safety. Computed tomography (CT) angiography and digital subtraction angiography are commonly used, but recent developments in magnetic resonance angiography allow for high-resolution vascular visualization without added risks of radiation. We report on the accuracy of electrode placement under robotic assistance planning utilizing a novel high-resolution magnetic resonance imaging (MRI)-based imaging modality. METHODS Sixteen pediatric patients between February 2014 and October 2017 underwent SEEG exploration for epileptogenic zone localization. A gadolinium-enhanced 3D T1-weighted spoiled gradient recalled echo sequence with minimum echo time and repetition time was applied for background parenchymal suppression and vascular enhancement. Electrode placement accuracy was determined by analyzing postoperative CT scans laid over preoperative virtual electrode trajectory paths. Entry point, target point, and closest vessel intersection were measured. RESULTS For any intersection along the trajectory path, 57 intersected vessels were measured. The mean diameter of an intersected vessel was 1.0343 ± 0.1721 mm, and 21.05% of intersections involved superficial vessels. There were 157 overall intersection + near-miss events. The mean diameter for an involved vessel was 1.0236 ± 0.0928 mm, and superficial vessels were involved in 20.13%. Looking only at final electrode target, 3 intersection events were observed. The mean diameter of an intersected vessel was 1.0125 ± 0.2227 mm. For intersection + near-miss events, 24 were measured. An involved vessel's mean diameter was 1.1028 ± 0.2634 mm. For non-entry point intersections, 45 intersected vessels were measured. The mean diameter for intersected vessels was 0.9526 ± 0.0689 mm. For non-entry point intersections + near misses, 126 events were observed. The mean diameter for involved vessels was 0.9826 ± 0.1008 mm. CONCLUSION We believe this novel sequence allows better identification of superficial and deeper subcortical vessels compared to conventional T1-weighted gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Austin Y Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Allen L Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Eric S Sussman
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Iv
- Department of Radiology, Stanford University Medical Center, Stanford, California, USA
| | - Kristen W Yeom
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford, California, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA, .,Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford, Stanford, California, USA,
| |
Collapse
|
27
|
Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, Hope OA, Kalamangalam GP, Slater JD, Thompson SA. Analysis of Morbidity and Outcomes Associated With Use of Subdural Grids vs Stereoelectroencephalography in Patients With Intractable Epilepsy. JAMA Neurol 2020; 76:672-681. [PMID: 30830149 DOI: 10.1001/jamaneurol.2019.0098] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance A major change has occurred in the evaluation of epilepsy with the availability of robotic stereoelectroencephalography (SEEG) for seizure localization. However, the comparative morbidity and outcomes of this minimally invasive procedure relative to traditional subdural electrode (SDE) implantation are unknown. Objective To perform a comparative analysis of the relative efficacy, procedural morbidity, and epilepsy outcomes consequent to SEEG and SDE in similar patient populations and performed by a single surgeon at 1 center. Design, Setting and Participants Overall, 239 patients with medically intractable epilepsy underwent 260 consecutive intracranial electroencephalographic procedures to localize their epilepsy. Procedures were performed from November 1, 2004, through June 30, 2017, and data were analyzed in June 2017 and August 2018. Interventions Implantation of SDE using standard techniques vs SEEG using a stereotactic robot, followed by resection or laser ablation of the seizure focus. Main Outcomes and Measures Length of surgical procedure, surgical complications, opiate use, and seizure outcomes using the Engel Epilepsy Surgery Outcome Scale. Results Of the 260 cases included in the study (54.6% female; mean [SD] age at evaluation, 30.3 [13.1] years), the SEEG (n = 121) and SDE (n = 139) groups were similar in age (mean [SD], 30.1 [12.2] vs 30.6 [13.8] years), sex (47.1% vs 43.9% male), numbers of failed anticonvulsants (mean [SD], 5.7 [2.5] vs 5.6 [2.5]), and duration of epilepsy (mean [SD], 16.4 [12.0] vs17.2 [12.1] years). A much greater proportion of SDE vs SEEG cases were lesional (99 [71.2%] vs 53 [43.8%]; P < .001). Seven symptomatic hemorrhagic sequelae (1 with permanent neurological deficit) and 3 infections occurred in the SDE cohort with no clinically relevant complications in the SEEG cohort, a marked difference in complication rates (P = .003). A greater proportion of SDE cases resulted in resection or ablation compared with SEEG cases (127 [91.4%] vs 90 [74.4%]; P < .001). Favorable epilepsy outcomes (Engel class I [free of disabling seizures] or II [rare disabling seizures]) were observed in 57 of 75 SEEG cases (76.0%) and 59 of 108 SDE cases (54.6%; P = .003) amongst patients undergoing resection or ablation, at 1 year. An analysis of only nonlesional cases revealed good outcomes in 27 of 39 cases (69.2%) vs 9 of 26 cases (34.6%) at 12 months in SEEG and SDE cohorts, respectively (P = .006). When considering all patients undergoing evaluation, not just those undergoing definitive procedures, favorable outcomes (Engel class I or II) for SEEG compared with SDE were similar (57 of 121 [47.1%] vs 59 of 139 [42.4%] at 1 year; P = .45). Conclusions and Relevance This direct comparison of large matched cohorts undergoing SEEG and SDE implantation reveals distinctly better procedural morbidity favoring SEEG. These modalities intrinsically evaluate somewhat different populations, with SEEG being more versatile and applicable to a range of scenarios, including nonlesional and bilateral cases, than SDE. The significantly favorable adverse effect profile of SEEG should factor into decision making when patients with pharmacoresistant epilepsy are considered for intracranial evaluations.
Collapse
Affiliation(s)
- Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Brian A Tong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston
| | - Elliott R Friedman
- Department of Radiology, McGovern Medical School, University of Texas Health, Houston
| | - Jessica A Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Gretchen Von Allmen
- Department of Pediatrics, McGovern Medical School, University of Texas Health, Houston
| | - Melissa S Thomas
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Omotola A Hope
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | | | - Jeremy D Slater
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Stephen A Thompson
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| |
Collapse
|
28
|
Stereotactic electroencephalography. Clin Neurol Neurosurg 2020; 189:105640. [DOI: 10.1016/j.clineuro.2019.105640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Drug-resistant epilepsy is a potentially life-threatening condition affecting one-third of people living with epilepsy. Despite existing evidence of improved outcomes in patients who received surgical treatment compared to continued medical treatment, epilepsy surgery remains underused in patients with drug-resistant epilepsy. This article discusses the gap between evidence and practice and common misconceptions about epilepsy surgery and reviews the current diagnostic and therapeutic surgical options. RECENT FINDINGS Three randomized controlled trials comparing the medical versus surgical treatment for patients with drug-resistant epilepsy have shown the superiority of surgery in controlling seizures and improving patients' quality of life. In addition to resective surgery, neuromodulation through devices such as responsive neurostimulation and vagal nerve stimulation have also shown efficacy in seizure control that increases over time. Diagnostic and therapeutic surgical tools are tailored to the needs of each patient. SUMMARY Appropriate patients with drug-resistant epilepsy benefit more from epilepsy surgery than from continuing medical treatment. These patients should be referred to comprehensive epilepsy centers where a thorough presurgical workup and surgical options can be provided. The gap between evidence and practice can be bridged by education, community outreach, and providers' earnest efforts to improve the quality of life of patients with epilepsy.
Collapse
|
30
|
Yan H, Katz JS, Anderson M, Mansouri A, Remick M, Ibrahim GM, Abel TJ. Method of invasive monitoring in epilepsy surgery and seizure freedom and morbidity: A systematic review. Epilepsia 2019; 60:1960-1972. [PMID: 31423575 DOI: 10.1111/epi.16315] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Invasive monitoring is sometimes necessary to guide resective surgery in epilepsy patients, but the ideal method is unknown. In this systematic review, we assess the association of postresection seizure freedom and adverse events in stereoelectroencephalography (SEEG) and subdural electrodes (SDE). METHODS We searched three electronic databases (MEDLINE, Embase, and CENTRAL [Cochrane Central Register of Controlled Trials]) from their inception to January 2018 with the keywords "electroencephalography," "intracranial grid," and "epilepsy." Studies that presented primary quantitative patient data for postresection seizure freedom with at least 1 year of follow-up or complication rates of SEEG- or SDE-monitored patients were included. Two trained investigators independently collected data from eligible studies. Weighted mean differences (WMDs) with 95% confidence interval (CIs) were used as a measure of the association of SEEG or SDE with seizure freedom and with adverse event outcomes. RESULTS Of 11 462 screened records, 48 studies met inclusion criteria. These studies reported on 1973 SEEG patients and 2036 SDE patients. Our systematic review revealed SEEG was associated with 61.0% and SDE was associated with 56.4% seizure freedom after resection (WMD = +5.8%, 95% CI = 4.7-6.9%, P = .001). Furthermore, SEEG was associated with 4.8% and SDE was associated with 15.5% morbidity (WMD = -10.6%, 95% CI = -11.6 to -9.6%, P = .001). SEEG was associated with 0.2% mortality and SDE was associated with 0.4% mortality (WMD = -0.2%, 95% CI = -0.3 to -0.1%, P = .001). SIGNIFICANCE In this systematic review of SEEG and SDE invasive monitoring techniques, SEEG was associated with fewer surgical resections yet better seizure freedom outcomes in those undergoing resections. SEEG was also associated with lower mortality and morbidity than SDE. Clinical studies directly comparing these modalities are necessary to understand the relative rates of seizure freedom, morbidity, and mortality associated with these techniques.
Collapse
Affiliation(s)
- Han Yan
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Joel S Katz
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Anderson
- Library and Information Services, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alireza Mansouri
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Hospital for Sick Children, Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: A systematic review and meta-analysis. Seizure 2019; 70:12-19. [DOI: 10.1016/j.seizure.2019.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
|
32
|
Jobst BC, Ben-Menachem E, Chapman KE, Fu A, Goldman A, Hirsch LJ, Jehi LE, Kossoff EH, Plueger M, Rho JM, Schevon CA, Shinnar S, Sperling MR, Simeone TA, Wagner JL, Lado F. Highlights From the Annual Meeting of the American Epilepsy Society 2018. Epilepsy Curr 2019; 19:152-158. [PMID: 31050308 PMCID: PMC6610384 DOI: 10.1177/1535759719844486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The American Epilepsy Society Meeting in New Orleans attracted more than 5900 attendees. There was a lively exchange of new science, innovation, education, clinical practice, and many other items related to epilepsy. Educational symposia were a major part of the meeting and explored varying topics of interest for all types of epilepsy professionals. This article reviews highlights of the meeting presented in major symposia. Topics ranged from how to treat varying aspects of epilepsy as a consultant in the hospital to finding the scientific underpinning of the interaction between sleep and epilepsy. Pros and cons of novel antiseizure medications, dietary, and stimulation treatments were discussed. Epilepsy may impair memory and we need to learn what is the pathophysiologic relationship. Febrile status epilepticus may have severe consequences for a later life with seizures. Epilepsy professionals should be very well aware of the ethical implications of devasting seizures and their associated disability. These are just a few select topics of the many that we need to study further to archive the final goal to improve the lives of patients with epilepsy.
Collapse
|
33
|
Tomlinson SB, Buch VP, Armstrong D, Kennedy BC. Stereoelectroencephalography in Pediatric Epilepsy Surgery. J Korean Neurosurg Soc 2019; 62:302-312. [PMID: 31085956 PMCID: PMC6514312 DOI: 10.3340/jkns.2019.0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Stereoelectroencephalography (SEEG) is an invasive technique used during the surgical management of medically refractory epilepsy. The utility of SEEG rests in its ability to survey the three-dimensional organization of the epileptogenic zone as well as nearby eloquent cortices. Once concentrated to specialized centers in Europe and Canada, the SEEG methodology has gained worldwide popularity due to its favorable morbidity profile, superior coverage of deep structures, and ability to perform multilobar explorations without the need for craniotomy. This rapid shift in practice represents both a challenge and an opportunity for pediatric neurosurgeons familiar with the subdural grid approach. The purpose of this review is to discuss the indications, technique, and safety of long-term SEEG monitoring in children. In addition to reviewing the conceptual and technical points of the diagnostic evaluation, attention will also be given to SEEG-based interventions (e.g., radiofrequency thermo-coagulation).
Collapse
Affiliation(s)
- Samuel B Tomlinson
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek P Buch
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dallas Armstrong
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
34
|
Katz JS, Abel TJ. Stereoelectroencephalography Versus Subdural Electrodes for Localization of the Epileptogenic Zone: What Is the Evidence? Neurotherapeutics 2019; 16:59-66. [PMID: 30652253 PMCID: PMC6361059 DOI: 10.1007/s13311-018-00703-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Accurate and safe localization of epileptic foci is the crux of surgical therapy for focal epilepsy. As an initial evaluation, patients with drug-resistant epilepsy often undergo evaluation by noninvasive methods to identify the epileptic focus (i.e., the epileptogenic zone (EZ)). When there is incongruence of noninvasive neuroimaging, electroencephalographic, and clinical data, direct intracranial recordings of the brain are often necessary to delineate the EZ and determine the best course of treatment. Stereoelectroencephalography (SEEG) and subdural electrodes (SDEs) are the 2 most common methods for recording directly from the cortex to delineate the EZ. For the past several decades, SEEG and SDEs have been used almost exclusively in specific geographic regions (i.e., France and Italy for stereo-EEG and elsewhere for SDEs) for virtually the same indications. In the last decade, however, stereo-EEG has started to spread from select centers in Europe to many locations worldwide. Nevertheless, it is still not the preferred method for invasive localization of the EZ at many centers that continue to employ SDEs exclusively. Despite the increased dissemination of the SEEG method throughout the globe, important questions remain unanswered. Which method (SEEG or SDEs) is superior for identification of the EZ and does it depend on the etiology of epilepsy? Which technique is safer and does this hold for all patient populations? Should these 2 methods have equivalent indications or be used selectively for different focal epilepsies? In this review, we seek to address these questions using current invasive monitoring literature. Available meta-analyses of observational data suggest that SEEG is safer than SDEs, but it is less clear from available data which method is more accurate at delineating the EZ.
Collapse
Affiliation(s)
- Joel S Katz
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15238, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15238, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
35
|
Steriade C, Martins W, Bulacio J, Morita-Sherman ME, Nair D, Gupta A, Bingaman W, Gonzalez-Martinez J, Najm I, Jehi L. Localization yield and seizure outcome in patients undergoing bilateral SEEG exploration. Epilepsia 2018; 60:107-120. [PMID: 30588603 DOI: 10.1111/epi.14624] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We aimed to determine the rates and predictors of resection and seizure freedom after bilateral stereo-electroencephalography (SEEG) implantation. METHODS We reviewed 184 patients who underwent bilateral SEEG implantation (2009-2015). Noninvasive and invasive evaluation findings were collected. Outcomes of interest included subsequent resection and seizure freedom. Statistical analyses employed multivariable logistic regression and proportional hazard modeling. Preoperative and postoperative seizure frequency, severity, and quality of life scales were also compared. RESULTS Following bilateral SEEG implantation, 106 of 184 patients (58%) underwent resection. Single seizure type (P = 0.007), a family history of epilepsy (P = 0.003), 10 or more seizures per month (P = 0.004), lower number of electrodes (P = 0.02), or sentinel electrode placement (P = 0.04) was predictive of undergoing a resection, as were lack of nonlocalized (P < 0.0001) or bilateral (P < 0.0001) ictal-onset zones on SEEG. Twenty-six of 81 patients (32% with follow-up greater than 1 year) remained seizure-free. Predictors of seizure freedom were single seizure type (P = 0.01), short epilepsy duration (P = 0.008), use of 2 or fewer antiepileptic drugs (AEDs) at the time of surgery (P = 0.0006), primary localization hypothesis involving the frontal lobe (P = 0.002), sentinel electrode placement only (P = 0.02), and lack of overlap between ictal-onset zone and eloquent cortex (P = 0.04), along with epilepsy substrate histopathology (P = 0.007). Complete resection of a suspected focal cortical dysplasia showed a trend to increased likelihood of seizure freedom (P = 0.09). The 44 of 55 patients (80%) who underwent resection and experienced seizure recurrence had >50% seizure reduction, as opposed to 26 of 45 patients (58%) who continued medical therapy alone (P = 0.003). Seventy-two percent of patients had a clinically meaningful quality of life improvement (>10% decrease in the Quality of Life in Epilepsy [QOLIE-10] score) at 1 year. SIGNIFICANCE A strong preimplantation hypothesis of a suspected unifocal epilepsy increases the odds of resection and seizure freedom. We discuss a tailored approach, taking into account localization hypothesis and suspected epilepsy etiology in guiding implantation and subsequent surgical strategy.
Collapse
Affiliation(s)
- Claude Steriade
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - William Martins
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio.,Porto Alegre Epilepsy Surgery Program, Neurology and Neurosurgery Services, Hospital São Lucas, Porto Alegre, Brazil
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ajay Gupta
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Imad Najm
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
36
|
Ho AL, Feng AY, Kim LH, Pendharkar AV, Sussman ES, Halpern CH, Grant GA. Stereoelectroencephalography in children: a review. Neurosurg Focus 2018; 45:E7. [DOI: 10.3171/2018.6.focus18226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stereoelectroencephalography (SEEG) is an intracranial diagnostic measure that has grown in popularity in the United States as outcomes data have demonstrated its benefits and safety. The main uses of SEEG include 1) exploration of deep cortical/sulcal structures; 2) bilateral recordings; and 3) 3D mapping of epileptogenic zones. While SEEG has gradually been accepted for treatment in adults, there is less consensus on its utility in children. In this literature review, the authors seek to describe the current state of SEEG with a focus on the more recent technology-enabled surgical techniques and demonstrate its efficacy in the pediatric epilepsy population.
Collapse
Affiliation(s)
- Allen L. Ho
- 1Department of Neurosurgery, Stanford University School of Medicine; and
| | - Austin Y. Feng
- 1Department of Neurosurgery, Stanford University School of Medicine; and
| | - Lily H. Kim
- 1Department of Neurosurgery, Stanford University School of Medicine; and
| | | | - Eric S. Sussman
- 1Department of Neurosurgery, Stanford University School of Medicine; and
| | - Casey H. Halpern
- 1Department of Neurosurgery, Stanford University School of Medicine; and
| | - Gerald A. Grant
- 1Department of Neurosurgery, Stanford University School of Medicine; and
- 2Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Stanford, California
| |
Collapse
|
37
|
Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiol Clin 2018; 48:15-24. [DOI: 10.1016/j.neucli.2017.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Blount JP. Extratemporal resections in pediatric epilepsy surgery-an overview. Epilepsia 2017; 58 Suppl 1:19-27. [PMID: 28386926 DOI: 10.1111/epi.13680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 11/28/2022]
Abstract
Despite optimized medical treatment, approximately one third of all patients with epilepsy continue to have seizures and by definition have medically resistant epilepsy (MRE). For these patients, surgical disruption of the epileptogenic network may enable freedom or great improvement in control of their seizures. The success of surgery is dependent on accurate localization of the epileptogenic zone and network. Epilepsy arising from regions of cortical dysplasia within the neocortex of the frontal, parietal, and occipital lobes show a propensity for reorganization and progressive decline in seizure freedom and consequent poorer surgical outcome. These procedures often require staged investigation with intracranial electrodes via subdural grids or stereoelectroencephalography (SEEG) and are considered extratemporal resections (ETRs). Central concepts include the following: (1) localization of epileptogenic and eloquent functional regions, (2) safe and effective placement of intracranial electrode arrays, (3) resection of epileptogenic cortex, and (4) avoidance of complications. Each of these concepts is summarized and developed in this summary paper.
Collapse
Affiliation(s)
- Jeffrey P Blount
- Pediatric Neurosurgery, Children's of Alabama, Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
39
|
Shi J, Lacuey N, Lhatoo S. Surgical outcome of MRI-negative refractory extratemporal lobe epilepsy. Epilepsy Res 2017; 133:103-108. [PMID: 28477458 DOI: 10.1016/j.eplepsyres.2017.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study is to determine outcome of resective epilepsy surgery in MRI-negative extratemporal lobe epilepsy (MNETLE) patients who underwent invasive evaluations and to determine factors governing outcome. METHODS We studied 28 patients who underwent resective epilepsy surgery for MNETLE from August 2006 to November 2015, in whom complete follow-up information was available. Electro-clinical, pathological and surgical data were evaluated. 24 patients (82.8%) were explored with intracranial EEG (9 stereoelectroencephalography (SEEG), 7 subdural grids and 8 both). All patients were followed for at least 6 months. RESULTS During a mean follow up period of 32 [6-113] months, 13 (46.4%) patients became seizure-free (ILAE 1) and 18 (64.3%) had a good (ILAE 1, 2, 3) outcome. 21 (75.0%) patients had focal cortical dysplasia (FCD). Univariate analysis showed that more restricted (regional) interictal and ictal epileptiform discharges in surface EEG were significantly associated with seizure freedom (P=0.016 and P=0.024). Multivariate analysis confirmed that having ≥120 electrode contacts in the evaluation is an independent variable predicting seizure freedom (HR=4.283, 95% CI=1.342-13.676, P=0.014). CONCLUSION Invasive EEG is a powerful tool in the pre-surgical evaluation of patients with MNETLE. Invasive EEG implantation that include the irritative zone and EEG onset zone as indicated by surface EEG, as well as wider brain coverage predict seizure freedom, contingent upon a sound anatomo-electro-clinical hypothesis for implantation.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Neurosurgery, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China.
| | - Nuria Lacuey
- Epilepsy Center, UH Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Samden Lhatoo
- Epilepsy Center, UH Case Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
40
|
Abstract
Stimulation has been performed experimentally and in small case series to treat epilepsy since the 1970s. Since the introduction of vagus nerve stimulation in 1997 and intracranial stimulation methods in 2011 into patient care, invasive stimulation has become a rapidly developing but infrequently used therapeutic option in Europe. Whereas vagus nerve stimulation is frequently used, particularly in the USA, intracranial stimulation differs in its regional availability. In order to improve the efficacy of stimulation, develop criteria for its use and assure low complication rates, a concentration on experienced centers and multicenter data acquisition and sharing are needed.Invasive electroencephalographic (EEG) monitoring with subdural electrodes and especially with stereotactically implanted depth electrodes have been used increasingly more often for presurgical evaluation in recent years. They are applied when non-invasive diagnostics show insufficient results to exactly identify the location and extent of the epileptogenic zone or cannot be adequately distinguished from eloquent cortex areas. Complications include intracranial hemorrhage, infections and increased intracranial pressure but lasting deficits or even death are rare (≤2 %). The outcome of invasive monitoring is inferior to non-invasive monitoring because of the higher degree of complexity of the cases; however, it is far superior to the seizure-free rates achieved by anticonvulsant drug treatment alone.
Collapse
|
41
|
Park JT, Baca Vaca GF, Avery J, Miller JP. Utility of Stereoelectroencephalography in Children with Dysembryoplastic Neuroepithelial Tumor and Cortical Malformation. Neurodiagn J 2017; 57:191-210. [PMID: 28898173 DOI: 10.1080/21646821.2017.1326270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Uncontrolled seizures in children can contribute to irreversible cognitive impairment and developmental delay, in addition to placing them at risk for sudden unexplained death in epileptic patients (SUDEP). Since its introduction at Saint Ann Hospital in Paris in the 1960s, stereoelectroencephalography (SEEG) is increasingly being utilized at epilepsy centers in the United States as an invasive tool to help localize the seizure focus in drug-resistant focal epilepsy. INDICATIONS Children with symptomatic epilepsy, commonly due to cortical dysplasia and dysembryoplastic neuroepithelial tumor (DNET), may benefit from SEEG investigation. The arrangement of SEEG electrodes is individually tailored based on the suspected location of the epileptogenic zone (EZ). The implanted depth electrodes are used to electrically stimulate the corresponding cortices to obtain information about the topography of eloquent cortex and EZ. Morbidity: Surgical morbidity in these children undergoing SEEG investigation is low, but not negligible. The number of electrodes directly correlates with the risk of intraoperative complication. Thus a risk and benefit analysis needs to be carefully considered for each patient. Neurodiagnostic technology: Both during and after the SEEG electrode implantation, the intraoperative monitoring and EEG technologists play a vital role in the successful monitoring of the patient. CONCLUSION SEEG is an important tool in the process of epilepsy surgery in children with symptomatic epilepsy, commonly due to cortical dysplasia and DNET.
Collapse
Affiliation(s)
- Jun T Park
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Guadalupe Fernandez Baca Vaca
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| | - Jennifer Avery
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
| | - Jonathan P Miller
- a Epilepsy Center , Cleveland University Hospitals , Cleveland , Ohio
- b Case Western Reserve University School of Medicine , Cleveland , Ohio
| |
Collapse
|