1
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Noll KR, Asman P, Tasnim I, Hall M, Connelly K, Swamy C, Ene C, Tummala S, Grasu RM, Liu HL, Kumar VA, Muir M, Prinsloo S, Michener H, Wefel JS, Ince NF, Prabhu SS. Intraoperative language mapping guided by real-time visualization of gamma band modulation electrocorticograms: Case report and proof of concept. Neurooncol Pract 2024; 11:92-100. [PMID: 38222047 PMCID: PMC10785572 DOI: 10.1093/nop/npad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Electrocorticography (ECoG) language mapping is often performed extraoperatively, frequently involves offline processing, and relationships with direct cortical stimulation (DCS) remain variable. We sought to determine the feasibility and preliminary utility of an intraoperative language mapping approach guided by real-time visualization of electrocorticograms. Methods A patient with astrocytoma underwent awake craniotomy with intraoperative language mapping, utilizing a dual iPad stimulus presentation system coupled to a real-time neural signal processing platform capable of both ECoG recording and delivery of DCS. Gamma band modulations in response to 4 language tasks at each electrode were visualized in real-time. Next, DCS was conducted for each neighboring electrode pair during language tasks. Results All language tasks resulted in strongest heat map activation at an electrode pair in the anterior to mid superior temporal gyrus. Consistent speech arrest during DCS was observed for Object and Action naming tasks at these same electrodes, indicating good correspondence with ECoG heat map recordings. This region corresponded well with posterior language representation via preoperative functional MRI. Conclusions Intraoperative real-time visualization of language task-based ECoG gamma band modulation is feasible and may help identify targets for DCS. If validated, this may improve the efficiency and accuracy of intraoperative language mapping.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priscella Asman
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Israt Tasnim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Matthew Hall
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Katherine Connelly
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chandra Swamy
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roxana M Grasu
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hayley Michener
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Huggins JE, Krusienski D, Vansteensel MJ, Valeriani D, Thelen A, Stavisky S, Norton JJS, Nijholt A, Müller-Putz G, Kosmyna N, Korczowski L, Kapeller C, Herff C, Halder S, Guger C, Grosse-Wentrup M, Gaunt R, Dusang AN, Clisson P, Chavarriaga R, Anderson CW, Allison BZ, Aksenova T, Aarnoutse E. Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. BRAIN-COMPUTER INTERFACES 2022; 9:69-101. [PMID: 36908334 PMCID: PMC9997957 DOI: 10.1080/2326263x.2021.2009654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.
Collapse
Affiliation(s)
- Jane E Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Dean Krusienski
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Dept of Neurosurgery, University Medical Center Utrecht, The Netherlands
| | | | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany
| | | | - James J S Norton
- National Center for Adaptive Neurotechnologies, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208
| | - Anton Nijholt
- Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - Gernot Müller-Putz
- Institute of Neural Engineering, GrazBCI Lab, Graz University of Technology, Stremayrgasse 16/4, 8010 Graz, Austria
| | - Nataliya Kosmyna
- Massachusetts Institute of Technology (MIT), Media Lab, E14-548, Cambridge, MA 02139, Unites States
| | | | | | - Christian Herff
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Christoph Guger
- g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, Vienna Cognitive Science Hub, Data Science @ Uni Vienna University of Vienna
| | - Robert Gaunt
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA, 3520 5th Ave, Suite 300, Pittsburgh, PA 15213, 412-383-1426
| | - Aliceson Nicole Dusang
- Department of Electrical and Computer Engineering, School of Engineering, Brown University, Carney Institute for Brain Science, Brown University, Providence, RI
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence, RI
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Ricardo Chavarriaga
- IEEE Standards Association Industry Connections group on neurotechnologies for brain-machine interface, Center for Artificial Intelligence, School of Engineering, ZHAW-Zurich University of Applied Sciences, Switzerland, Switzerland
| | - Charles W Anderson
- Department of Computer Science, Molecular, Cellular and Integrative Neurosience Program, Colorado State University, Fort Collins, CO 80523
| | - Brendan Z Allison
- Dept. of Cognitive Science, Mail Code 0515, University of California at San Diego, La Jolla, United States, 619-534-9754
| | - Tetiana Aksenova
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Erik Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
A distributed network supports spatiotemporal cerebral dynamics of visual naming. Clin Neurophysiol 2021; 132:2948-2958. [PMID: 34715419 DOI: 10.1016/j.clinph.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Collapse
|
6
|
Erez Y, Assem M, Coelho P, Romero-Garcia R, Owen M, McDonald A, Woodberry E, Morris RC, Price SJ, Suckling J, Duncan J, Hart MG, Santarius T. Intraoperative mapping of executive function using electrocorticography for patients with low-grade gliomas. Acta Neurochir (Wien) 2021; 163:1299-1309. [PMID: 33222010 PMCID: PMC8053659 DOI: 10.1007/s00701-020-04646-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023]
Abstract
Background Intraoperative functional mapping with direct electrical stimulation during awake surgery for patients with diffuse low-grade glioma has been used in recent years to optimize the balance between surgical resection and quality of life following surgery. Mapping of executive functions is particularly challenging because of their complex nature, with only a handful of reports published so far. Here, we propose the recording of neural activity directly from the surface of the brain using electrocorticography to map executive functions and demonstrate its feasibility and potential utility. Methods To track a neural signature of executive function, we recorded neural activity using electrocorticography during awake surgery from the frontal cortex of three patients judged to have an appearance of diffuse low-grade glioma. Based on existing functional magnetic resonance imaging (fMRI) evidence from healthy participants for the recruitment of areas associated with executive function with increased task demands, we employed a task difficulty manipulation in two counting tasks performed intraoperatively. Following surgery, the data were extracted and analyzed offline to identify increases in broadband high-gamma power with increased task difficulty, equivalent to fMRI findings, as a signature of activity related to executive function. Results All three patients performed the tasks well. Data were recorded from five electrode strips, resulting in data from 15 channels overall. Eleven out of the 15 channels (73.3%) showed significant increases in high-gamma power with increased task difficulty, 26.6% of the channels (4/15) showed no change in power, and none of the channels showed power decrease. High-gamma power increases with increased task difficulty were more likely in areas that are within the canonical frontoparietal network template. Conclusions These results are the first step toward developing electrocorticography as a tool for mapping of executive function complementarily to direct electrical stimulation to guide resection. Further studies are required to establish this approach for clinical use.
Collapse
|
7
|
Ervin B, Buroker J, Rozhkov L, Holloway T, Horn PS, Scholle C, Byars AW, Mangano FT, Leach JL, Greiner HM, Holland KD, Arya R. High-gamma modulation language mapping with stereo-EEG: A novel analytic approach and diagnostic validation. Clin Neurophysiol 2020; 131:2851-2860. [PMID: 33137575 DOI: 10.1016/j.clinph.2020.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A novel analytic approach for task-related high-gamma modulation (HGM) in stereo-electroencephalography (SEEG) was developed and evaluated for language mapping. METHODS SEEG signals, acquired from drug-resistant epilepsy patients during a visual naming task, were analyzed to find clusters of 50-150 Hz power modulations in time-frequency domain. Classifier models to identify electrode contacts within the reference neuroanatomy and electrical stimulation mapping (ESM) speech/language sites were developed and validated. RESULTS In 21 patients (9 females), aged 4.8-21.2 years, SEEG HGM model predicted electrode locations within Neurosynth language parcels with high diagnostic odds ratio (DOR 10.9, p < 0.0001), high specificity (0.85), and fair sensitivity (0.66). Another SEEG HGM model classified ESM speech/language sites with significant DOR (5.0, p < 0.0001), high specificity (0.74), but insufficient sensitivity. Time to largest power change reliably localized electrodes within Neurosynth language parcels, while, time to center-of-mass power change identified ESM sites. CONCLUSIONS SEEG HGM mapping can accurately localize neuroanatomic and ESM language sites. SIGNIFICANCE Predictive modelling incorporating time, frequency, and magnitude of power change is a useful methodology for task-related HGM, which offers insights into discrepancies between HGM language maps and neuroanatomy or ESM.
Collapse
Affiliation(s)
- Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Buroker
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Timothy Holloway
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig Scholle
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna W Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Pediatric Neuro-radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hansel M Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
9
|
Huggins JE, Guger C, Aarnoutse E, Allison B, Anderson CW, Bedrick S, Besio W, Chavarriaga R, Collinger JL, Do AH, Herff C, Hohmann M, Kinsella M, Lee K, Lotte F, Müller-Putz G, Nijholt A, Pels E, Peters B, Putze F, Rupp R, Schalk G, Scott S, Tangermann M, Tubig P, Zander T. Workshops of the Seventh International Brain-Computer Interface Meeting: Not Getting Lost in Translation. BRAIN-COMPUTER INTERFACES 2019; 6:71-101. [PMID: 33033729 PMCID: PMC7539697 DOI: 10.1080/2326263x.2019.1697163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The Seventh International Brain-Computer Interface (BCI) Meeting was held May 21-25th, 2018 at the Asilomar Conference Grounds, Pacific Grove, California, United States. The interactive nature of this conference was embodied by 25 workshops covering topics in BCI (also called brain-machine interface) research. Workshops covered foundational topics such as hardware development and signal analysis algorithms, new and imaginative topics such as BCI for virtual reality and multi-brain BCIs, and translational topics such as clinical applications and ethical assumptions of BCI development. BCI research is expanding in the diversity of applications and populations for whom those applications are being developed. BCI applications are moving toward clinical readiness as researchers struggle with the practical considerations to make sure that BCI translational efforts will be successful. This paper summarizes each workshop, providing an overview of the topic of discussion, references for additional information, and identifying future issues for research and development that resulted from the interactions and discussion at the workshop.
Collapse
Affiliation(s)
- Jane E Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States, 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744
| | - Christoph Guger
- g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria
| | - Erik Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Brendan Allison
- Dept. of Cognitive Science, Mail Code 0515, University of California at San Diego, La Jolla, United States
| | - Charles W Anderson
- Department of Computer Science, Molecular, Cellular and Integrative Neurosience Program, Colorado State University, Fort Collins, CO 80523
| | - Steven Bedrick
- Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR 97239
| | - Walter Besio
- Department of Electrical, Computer, & Biomedical Engineering and Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, Rhode Island, USA, CREmedical Corp. Kingston, Rhode Island, USA
| | - Ricardo Chavarriaga
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne - EPFL, Switzerland
| | - Jennifer L Collinger
- University of Pittsburgh, Department of Physical Medicine and Rehabilitation, VA Pittsburgh Healthcare System, Department of Veterans Affairs, 3520 5th Ave, Pittsburgh, PA, 15213
| | - An H Do
- UC Irvine Brain Computer Interface Lab, Department of Neurology, University of California, Irvine
| | - Christian Herff
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Matthias Hohmann
- Max Planck Institute for Intelligent Systems, Department for Empirical Inference, Max-Planck-Ring 4, 72074 Tübingen, Germany
| | - Michelle Kinsella
- Oregon Health & Science University, Institute on Development & Disability, 707 SW Gaines St, #1290, Portland, OR 97239
| | - Kyuhwa Lee
- Swiss Federal Institute of Technology in Lausanne-EPFL
| | - Fabien Lotte
- Inria Bordeaux Sud-Ouest, LaBRI (Univ. Bordeaux/CNRS/Bordeaux INP), 200 avenue de la vieille tour, 33405, Talence Cedex, France
| | | | - Anton Nijholt
- Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - Elmar Pels
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Betts Peters
- Oregon Health & Science University, Institute on Development & Disability, 707 SW Gaines St, #1290, Portland, OR 97239
| | - Felix Putze
- University of Bremen, Germany, Cognitive Systems Lab, University of Bremen, Enrique-Schmidt-Straße 5 (Cartesium), 28359 Bremen
| | - Rüdiger Rupp
- Spinal Cord Injury Center, Heidelberg University Hospital
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Wadsworth Center, NYS Dept. of Health, Dept. of Neurology, Albany Medical College, Dept. of Biomed. Sci., State Univ. of New York at Albany, Center for Medical Sciences 2003, 150 New Scotland Avenue, Albany, New York 12208
| | - Stephanie Scott
- Department of Media Communications, Colorado State University, Fort Collins, CO 80523
| | - Michael Tangermann
- Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Computer Science Dept., University of Freiburg, Germany, Autonomous Intelligent Systems Lab, Computer Science Dept., University of Freiburg, Germany
| | - Paul Tubig
- Department of Philosophy, Center for Neurotechnology, University of Washington, Savery Hall, Room 361, Seattle, WA 98195
| | - Thorsten Zander
- Team PhyPA, Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany, 7 Zander Laboratories B.V., Amsterdam, The Netherlands
| |
Collapse
|
10
|
Similarity of spatiotemporal dynamics of language-related ECoG high-gamma modulation in Japanese and English speakers. Clin Neurophysiol 2019; 130:1403-1404. [DOI: 10.1016/j.clinph.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/17/2022]
|
11
|
Ikegaya N, Motoi H, Iijima K, Takayama Y, Kambara T, Sugiura A, Silverstein BH, Iwasaki M, Asano E. Spatiotemporal dynamics of auditory and picture naming-related high-gamma modulations: A study of Japanese-speaking patients. Clin Neurophysiol 2019; 130:1446-1454. [PMID: 31056408 DOI: 10.1016/j.clinph.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the spatiotemporal dynamics of auditory and picture naming-related cortical activation in Japanese-speaking patients. METHODS Ten patients were assigned auditory naming and picture naming tasks during extraoperative intracranial EEG recording in a tertiary epilepsy center. Time-frequency analysis determined at what electrode sites and at what time windows during each task the amplitude of high-gamma activity (65-95 Hz) was modulated. RESULTS The superior-temporal gyrus on each hemisphere showed high-gamma augmentation during sentence listening, whereas the left middle-temporal and inferior-frontal gyri showed high-gamma augmentation peaking around stimulus offset. Auditory naming-specific high-gamma augmentation was noted in the bilateral superior-temporal gyri as well as left frontal-parietal-temporal perisylvian network regions, whereas picture naming-specific augmentation was noted in the occipital-fusiform regions, bilaterally. The inferior pre- and postcentral gyri on each hemisphere showed modality-common high-gamma augmentation time-locked to overt responses. CONCLUSIONS The spatiotemporal dynamics of auditory and picture naming-related high-gamma augmentation in Japanese-speaking patients were qualitatively similar to those previously reported in studies of English-speaking patients. SIGNIFICANCE The cortical dynamics for auditory sentence recognition are at least partly shared by cohorts speaking two distinct languages. Multicenter studies regarding the clinical utility of high-gamma language mapping across Eastern and Western hemispheres may be feasible.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Motoi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan; Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Toshimune Kambara
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Psychology, Hiroshima University, Hiroshima 7398524, Japan
| | - Ayaka Sugiura
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan.
| | - Eishi Asano
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Arya R, Ervin B, Wilson JA, Byars AW, Rozhkov L, Buroker J, Horn PS, Scholle C, Fujiwara H, Greiner HM, Leach JL, Rose DF, Mangano FT, Glauser TA, Holland KD. Development of information sharing in language neocortex in childhood-onset drug-resistant epilepsy. Epilepsia 2019; 60:393-405. [PMID: 30740659 DOI: 10.1111/epi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We studied age-related dynamics of information sharing among cortical language regions with electrocorticographic high-gamma modulation during picture-naming and story-listening tasks. METHODS Seventeen epilepsy patients aged 4-19 years, undergoing extraoperative monitoring with left-hemispheric subdural electrodes, were included. Mutual information (MI), a nondirectional measure of shared information, between 16 pairs of cortical regions of interest, was computed from trial-averaged 70-150 Hz power modulations during language tasks. Impact of age on pairwise MI between language regions and their determinants were ascertained with regression analysis. RESULTS During picture naming, significant increase in MI with age was seen between pairwise combinations of Broca's area, inferior precentral gyrus (iPreC), and frontal association cortex (FAC); Wernicke's area and posterior association cortex (PAC); and Broca's and Wernicke's areas. During story listening, significant age-related increase in MI was seen between Wernicke's area and either Broca's area, FAC, or PAC; and between Broca's area and FAC. Significant impact of baseline intelligence quotient was seen on the relationship between age and MI for all pairs, except between Broca's area and iPreC. The mean MI was higher during naming compared to listening for pairs including iPreC with Broca's area, FAC, or PAC and was lower for pairs of Wernicke's area or PAC with anterior language regions. SIGNIFICANCE Information sharing matures with age "within" frontal and temporoparietal language cortices, and "between" Broca's and Wernicke's areas. This study provides evidence for distinct patterns of developmental plasticity within perisylvian language cortex and has implications for planning epilepsy surgery.
Collapse
Affiliation(s)
- Ravindra Arya
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brian Ervin
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, Ohio
| | - J Adam Wilson
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anna W Byars
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leonid Rozhkov
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Buroker
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Horn
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Craig Scholle
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hisako Fujiwara
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hansel M Greiner
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James L Leach
- Division of Pediatric Neuroradiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Douglas F Rose
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tracy A Glauser
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine D Holland
- Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
14
|
Ruis C. Monitoring cognition during awake brain surgery in adults: A systematic review. J Clin Exp Neuropsychol 2018; 40:1081-1104. [DOI: 10.1080/13803395.2018.1469602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carla Ruis
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Mooij AH, Sterkman LCM, Zijlmans M, Huiskamp GJM. Electrocorticographic high gamma language mapping: Mind the pitfalls of comparison with electrocortical stimulation. Epilepsy Behav 2018. [PMID: 29525721 DOI: 10.1016/j.yebeh.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- A H Mooij
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - L C M Sterkman
- Faculty of Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - M Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - G J M Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
16
|
ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping. Epilepsy Behav 2018; 79:26-33. [PMID: 29247963 PMCID: PMC5815885 DOI: 10.1016/j.yebeh.2017.10.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This meta-analysis compared diagnostic validity of electrocorticographic (ECoG) high-γ modulation (HGM) with electrical stimulation mapping (ESM) for presurgical language localization. METHODS From a structured literature search, studies with electrode level data comparing ECoG HGM and ESM for language localization were included in the meta-analysis. Outcomes included global measures of diagnostic validity: area under the summary receiver operating characteristic (SROC) curve (AUC), and diagnostic odds ratio (DOR); as well as pooled estimates of sensitivity and specificity. Clinical and technical determinants of sensitivity/specificity were explored. RESULTS Fifteen studies were included in qualitative synthesis, and 10 studies included in the meta-analysis (number of patients 1-17, mean age 10.3-53.6years). Overt picture naming was the most commonly used task for language mapping with either method. Electrocorticographic high-γ modulation was analyzed at 50-400Hz with different bandwidths in individual studies. For ESM, pulse duration, train duration, and maximum current varied greatly among studies. Sensitivity (0.23-0.99), specificity (0.48-0.96), and DOR (1.45-376.28) varied widely across studies. The pooled estimates are: sensitivity 0.61 (95% CI 0.44, 0.76), specificity 0.79 (95% CI 0.68, 0.88), and DOR 6.44 (95% CI 3.47, 11.94). Area under the SROC curve was 0.77. Results of bivariate meta-regression were limited by small samples for individual variables. CONCLUSION Electrocorticographic high-γ modulation is a specific but not sensitive method for language localization compared with gold-standard ESM. Given the pooled DOR of 6.44 and AUC of 0.77, ECoG HGM can fairly reliably ascertain electrodes overlying ESM cortical language sites.
Collapse
|