1
|
Petrovčič R, Rakusa M, Markota A. Monitoring of Cerebral Blood Flow Autoregulation after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1381. [PMID: 39336422 PMCID: PMC11433513 DOI: 10.3390/medicina60091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Background: Cardiac arrest remains one of the leading causes of death. After successful resuscitation of patients in cardiac arrest, post-cardiac arrest syndrome develops, part of it being an impaired cerebral blood flow autoregulation. Monitoring cerebral blood flow autoregulation after cardiac arrest is important for optimizing patient care and prognosticating patients' survival, yet remains a challenge. There are still gaps in clinical implications and everyday use. In this article, we present a systematic review of studies with different methods of monitoring cerebral blood flow autoregulation after non-traumatic cardiac arrest. Methods: A comprehensive literature search was performed from 1 June 2024 to 27 June 2024 by using multiple databases: PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. Inclusion criteria were studies with an included description of the measurement of cerebral blood flow autoregulation in adult patients after non-traumatic cardiac arrest. Results: A total of 16 studies met inclusion criteria. Our data show that the most used methods in the reviewed studies were near-infrared spectroscopy and transcranial Doppler. The most used mathematical methods for calculating cerebral autoregulation were cerebral oximetry index, tissue oxygenation reactivity index, and mean flow index. Conclusions: The use of various monitoring and mathematical methods for calculating cerebral blood flow autoregulation poses a challenge for standardization, validation, and daily use in clinical practice. In the future studies, focus should be considered on clinical validation and transitioning autoregulation monitoring techniques to everyday clinical practice, which could improve the survival outcomes of patients after cardiac arrest.
Collapse
Affiliation(s)
- Rok Petrovčič
- Emergency Department, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Andrej Markota
- Department of Intensive Internal Medicine, Division of Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
2
|
Brasil S, Godoy DA, Videtta W, Rubiano AM, Solla D, Taccone FS, Robba C, Rasulo F, Aries M, Smielewski P, Meyfroidt G, Battaglini D, Hirzallah MI, Amorim R, Sampaio G, Moulin F, Deana C, Picetti E, Kolias A, Hutchinson P, Hawryluk GW, Czosnyka M, Panerai RB, Shutter LA, Park S, Rynkowski C, Paranhos J, Silva THS, Malbouisson LMS, Paiva WS. A Comprehensive Perspective on Intracranial Pressure Monitoring and Individualized Management in Neurocritical Care: Results of a Survey with Global Experts. Neurocrit Care 2024:10.1007/s12028-024-02008-z. [PMID: 38811514 DOI: 10.1007/s12028-024-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | | | - Walter Videtta
- Intensive Care Unit, Hospital Posadas, Buenos Aires, Argentina
| | | | - Davi Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Robba
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Frank Rasulo
- Neuroanesthesia, Neurocritical and Postoperative Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Denise Battaglini
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Mohammad I Hirzallah
- Departments of Neurology, Neurosurgery, and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robson Amorim
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Gisele Sampaio
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Fabiano Moulin
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | | | | | - Gregory W Hawryluk
- Cleveland Clinic Neurological Institute, Akron General Hospital, Fairlawn, OH, USA
- Uniformed Services University, Bethesda, USA
- Brain Trauma Foundation, New York, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lori A Shutter
- Departments of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Carla Rynkowski
- Department of Urgency and Trauma, Medical Faculty, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jorge Paranhos
- Intensive Care and Neuroemergency, Santa Casa de Misericórdia, São João del Rei, Brazil
| | - Thiago H S Silva
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| |
Collapse
|
3
|
Oshorov A, Gavrjushin A, Savin I, Alexandrova E, Bragin D. Comparison of Cerebral Autoregulation Above and Below the Tentorium of the Cerebellum In Neurosurgical Patients with Transtentorial ICP Gradient. Neurocrit Care 2023; 39:419-424. [PMID: 36890339 PMCID: PMC10485174 DOI: 10.1007/s12028-023-01696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Cerebral autoregulation is an essential mechanism for maintaining cerebral blood flow stability. The phenomenon of transtentorial intracranial pressure (ICP) gradient after neurosurgical operations, complicated by edema and intracranial hypertension in the posterior fossa, has been described in clinical practice but is still underinvestigated. The aim of the study was to compare autoregulation coefficients (i.e., pressure reactivity index [PRx]) in two compartments (infratentorial and supratentorial) during the ICP gradient phenomenon. METHODS Three male patients, aged 24 years, 32 years, and 59 years, respectively, were involved in the study after posterior fossa surgery. Arterial blood pressure and ICP were invasively monitored. Infratentorial ICP was measured in the cerebellar parenchyma. Supratentorial ICP was measured either in the parenchyma of the cerebral hemispheres or through the external ventricular drainage. Cerebral autoregulation was evaluated by the PRx coefficient (ICM + , Cambridge, UK). RESULTS In all patients, ICP was higher in the posterior fossa, and the transtentorial ICP gradient in each patient was 5 ± 1.6 mm Hg, 8.5 ± 4.4 mm Hg, and 7.7 ± 2.2 mm Hg, respectively. ICP in the infratentorial space was 17 ± 4 mm Hg, 18 ± 4.4 mm Hg, and 20 ± 4 mm Hg, respectively. PRx values in the supratentorial and infratentorial spaces had the smallest difference (- 0.01, 0.02, and 0.01, respectively), and the limits of precision were 0.1, 0.2, and 0.1 in the first, second, and third patients, respectively. The correlation coefficient between the PRx values in the supratentorial and infratentorial spaces for each patient was 0.98, 0.95, and 0.97, respectively. CONCLUSIONS A high degree of correlation was established between the autoregulation coefficient PRx in two compartments in the presence of transtentorial ICP gradient and persistent intracranial hypertension in the posterior fossa. Cerebral autoregulation, according to the PRx coefficient in both spaces, was similar.
Collapse
Affiliation(s)
- Andrey Oshorov
- Burdenko Neurosurgery Institute, 4-Ya Tverskaya-Yamskaya Str, 16, Moscow, Russia, 125047.
| | - Andrey Gavrjushin
- Burdenko Neurosurgery Institute, 4-Ya Tverskaya-Yamskaya Str, 16, Moscow, Russia, 125047
| | - Ivan Savin
- Burdenko Neurosurgery Institute, 4-Ya Tverskaya-Yamskaya Str, 16, Moscow, Russia, 125047
| | - Evgenia Alexandrova
- Burdenko Neurosurgery Institute, 4-Ya Tverskaya-Yamskaya Str, 16, Moscow, Russia, 125047
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
4
|
Pinto SN, Liu CSJ, Nelson MD, Bluml S, Livingston D, Tamrazi B. Neuroimaging of complications arising after CD19 chimeric antigen receptor T-cell therapy: A review. J Neuroimaging 2023; 33:703-715. [PMID: 37327044 DOI: 10.1111/jon.13138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting the CD19 (cluster of differentiation 19) cell surface glycoprotein have emerged as a highly effective immunologic therapy in patients with relapsed or refractory B-cell malignancies. The engagement of CAR T cells with CD19 on the surface of neoplastic B cells causes a systemic cytokine release, which can compromise the blood-brain barrier and cause an immune effector cell-associated neurotoxicity syndrome (ICANS). In a small proportion of ICANS patients who demonstrate neuroimaging abnormalities, certain distinct patterns have been recognized, including signal changes in the thalami, external capsule, and brainstem, the subcortical and/or periventricular white matter, the splenium of the corpus callosum, and the cerebellum. On careful review of the underlying pathophysiology of ICANS, we noticed that these changes closely mirror the underlying blood-brain barrier disruption and neuroinflammatory and excitotoxic effects of the offending cytokines released during ICANS. Furthermore, other uncommon complications of CD19 CAR T-cell therapy such as posterior reversible encephalopathy syndrome, ocular complications, and opportunistic fungal infections can be catastrophic if not diagnosed in a timely manner, with neuroimaging playing a significant role in management. In this narrative review, we will summarize the current literature on the spectrum of neuroimaging findings in ICANS, list appropriate differential diagnoses, and explore the imaging features of other uncommon central nervous system complications of CD19 CAR T-cell therapy using illustrative cases from two tertiary care institutions.
Collapse
Affiliation(s)
- Soniya N Pinto
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chia-Shang J Liu
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Marvin D Nelson
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Stefan Bluml
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - David Livingston
- Resident, Department of Radiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Benita Tamrazi
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Shen Y, Wang Q, Modi HR, Pathak AP, Geocadin RG, Thakor NV, Senarathna J. Quantification of Cerebral Vascular Autoregulation Immediately Following Resuscitation from Cardiac Arrest. Ann Biomed Eng 2023; 51:1847-1858. [PMID: 37184745 PMCID: PMC10760599 DOI: 10.1007/s10439-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Cerebral vascular autoregulation is impaired following resuscitation from cardiac arrest (CA), and its quantification may allow assessing CA-induced brain injury. However, hyperemia occurring immediately post-resuscitation limits the application of most metrics that quantify autoregulation. Therefore, to characterize autoregulation during this critical period, we developed three novel metrics based on how the cerebrovascular resistance (CVR) covaries with changes in cerebral perfusion pressure (CPP): (i) θCVR, which quantifies the CVR vs CPP gradient, (ii) a CVR-based transfer function analysis, and (iii) CVRx, the correlation coefficient between CPP and CVR. We tested these metrics in a model of asphyxia induced CA and resuscitation using seven adult male Wistar rats. Mean arterial pressure (MAP) and cortical blood flow recorded for 30 min post-resuscitation via arterial cannulation and laser speckle contrast imaging, were used as surrogates of CPP and cerebral blood flow (CBF), while CVR was computed as the CPP/CBF ratio. Using our metrics, we found that the status of cerebral vascular autoregulation altered substantially during hyperemia, with changes spread throughout the 0-0.05 Hz frequency band. Our metrics push the boundary of how soon autoregulation can be assessed, and if validated against outcome markers, may help develop a reliable metric of brain injury post-resuscitation.
Collapse
Affiliation(s)
- Yucheng Shen
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiren R Modi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA
| | - Romergryko G Geocadin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesia and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Sagirov AF, Sergeev TV, Shabrov AV, Yurov AY, Guseva NL, Agapova EA. Postural influence on intracranial fluid dynamics: an overview. J Physiol Anthropol 2023; 42:5. [PMID: 37055862 PMCID: PMC10100470 DOI: 10.1186/s40101-023-00323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
This review focuses on the effects of different body positions on intracranial fluid dynamics, including cerebral arterial and venous flow, cerebrospinal fluid (CSF) hydrodynamics, and intracranial pressure (ICP). It also discusses research methods used to quantify these effects. Specifically, the implications of three types of body positions (orthostatic, supine, and antiorthostatic) on cerebral blood flow, venous outflow, and CSF circulation are explored, with a particular emphasis on cerebrovascular autoregulation during microgravity and head-down tilt (HDT), as well as posture-dependent changes in cerebral venous and CSF flow, ICP, and intracranial compliance (ICC). The review aims to provide a comprehensive analysis of intracranial fluid dynamics during different body positions, with the potential to enhance our understanding of intracranial and craniospinal physiology.
Collapse
Affiliation(s)
- Arlan Faritovich Sagirov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia.
| | - Timofey Vladimirovich Sergeev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Aleksandr Vladimirovich Shabrov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Andrey Yur'evich Yurov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Nadezhda Leonidovna Guseva
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Elizaveta Aleksandrovna Agapova
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| |
Collapse
|
7
|
Santos DPDAD, Thirumala PD, Reddy G, Barros DFD, Faria VNR, Shandal V, Kurtz P. Risk of perioperative stroke and cerebral autoregulation monitoring: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1196-1203. [PMID: 36580956 PMCID: PMC9800166 DOI: 10.1055/s-0042-1758648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Perioperative stroke, delirium, and cognitive impairment could be related to management and to variations in blood pressure control, cerebral hypoperfusion and raised blood volume. Cerebral autoregulation (CAR) is a mechanism to maintain cerebral perfusion through the control of the vascular tone and hemodynamic reactions in the circulation. OBJECTIVE The present systematic review addresses the relationship between impaired CAR and perioperative stroke by evaluating the rate of neurological complications after surgery in studies in which perioperative CAR was tested or monitored. METHODS We included randomized clinical trials and prospective observational studies. All studies had adjusted the relative risk, hazard ratio or 95% confidence interval (95%CI) values. These estimation effects were tested using random-effects models. Heterogeneity among the selected studies was assessed using the Higgins and Thompson I2 statistics. RESULTS The Web of Science, PubMed and EMBASE electronic databases were searched to retrieve articles. A total of 4,476 studies published between 1983 and 2019 were analyzed, but only 5 qualified for the data extraction and were included in the final analysis. The combined study cohort comprised 941 patients who underwent CAR monitoring during surgical procedures. All studies provided information about perioperative stroke, which equated to 16% (158 of 941) of the overall patient population. CONCLUSION The present meta-analysis showed evidence of the impact of CAR impairment in the risk of perioperative stroke. On the pooled analysis, blood fluctuations or other brain insults large enough to compromise CAR were associated with the outcome of stroke (odds ratio [OR]: 2.26; 95%CI: 1.54-2.98; p < 0.0001).
Collapse
Affiliation(s)
- Daniel Paes de Almeida dos Santos
- Hospital Copa Star, Centro de Terapia Intensiva, Rio de Janeiro RJ, Brazil.,Sinapse Clínica, Rio de Janeiro RJ, Brazil.,Address for correspondence Daniel P. A. Santos
| | | | - Gautama Reddy
- Sinapse Clínica, Rio de Janeiro RJ, Brazil.,Intraneuro, Rio de Janeiro RJ, Brazil.
| | | | - Vinicius Naves Rezende Faria
- Sinapse Clínica, Rio de Janeiro RJ, Brazil.,Universidade Federal de Uberlândia, Faculdade de Engenharia Elétrica, Uberlândia MG, Brazil.
| | - Varun Shandal
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States.
| | - Pedro Kurtz
- Instituto D'Or de Pesquisa e Ensino, Departamento de Cuidado Intensivo, São Paulo SP, Brazil.
| |
Collapse
|
8
|
Zheng S, Mu S, Li J, Zhang S, Wei L, Wang M, Xu Y, Wang S. Cerebral venous hemodynamic responses in a mouse model of traumatic brain injury. Brain Res 2022; 1792:148014. [PMID: 35839929 DOI: 10.1016/j.brainres.2022.148014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/28/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = -0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.
Collapse
Affiliation(s)
- Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuwen Mu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Jun Li
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Shangming Zhang
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Liangfeng Wei
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Mingyue Wang
- Department of Pathology, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| |
Collapse
|
9
|
Kato T, Kurazumi T, Konishi T, Takko C, Ogawa Y, Iwasaki KI. Effects of -10° and -30° head-down tilt on cerebral blood velocity, dynamic cerebral autoregulation, and noninvasively estimated intracranial pressure. J Appl Physiol (1985) 2022; 132:938-946. [PMID: 35201934 PMCID: PMC8993530 DOI: 10.1152/japplphysiol.00283.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Steady-state cerebral blood flow (CBF) and dynamic cerebral autoregulation are reportedly maintained during -10° head-down tilt (HDT) despite slight increases in intracranial pressure (ICP). However, the higher ICP during -30° HDT may alter steady-state CBF and dynamic cerebral autoregulation. The present study hypothesized that steady-state CBF and dynamic cerebral autoregulation would be altered by higher ICP during -30° HDT than during 0° and -10° HDT. Seventeen healthy participants were positioned horizontal (0°) and in -10° HDT and -30° HDT for 10 min in random order on separate days. The arterial blood pressure waveform was obtained using a finger blood pressure device and the cerebral blood velocity waveform in the middle cerebral artery was obtained using transcranial Doppler sonography (TCD) for the last 6 min in each position. ICP was estimated using noninvasive ICP (nICP) based on TCD. Dynamic cerebral autoregulation was evaluated by spectral and transfer function analysis. Although nICP was significantly higher during -30° HDT (12.4 mmHg) than during -10° HDT (8.9 mmHg), no significant differences in steady-state mean cerebral blood velocity or transfer function gain in any frequency ranges were seen among all angles of HDT. Counter to our hypothesis, the present results suggest that steady-state CBF and dynamic cerebral autoregulation may be preserved during short-term -30° HDT despite the higher ICP compared with that during -10° HDT.NEW & NOTEWORTHY This appears to be the first study to evaluate steady-state cerebral blood flow (CBF), dynamic cerebral autoregulation, and intracranial pressure (ICP) during -30° head-down tilt (HDT) compared with those during -10° HDT using noninvasive measurements. The results suggest that steady-state CBF and dynamic cerebral autoregulation are preserved despite the higher ICP during short-term -30° HDT compared with -10° HDT.
Collapse
Affiliation(s)
- Tomokazu Kato
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Kurazumi
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toru Konishi
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
- Air Staff Office, Japan Air Self-Defense Force, Tokyo, Japan
| | - Chiharu Takko
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yojiro Ogawa
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Iwasaki
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Chen J, Dong P, Dong K, Mo D, Wang Y, Zhao X, Wang Y, Gong X. Improvement of exhausted cerebral autoregulation in patients with idiopathic intracranial hypertension benefit of venous sinus stenting. Physiol Meas 2021; 42. [PMID: 34293729 DOI: 10.1088/1361-6579/ac172c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Objective.To evaluate the cerebral autoregulation (CA) in idiopathic intracranial hypertension (IIH) patients with transfer function analysis, and to explore its improvement after venous sinus stenting.Approach. In total, 15 consecutive IIH patients with venous sinus stenosis and 15 controls were recruited. All the patients underwent digital subtraction angiography and venous manometry. Venous sinus stenting was performed for IIH patients with a trans-stenosis pressure gradient ≥8 mmHg. CA was assessed before and after the operation with transfer function analysis, by using the spontaneous oscillations of the cerebral blood flow velocity in the bilateral middle cerebral artery and blood pressure.Main results. Compared with controls, the autoregulatory parameters, phase shift and rate of recovery, were both significantly lower in IIH patients [(57.94° ± 23.22° versus 34.59° ± 24.15°,p < 0.001; (39.87 ± 21.95) %/s versus (20.56 ± 46.66) %/s,p= 0.045, respectively). In total, six patients with bilateral transverse or sigmoid sinus stenosis received venous sinus stenting, in whom, the phase shift significantly improved after venous sinus stenting (39.62° ± 20.26° versus 22.79° ± 19.96°,p = 0.04).Significance. The study revealed that dynamic CA was impaired in IIH patients and was improved after venous sinus stenting. CA assessment has the potential to be used for investigating the hemodynamics in IIH patients.
Collapse
Affiliation(s)
- Jie Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei Dong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Kehui Dong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dapeng Mo
- Neurointervention Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiping Gong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Truong EI, Stanley SP, DeMario BS, Tseng ES, Como JJ, Ho VP, Kelly ML. Variation in neurosurgical intervention for severe traumatic brain injury: The challenge of measuring quality in trauma center verification. J Trauma Acute Care Surg 2021; 91:114-120. [PMID: 33605705 PMCID: PMC8505004 DOI: 10.1097/ta.0000000000003114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Intracranial pressure monitor (ICPm) procedure rates are a quality metric for American College of Surgeons trauma center verification. However, ICPm procedure rates may not accurately reflect the quality of care in TBI. We hypothesized that ICPm and craniotomy/craniectomy procedure rates for severe TBI vary across the United States by geography and institution. METHODS We identified all patients with a severe traumatic brain injury (head Abbreviated Injury Scale, ≥3) from the 2016 Trauma Quality Improvement Program data set. Patients who received surgical decompression or ICPm were identified via International Classification of Diseases codes. Hospital factors included neurosurgeon group size, geographic region, teaching status, and trauma center level. Two multiple logistic regression models were performed identifying factors associated with (1) craniotomy with or without ICPm or (2) ICPm alone. Data are presented as medians (interquartile range) and odds ratios (ORs) (95% confidence interval). RESULTS We identified 75,690 patients (66.4% male; age, 59 [36-77] years) with a median Injury Severity Score of 17 (11-25). Overall, 6.1% had surgical decompression, and 4.8% had ICPm placement. Logistic regression analysis showed that region of the country was significantly associated with procedure type: hospitals in the West were more likely to use ICPm (OR, 1.34 [1.20-1.50]), while Northeastern (OR, 0.80 [0.72-0.89]), Southern (OR, 0.84 [0.78-0.92]), and Western (OR, 0.88 [0.80-0.96]) hospitals were less likely to perform surgical decompression. Hospitals with small neurosurgeon groups (<3) were more likely to perform surgical intervention. Community hospitals are associated with higher odds of surgical decompression but lower odds of ICPm placement. CONCLUSION Both geographic differences and hospital characteristics are independent predictors for surgical intervention in severe traumatic brain injury. This suggests that nonpatient factors drive procedural decisions, indicating that ICPm rate is not an ideal quality metric for American College of Surgeons trauma center verification. LEVEL OF EVIDENCE Epidemiological, level III; Care management/Therapeutic level III.
Collapse
Affiliation(s)
- Evelyn I Truong
- From the Department of Surgery (E.I.T., S.P.S., B.S.D., E.S.T., J.J.C., V.P.H.) MetroHealth Medical Center; Department of Population and Quantitative Health Sciences (V.P.H.), Case Western Reserve University School of Medicine; Department of Neurological Surgery, MetroHealth Medical Center, Cleveland, Ohio (M.L.K.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Senay B, Chaaban T, Cardim D, Mainali S. Ultrasound-Guided Therapies in the Neuro ICU. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Stanton R, Demel SL, Flaherty ML, Antzoulatos E, Gilkerson LA, Osborne J, Behymer TP, Moomaw CJ, Sekar P, Langefeld C, Woo D. Risk of intracerebral haemorrhage from hypertension is greatest at an early age. Eur Stroke J 2021; 6:28-35. [PMID: 33817332 DOI: 10.1177/2396987321994296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/17/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction The risk of intracerebral haemorrhage (ICH) associated with hypertension (HTN) is well documented. While the prevalence of HTN increases with age, the greatest odds ratio (OR) for HTN as a risk for ischemic stroke is at an early age. We sought to evaluate if the risk for ICH from HTN was higher in the youngest patients of each race. Patients and methods The Ethnic/Racial Variations of ICH (ERICH) study is a prospective multicenter case-control study of ICH among whites, blacks, and Hispanics. Participants were divided into age groups based on race-specific quartiles. Cases in each race/age group were compared to controls using logistic regression (i.e., cases and controls unmatched). The probability of ICH among cases and controls for each race were compared against independent variables of HTN, quartile of age and interaction of quartile and age also using logistic regression. Results Overall, 2033 non-lobar ICH cases and 2060 controls, and 913 lobar ICH cases with 927 controls were included. ORs were highest in the youngest age quartile for non-lobar haemorrhage for blacks and Hispanics and highest in the youngest quartile for lobar haemorrhage for all races. The formal test of interaction between age and HTN was significant in all races for all locations with the exception of lobar ICH in whites (p = 0.2935). Discussion Hypertension is a strong independent risk factor for ICH irrespective of location among persons of younger age, consistent with the hypothesis that first exposure to HTN is a particularly sensitive time for all locations of ICH.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Stacie L Demel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Matthew L Flaherty
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Eleni Antzoulatos
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Lee A Gilkerson
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Jennifer Osborne
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Tyler P Behymer
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Charles J Moomaw
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Padmini Sekar
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| | - Carl Langefeld
- Department of Biostatistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Daniel Woo
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, OH, USA
| |
Collapse
|
14
|
Serfozo K, Tarnal V. Anesthetic Management of Patients Undergoing Open Suboccipital Surgery. Anesthesiol Clin 2021; 39:93-111. [PMID: 33563388 DOI: 10.1016/j.anclin.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posterior cranial fossa with its complex anatomy houses key pathways regulating consciousness, autonomic functions, motor and sensory pathways, and cerebellar centers regulating balance and gait. The most common posterior fossa pathologies for which neurosurgical intervention may be necessary include cerebellopontine angle tumors, aneurysms, and metastatic lesions. The posterior cranial fossa can be accessed from variations of the supine, lateral, park-bench, prone, and sitting positions. Notable complications from positioning include venous air embolism, paradoxic air embolism, tension pneumocephalus, nerve injuries, quadriplegia, and macroglossia. An interdisciplinary approach with careful planning, discussion, and clinical management contributes to improved outcomes and reduced complications.
Collapse
Affiliation(s)
- Kelsey Serfozo
- Department of Anesthesiology, University Hospital, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5048, USA
| | - Vijay Tarnal
- Department of Anesthesiology, University Hospital, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5048, USA.
| |
Collapse
|
15
|
Dobrzeniecki M, Trofimov A, Martynov D, Agarkova D, Trofimova K, Semenova ZB, Bragin DE. Secondary Cerebral Ischemia at Traumatic Brain Injury Is More Closely Related to Cerebrovascular Reactivity Impairment than to Intracranial Hypertension. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 131:159-162. [PMID: 33839838 PMCID: PMC8109249 DOI: 10.1007/978-3-030-59436-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The purpose of this study was to investigate the relationship between the development of secondary cerebral ischemia (SCI), intracranial pressure (ICP) and cerebrovascular reactivity (CVR) after traumatic brain injury (TBI). METHODS 89 patients with severe TBI with ICP monitoring were studied retrospectively. The mean age was 36.3 ± 4.8 years, 53 men, 36 women. The median Glasgow Coma Score (GCS) was 6.2 ± 0.7. The median Injury Severity Score was 38.2 ± 12.5. To specify the degree of impact of changes in ICP and CVR on the SCI progression in TBI patients, logistic regression was performed. Significant p-values were <0.05. RESULTS The deterioration of CVR in combination with the severity of ICP has a significant impact on the increase in the prevalence rate of SCI. A logistic regression analysis for a model of SCI dependence on intracranial hypertension and CVR was performed. The results of the analysis showed that CVR was the most significant factor affecting SCI development in TBI. CONCLUSIONS The development of SCI in severe TBI depends largely on CVR impairment and to a lesser extent on ICP level. Treatment for severe TBI patients with SCI progression should not be aimed solely at intracranial hypertension correction but also at CVR recovery.
Collapse
Affiliation(s)
- Michael Dobrzeniecki
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alex Trofimov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| | - Dmitry Martynov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya Agarkova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ksenia Trofimova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Zhanna B Semenova
- Department of Neurosurgery, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Chen J, Liu J, Dong K, Wang Y, Zhao X, Wang Y, Gong X. Impaired Dynamic Cerebral Autoregulation in Cerebral Venous Thrombosis. Front Neurol 2020; 11:570306. [PMID: 33240198 PMCID: PMC7680926 DOI: 10.3389/fneur.2020.570306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Cerebral autoregulation is crucial in traumatic brain injury, which might be used for determining the optimal intracranial pressure. Cerebral venous thrombosis (CVT) is a cerebral vascular disease with features of high intracranial pressure. However, the autoregulatory mechanism of CVT remains unknown. We aimed to investigate the capacity of cerebral autoregulation in patients with CVT. Methods: This study consecutively enrolled 23 patients with CVT and 16 controls from December 2018 to May 2019. Cerebral autoregulation was assessed by transfer function analysis (rate of recovery/phase/gain) using the spontaneous oscillations of the cerebral blood flow velocity and arterial blood pressure. Results: In total, 76 middle cerebral arteries (MCAs) were investigated, including 44 MCAs in patients with CVT and 32 normal ones. The phase shift estimated in patients with CVT was significantly different from that of the controls (37.37 ± 36.53 vs. 54.00 ± 26.78, p = 0.03). The rate of recovery and gain in patients with CVT were lower than those in controls but without statistical significance. Conclusion: To our knowledge, this is the first time that a study has indicated that patients with CVT were more likely to have impaired cerebral autoregulation. Hence, cautious blood pressure control is required in such patients to prevent hyper- or hypoperfusion.
Collapse
Affiliation(s)
- Jie Chen
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kehui Dong
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilong Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingquan Zhao
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiping Gong
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Kallioinen M, Posti JP, Rahi M, Sharma D, Katila A, Grönlund J, Vahlberg T, Frantzén J, Olkkola KT, Saari TI, Takala R. Cerebral autoregulation after aneurysmal subarachnoid haemorrhage. A preliminary study comparing dexmedetomidine to propofol and/or midazolam. Acta Anaesthesiol Scand 2020; 64:1278-1286. [PMID: 32609878 DOI: 10.1111/aas.13663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cerebral autoregulation is often impaired after aneurysmal subarachnoid haemorrhage (aSAH). Dexmedetomidine is being increasingly used, but its effects on cerebral autoregulation in patients with aSAH have not been studied before. Dexmedetomidine could be a useful sedative in patients with aSAH as it enables neurological assessment during the infusion. The aim of this preliminary study was to compare the effects of dexmedetomidine on dynamic and static cerebral autoregulation with propofol and/or midazolam in patients with aSAH. METHODS Ten patients were recruited. Dynamic and static cerebral autoregulation were assessed using transcranial Doppler ultrasound during propofol and/or midazolam infusion and then during three increasing doses of dexmedetomidine infusion (0.7, 1.0 and 1.4 μg/kg/h). Transient hyperaemic response ratio (THRR) and strength of autoregulation (SA) were calculated to assess dynamic cerebral autoregulation. Static rate of autoregulation (sRoR)% was calculated by using noradrenaline infusion to increase the mean arterial pressure 20 mm Hg above the baseline. RESULTS Data from nine patients were analysed. Compared to baseline, we found no statistically significant changes in THRR or sROR%. THRR was (mean ± SD) 1.20 ± 0.14, 1.17 ± 0.13 (P = .93), 1.14 ± 0.09 (P = .72) and 1.19 ± 0.18 (P = 1.0) and sROR% was 150.89 ± 84.37, 75.22 ± 27.75 (P = .08), 128.25 ± 58.35 (P = .84) and 104.82 ± 36.92 (P = .42) at baseline and during 0.7, 1.0 and 1.4 μg/kg/h dexmedetomidine infusion, respectively. Dynamic SA was significantly reduced after 1.0 μg/kg/h dexmedetomidine (P = .02). CONCLUSIONS Compared to propofol and/or midazolam, dexmedetomidine did not alter static cerebral autoregulation in aSAH patients, whereas a significant change was observed in dynamic SA. Further and larger studies with dexmedetomidine in aSAH patients are warranted.
Collapse
Affiliation(s)
- Minna Kallioinen
- Division of Perioperative Services Intensive Care Medicine and Pain Management Turku University Hospital and University of Turku Turku Finland
- Department of Anaesthesiology and Intensive Care University of Turku Turku Finland
| | - Jussi P. Posti
- Division of Clinical Neurosciences Department of Neurosurgery Turku University Hospital and University of Turku Turku Finland
- Turku Brain Injury Centre Turku University Hospital Turku Finland
| | - Melissa Rahi
- Division of Clinical Neurosciences Department of Neurosurgery Turku University Hospital and University of Turku Turku Finland
| | - Deepak Sharma
- Department of Anaesthesiology & Pain Medicine University of Washington Seattle WA USA
| | - Ari Katila
- Division of Perioperative Services Intensive Care Medicine and Pain Management Turku University Hospital and University of Turku Turku Finland
| | - Juha Grönlund
- Division of Perioperative Services Intensive Care Medicine and Pain Management Turku University Hospital and University of Turku Turku Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics University of Turku and Turku University Hospital Finland
| | - Janek Frantzén
- Division of Clinical Neurosciences Department of Neurosurgery Turku University Hospital and University of Turku Turku Finland
| | - Klaus T. Olkkola
- Department of Anaesthesiology Intensive Care and Pain Medicine University of Helsinki and HUS Helsinki University Hospital Turku Finland
| | - Teijo I. Saari
- Division of Perioperative Services Intensive Care Medicine and Pain Management Turku University Hospital and University of Turku Turku Finland
- Department of Anaesthesiology and Intensive Care University of Turku Turku Finland
| | - Riikka Takala
- Division of Perioperative Services Intensive Care Medicine and Pain Management Turku University Hospital and University of Turku Turku Finland
- Department of Anaesthesiology and Intensive Care University of Turku Turku Finland
| |
Collapse
|
18
|
The Effects of Gradual Change in Head Positioning on the Relationship between Systemic and Cerebral Haemodynamic Parameters in Healthy Controls and Acute Ischaemic Stroke Patients. Brain Sci 2020; 10:brainsci10090582. [PMID: 32842651 PMCID: PMC7564038 DOI: 10.3390/brainsci10090582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
(1) Background: Larger blood pressure variability (BPv) in the first 3 h post-stroke onset increases pathophysiological effects such as infarct size, and leads to greater risk of disability, comorbidities and mortality at 90 days. However, there is limited information on the relationship between systemic and cerebral haemodynamic and variability parameters. (2) Objectives: This study determined the effect of a gradual change in head position (GHP) on cerebral blood flow velocity variability (CBFVv) and mean arterial blood pressure variability (MABPv), in healthy controls and acute ischaemic stroke (AIS) patients. Methods: CBFVv and MABPv were expressed as standard deviation (SD) and coefficient of variation. A total of 16 healthy controls (mean age 57 ± 16 years) were assessed over two visits, 12 ± 8 days apart, and 15 AIS patients (mean age 69 ± 8.5 years) were assessed over three visits (V1: 13.3 ± 6.9 h, V2: 4.9 ± 3.2 days and V3: 93.9 ± 11.5 days post-stroke). (3) Results: In response to GHP, MABPv does not initially increase, but over time MABPv showed a significant increase in response to GHP in AIS (visits 2 and 3) and controls (visit 2). Additionally, in response to GHP in AIS, CBFVv increased in the affected hemisphere. Lastly, in AIS, a significant correlation between CBFVv and MABPv, assessed by SD, was seen in the unaffected hemisphere, whereas this relationship was not demonstrated in the affected hemisphere. (4) Conclusions: To our knowledge, this is the first study to analyse the relationship between CBFVv and MABPv. Shedding light on the effect of head position on the relationship between cerebral blood flow and blood pressure is important to improve our understanding of the underlying effects of cerebral autoregulation impairment. This early mechanistic study provides evidence supporting supine head positioning in healthy controls and stroke patients, through demonstration of a reduction of MABPv and increase in CBFVv.
Collapse
|
19
|
de-Lima-Oliveira M, Ferreira AA, Belon AR, Salinet AM, Nogueira RC, Ping BC, Paiva WS, Teixeira MJ, Bor-Seng-Shu E. The influence of intracranial hypertension on static cerebral autoregulation. Brain Inj 2020; 34:1270-1276. [DOI: 10.1080/02699052.2020.1797166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | | | | | | | - Brasil Chian Ping
- Neurology Department, Hospital Das Clinicas Da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
20
|
Wiórek A, Jaworski T, Krzych ŁJ. Hyperosmolar Treatment for Patients at Risk for Increased Intracranial Pressure: A Single-Center Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4573. [PMID: 32630399 PMCID: PMC7345768 DOI: 10.3390/ijerph17124573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Treatment with osmoactive agents such as mannitol or hypertonic saline (HTS) solutions is widely used to manage or prevent the increase of intracranial pressure (ICP) in central nervous system (CNS) disorders. We sought to evaluate the variability and mean plasma concentrations of the water and electrolyte balance parameters in critically ill patients treated with osmotic therapy and their influence on mortality. This cohort study covered patients hospitalized in an intensive care unit (ICU) from January 2017 to June 2019 with presumed increased ICP or considered to be at risk of it, treated with 15% mannitol (G1, n = 27), a combination of 15% mannitol and 10% hypertonic saline (HTS) (G2, n = 33) or 10% HTS only (G3, n = 13). Coefficients of variation (Cv) and arithmetic means (mean) were calculated for the parameters reflecting the water and electrolyte balance, i.e., sodium (NaCv/NaMean), chloride (ClCv/ClMean) and osmolality (mOsmCv/mOsmMean). In-hospital mortality was also analyzed. The study group comprised 73 individuals (36 men, 49%). Mortality was 67% (n = 49). Median NaCv (G1: p = 0.002, G3: p = 0.03), ClCv (G1: p = 0.02, G3: p = 0.04) and mOsmCv (G1: p = 0.001, G3: p = 0.02) were higher in deceased patients. NaMean (p = 0.004), ClMean (p = 0.04), mOsmMean (p = 0.003) were higher in deceased patients in G3. In G1: NaCv (AUC = 0.929, p < 0.0001), ClCv (AUC = 0.817, p = 0.0005), mOsmCv (AUC = 0.937, p < 0.0001) and in G3: NaMean (AUC = 0.976, p < 0.001), mOsmCv (AUC = 0.881, p = 0.002), mOsmMean (AUC = 1.00, p < 0.001) were the best predictors of mortality. The overall mortality prediction for combined G1+G2+G3 was very good, with AUC = 0.886 (p = 0.0002). The mortality of critically ill patients treated with osmotic agents is high. Electrolyte disequilibrium is the independent predictor of mortality regardless of the treatment method used. Variations of plasma sodium, chloride and osmolality are the most deleterious factors regardless of the absolute values of these parameters.
Collapse
Affiliation(s)
- Agnieszka Wiórek
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 14 Medyków Street, 40–752 Katowice, Poland;
| | | | - Łukasz J. Krzych
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 14 Medyków Street, 40–752 Katowice, Poland;
| |
Collapse
|
21
|
Beck S, Ragab H, Hoop D, Meßner-Schmitt A, Rademacher C, Kahl U, von Breunig F, Haese A, Graefen M, Zöllner C, Fischer M. Comparing the effect of positioning on cerebral autoregulation during radical prostatectomy: a prospective observational study. J Clin Monit Comput 2020; 35:891-901. [PMID: 32564173 PMCID: PMC8286946 DOI: 10.1007/s10877-020-00549-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2022]
Abstract
Purpose Surgery in the prolonged extreme Trendelenburg position may lead to elevated intracranial pressure and compromise cerebral hemodynamic regulation. We hypothesized that robot-assisted radical prostatectomy with head-down tilt causes impairment of cerebral autoregulation compared with open retropubic radical prostatectomy in the supine position. Methods Patients scheduled for elective radical prostatectomy were included at a tertiary care prostate cancer clinic. Continuous monitoring of the cerebral autoregulation was performed using the correlation method. Based on measurements of cerebral oxygenation with near-infrared spectroscopy and invasive mean arterial blood pressure (MAP), a moving correlation coefficient was calculated to obtain the cerebral oxygenation index as an indicator of cerebral autoregulation. Cerebral autoregulation was measured continuously from induction until recovery from anesthesia. Results There was no significant difference in cerebral autoregulation between robot-assisted and open retropubic radical prostatectomy during induction (p = 0.089), intraoperatively (p = 0.162), and during recovery from anesthesia (p = 0.620). Age (B = 0.311 [95% CI 0.039; 0.583], p = 0.025) and a higher difference between baseline MAP and intraoperative MAP (B = 0.200 [95% CI 0.073; 0.327], p = 0.002) were associated with impaired cerebral autoregulation, whereas surgical technique was not (B = 3.339 [95% CI 1.275; 7.952], p = 0.155). Conclusion Compared with open radical prostatectomy in the supine position, robot-assisted surgery in the extreme Trendelenburg position with capnoperitoneum did not lead to an impairment of cerebral autoregulation during the perioperative period in our study population. Trial registration number: DRKS00010014, date of registration: 21.03.2016, retrospectively registered. Electronic supplementary material The online version of this article (10.1007/s10877-020-00549-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie Beck
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Haissam Ragab
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Hoop
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Aurélie Meßner-Schmitt
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Cornelius Rademacher
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Ursula Kahl
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Franziska von Breunig
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Zöllner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marlene Fischer
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Abstract
PURPOSE To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.
Collapse
Affiliation(s)
- Noushin Yazdani
- College of Public Health, University of South Florida , Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Biomedical Research, James A. Haley VA Medical Center , Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Byrd Neuroscience Institute, University of South Florida , Tampa, FL, USA
| |
Collapse
|
23
|
Koskinen LOD, Sundström N, Hägglund L, Eklund A, Olivecrona M. Prostacyclin Affects the Relation Between Brain Interstitial Glycerol and Cerebrovascular Pressure Reactivity in Severe Traumatic Brain Injury. Neurocrit Care 2020; 31:494-500. [PMID: 31123992 PMCID: PMC6872514 DOI: 10.1007/s12028-019-00741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Cerebral injury may alter the autoregulation of cerebral blood flow. One index for describing cerebrovascular state is the pressure reactivity (PR). Little is known of whether PR is associated with measures of brain metabolism and indicators of ischemia and cell damage. The aim of this investigation was to explore whether increased interstitial levels of glycerol, a marker of cell membrane damage, are associated with PR, and if prostacyclin, a membrane stabilizer and regulator of the microcirculation, may affect this association in a beneficial way. Materials and Methods Patients suffering severe traumatic brain injury (sTBI) were treated according to an intracranial pressure (ICP)-targeted therapy based on the Lund concept and randomized to an add-on treatment with prostacyclin or placebo. Inclusion criteria were verified blunt head trauma, Glasgow Coma Score ≤ 8, age 15–70 years, and a first measured cerebral perfusion pressure of ≥ 10 mmHg. Multimodal monitoring was applied. A brain microdialysis catheter was placed on the worst affected side, close to the penumbra zone. Mean (glycerolmean) and maximal glycerol (glycerolmax) during the 96-h sampling period were calculated. The mean PR was calculated as the ICP/mean arterial pressure (MAP) regression coefficient based on hourly mean ICP and MAP during the first 96 h. Results Of the 48 included patients, 45 had valid glycerol and PR measurements available. PR was higher in the placebo group as compared to the prostacyclin group (p = 0.0164). There was a positive correlation between PR and the glycerolmean (ρ = 0.503, p = 0.01) and glycerolmax (ρ = 0.490, p = 0.015) levels in the placebo group only. Conclusions PR is correlated to the glycerol level in patients suffering from sTBI, a relationship that is not seen in the group treated with prostacyclin. Glycerol has been associated with membrane degradation and may support glycerol as a biomarker for vascular endothelial breakdown. Such a breakdown may impair the regulation of cerebrovascular PR.
Collapse
Affiliation(s)
- Lars-Owe D Koskinen
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden.
| | - Nina Sundström
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Linda Hägglund
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden
- Department of Anaesthesia and Intensive Care, Section for Neurosurgery, Faculty of Health and Medicine, Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
24
|
Ghali MGZ, Styler MJ. Etiologies, Cerebral Vasomotion, and Endothelial Dysfunction in the Pathophysiology of Posterior Reversible Encephalopathy Syndrome in Pediatric Patients. JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0040-1702934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractThe posterior reversible encephalopathy syndrome was characterized by Hinchey and colleagues in the 1990s. The condition frequently afflicts patients suffering from hematologic and solid organ malignancy and individuals undergoing transplantation. Cases are more frequently described in the adult population compared with children. In the pediatric population, malignancy, transplantation, renal disease, and hypertension represent the most common etiologies. Theories on pathogenesis have centered upon cerebrovascular dysautoregulation with increases in blood–brain barrier permeability. This generates vasogenic edema of the cerebral parenchyma and consequent neurologic deficits. The parietal and occipital lobes are affected with greatest prevalence, though frontal and temporal lobe involvement is frequent, and that of the contents of the infratentorial posterior cranial fossa are occasionally described. The clinical presentation involves a characteristic constellation of neurologic signs and symptoms, most typically inclusive of headache, visual-field disturbances, abnormalities of visual acuity, and seizures. Supportive care, withdrawal of the offending agent, antihypertensive therapy, and prophylactic anticonvulsants affect convalescence in majority of cases. The principal challenge lies in identifying the responsible agent precipitating the condition in patients with malignancy and those having undergone transplantation and thus deciding which medication among a multidrug treatment regimen to withhold, the duration of drug cessation required to effect clinical resolution, and the safety of resuming treatment with the compound. We accordingly reviewed and evaluated the literature discussing the posterior reversible encephalopathy syndrome in children.
Collapse
Affiliation(s)
- Michael G. Z. Ghali
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, United States
| | - Michael J. Styler
- Department of Hematology and Oncology, Hahnemann University Hospital, Philadelphia, Pennsylvania, United States
| |
Collapse
|
25
|
Jia M, Guo ZN, Jin H, Yan X, Shi M, Sun X, Ma H, Lv S, Yang Y. Venous sinus stenting improves cerebral autoregulation in a patient with venous sinus stenosis: a case report. BMC Neurol 2020; 20:9. [PMID: 31914955 PMCID: PMC6947987 DOI: 10.1186/s12883-019-1595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Venous sinus stenosis (VSS) is a type of cerebral venous vascular disease. Cerebral autoregulation is an indicator of cerebral arterial function. The cerebral circulatory system is composed of the venous system and arterial system. Impaired venous function may affect arterial function. Thus, cerebral venous stenosis may influence cerebral autoregulation. CASE PRESENTATION In this case, a 50-year-old woman with transient blindness and headache was admitted to the hospital. The patient was diagnosed with VSS. A stent was placed at the stenosis. The stent released the intravenous pressure and remitted the patient's symptoms. Measurements of dynamic cerebral autoregulation (dCA) were performed at 3 time points: before stenting, after stenting, and 3 months later. The dCA gradually improved after stenting. CONCLUSION VSS may have an influence on cerebral autoregulation, and effective treatment improves cerebral autoregulation in patients with VSS.
Collapse
Affiliation(s)
- Meiyan Jia
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiuli Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingchao Shi
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
26
|
Cerebral Blood Flow in Low Intracranial Pressure Headaches-What is Known? Brain Sci 2019; 10:brainsci10010002. [PMID: 31861526 PMCID: PMC7016724 DOI: 10.3390/brainsci10010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Headaches attributed to low cerebrospinal fluid (CSF) pressure are described as orthostatic headaches caused by spontaneous or secondary low CSF pressure or CSF leakages. Regardless of the cause, CFS leaks may lead to intracranial hypotension (IH) and influence cerebral blood flow (CBF). When CSF volume decreases, a compensative increase in intracranial blood volume and cerebral vasodilatation occurs. Sinking of the brain and traction on pain-sensitive structures are thought to be the causes of orthostatic headaches. Although there are many studies concerning CBF during intracranial hypertension, little is known about CBF characteristics during low intracranial pressure. The aim of this review is to examine the relationship between CBF, CSF, and intracranial pressure in headaches assigned to low CSF pressure.
Collapse
|
27
|
Bor-Seng-Shu E, de-Lima-Oliveira M, Nogueira RC, Almeida KJ, Paschoal EHA, Paschoal FM. Decompressive Craniectomy for Traumatic Brain Injury: Postoperative TCD Cerebral Hemodynamic Evaluation. Front Neurol 2019; 10:354. [PMID: 31031689 PMCID: PMC6473100 DOI: 10.3389/fneur.2019.00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background: There are no studies describing the cerebral hemodynamic patterns that can occur in traumatic brain injury (TBI) patients following decompressive craniectomy (DC). Such data have potentially clinical importance for guiding the treatment. The objective of this study was to investigate the postoperative cerebral hemodynamic patterns, using transcranial Doppler (TCD) ultrasonography, in patients who underwent DC. The relationship between the cerebral circulatory patterns and the patients' outcome was also analyzed. Methods: Nineteen TBI patients with uncontrolled brain swelling were prospectively studied. Cerebral blood circulation was evaluated by TCD ultrasonography. Patients and their cerebral hemispheres were categorized based on TCD-hemodynamic patterns. The data were correlated with neurological status, midline shift on CT scan, and Glasgow outcome scale scores at 6 months after injury. Results: Different cerebral hemodynamic patterns were observed. One patient (5.3%) presented with cerebral oligoemia, 4 patients (21%) with cerebral hyperemia, and 3 patients (15.8%) with cerebral vasospasm. One patient (5.3%) had hyperemia in one cerebral hemisphere and vasospasm in the other hemisphere. Ten patients (52.6%) had nonspecific circulatory pattern. Abnormal TCD-circulatory patterns were found in 9 patients (47.4%). There was no association between TCD-cerebral hemodynamic findings and outcome. Conclusion: There is a wide heterogeneity of postoperative cerebral hemodynamic findings among TBI patients who underwent DC, including hemodynamic heterogeneity between their cerebral hemispheres. DC was proved to be effective for the treatment of cerebral oligoemia. Our data support the concept of heterogeneous nature of the pathophysiology of the TBI and suggest that DC as the sole treatment modality is insufficient.
Collapse
Affiliation(s)
- Edson Bor-Seng-Shu
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Marcelo de-Lima-Oliveira
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Ricardo Carvalho Nogueira
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil
| | - Kelson James Almeida
- Department of Neurology, Federal University of Piauí Medical School, Teresina, Brazil
| | | | - Fernando Mendes Paschoal
- Laboratory for Neurosonology and Cerebral Hemodynamics, Division of Neurological Surgery, Hospital das Clinicas, São Paulo University Medical School, São Paulo, Brazil.,Department of Neurology, Federal University of Pará Medical School, São Paulo, Brazil
| |
Collapse
|
28
|
Lam MY, Haunton VJ, Robinson TG, Panerai RB. Dynamic cerebral autoregulation measurement using rapid changes in head positioning: experiences in acute ischemic stroke and healthy control populations. Am J Physiol Heart Circ Physiol 2019; 316:H673-H683. [DOI: 10.1152/ajpheart.00550.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ideal technique for dynamic cerebral autoregulation (dCA) assessment in critically ill patients should provide considerable variability in blood pressure (BP) but without the need for patient cooperation. We proposed using rapid head positioning (RHP) over spontaneous BP fluctuations for dCA assessment in patients with acute ischemic stroke (AIS). Cerebral blood velocity (transcranial Doppler), beat-to-beat BP (Finometer), and end-tidal CO2 (capnography) were recorded during 5-min baseline and RHP in 16 controls (8 women and 8 men, mean age: 57 ± 16 yr) and 15 patients with AIS (7 women and 8 men, mean age: 69 ± 8 yr) at two (12 ± 8 days) and three visits (13.3 ± 6.9 h, 4.8 ± 3.2 days, and 93.9 ± 11.5 days from the symptom onset), respectively. All participants were able to complete the RHP protocol without difficulty. Compared with controls, patients with AIS were hypocapnic (all visits, P < 0.0024) and hypertensive ( visit 1, P = 0.011), although BP gradually reduced after the acute phase. RHP demonstrated greater beat-to-beat BP variability (BPV) in controls ( visits 1 and 2, P < 0.001) but not in patients with AIS at any visit. Compared with controls, a reduced autoregulation index (ARI) was demonstrated in patients with AIS, at visit 2 for the baseline recording but not at other visits or during RHP. The area under the receiver-operating curve was 0.53 and 0.54 for baseline and RHP, respectively. The RHP paradigm required minimal patient cooperation and could be considered a feasible alternative for assessing dCA, mainly in conditions leading to increased BPV. The lack of BPV increase in AIS with RHP deserves further investigation. NEW & NOTEWORTHY This study used rapid head positioning (RHP) to enhance blood pressure (BP) variability (BPV) to improve BP signal-to-noise ratio and reliability of dynamic cerebral autoregulation (dCA). RHP was well accepted by controls and acute ischemic stroke (AIS); the increased BPV induced in controls was not observed in AIS, suggesting BPV at rest was already elevated. RHP did not improve detection of impaired CA in AIS; further work is needed to understand the different responses observed.
Collapse
Affiliation(s)
- Man Y. Lam
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J. Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G. Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institutes for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
29
|
Acute Liver Failure: From Textbook to Emergency Room and Intensive Care Unit With Concomitant Established and Modern Novel Therapies. J Clin Gastroenterol 2019; 53:89-101. [PMID: 30575637 DOI: 10.1097/mcg.0000000000001162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute liver failure is a rare hepatic emergent situation that affects primarily young people and has often a catastrophic or even fatal outcome. Definition of acute liver failure has not reached a universal consensus and the interval between the appearance of jaundice and hepatic encephalopathy for the establishment of the acute failure is a matter of debate. Among the wide variety of causes, acetaminophen intoxication in western societies and viral hepatitis in the developing countries rank at the top of the etiology list. Identification of the clinical appearance and initial management for the stabilization of the patient are of vital significance. Further advanced therapies, that require intensive care unit, should be offered. The hallmark of treatment for selected patients can be orthotopic liver transplantation. Apart from well-established treatments, novel therapies like hepatocyte or stem cell transplantation, additional new therapeutic strategies targeting acetaminophen intoxication and/or hepatic encephalopathy are mainly experimental, and some of them do not belong, yet, to clinical practice. For clinicians, it is substantial to have the alertness to timely identify the patient and transfer them to a specialized center, where more treatment opportunities are available.
Collapse
|
30
|
The 90-day prognostic value of serum cyclophilin A in traumatic brain injury. Clin Chim Acta 2018; 484:258-264. [DOI: 10.1016/j.cca.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022]
|
31
|
Brasil S, Paiva WS, de Carvalho Nogueira R, Macedo Salinet A, Teixeira MJ. Letter to the Editor. Decompressive craniectomy in TBI: What is beyond static evaluations in terms of prognosis? J Neurosurg 2018; 129:845-847. [PMID: 30052156 DOI: 10.3171/2018.5.jns181212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
The Effects of Induction and Treatment of Intracranial Hypertension on Cerebral Autoregulation: An Experimental Study. Neurol Res Int 2018; 2018:7053932. [PMID: 30046492 PMCID: PMC6036802 DOI: 10.1155/2018/7053932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/16/2018] [Indexed: 02/04/2023] Open
Abstract
Background This study aimed to analyse cerebral autoregulation (CA) during induction and treatment of intracranial hypertension (ICH) in an experimental model. Materials and Methods Landrace and Duroc piglets were divided into mild and severe ICH groups. Four or seven millilitres of saline solution was infused into paediatric bladder catheter inserted in the parietal lobe (balloon inflation). After 1.5 h, a 3% saline solution was infused via venous catheter, and 30 min later, the bladder catheter balloon was deflated (surgery). The cerebral static autoregulation (sCA) index was evaluated using cerebral blood flow velocities (CBFV) obtained with Doppler ultrasound. Results Balloon inflation increased ICP in both groups. The severe ICH group showed significantly lower sCA index values (p=0.001, ANOVA) after balloon inflation (ICH induction) and a higher sCA index after saline injection (p=0.02) and after surgery (p=0.04). ICP and the sCA index were inversely correlated (r=-0.68 and p<0.05). CPP and the sCA index were directly correlated (r=0.74 and p<0.05). Conclusion ICH was associated with local balloon expansion, which triggered CA impairment, particularly in the severe ICH group. Moreover, ICP-reducing treatments were associated with improved CA in subjects with severe ICH.
Collapse
|