1
|
Gholampour S. Why Intracranial Compliance Is Not Utilized as a Common Practical Tool in Clinical Practice. Biomedicines 2023; 11:3083. [PMID: 38002083 PMCID: PMC10669292 DOI: 10.3390/biomedicines11113083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Intracranial compliance (ICC) holds significant potential in neuromonitoring, serving as a diagnostic tool and contributing to the evaluation of treatment outcomes. Despite its comprehensive concept, which allows consideration of changes in both volume and intracranial pressure (ICP), ICC monitoring has not yet established itself as a standard component of medical care, unlike ICP monitoring. This review highlighted that the first challenge is the assessment of ICC values, because of the invasive nature of direct measurement, the time-consuming aspect of non-invasive calculation through computer simulations, and the inability to quantify ICC values in estimation methods. Addressing these challenges is crucial, and the development of a rapid, non-invasive computer simulation method could alleviate obstacles in quantifying ICC. Additionally, this review indicated the second challenge in the clinical application of ICC, which involves the dynamic and time-dependent nature of ICC. This was considered by introducing the concept of time elapsed (TE) in measuring the changes in volume or ICP in the ICC equation (volume change/ICP change). The choice of TE, whether short or long, directly influences the ICC values that must be considered in the clinical application of the ICC. Compensatory responses of the brain exhibit non-monotonic and variable changes in long TE assessments for certain disorders, contrasting with the mono-exponential pattern observed in short TE assessments. Furthermore, the recovery behavior of the brain undergoes changes during the treatment process of various brain disorders when exposed to short and long TE conditions. The review also highlighted differences in ICC values across brain disorders with various strain rates and loading durations on the brain, further emphasizing the dynamic nature of ICC for clinical application. The insight provided in this review may prove valuable to professionals in neurocritical care, neurology, and neurosurgery for standardizing ICC monitoring in practical application related to the diagnosis and evaluation of treatment outcomes in brain disorders.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Neurological Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Tokar DM, Kaut KP, Allen PA. Revisiting the factor structure of the Short-Form McGill Pain Questionnaire-2 (SF-MPQ-2): Evidence for a bifactor model in individuals with Chiari malformation. PLoS One 2023; 18:e0287208. [PMID: 37797067 PMCID: PMC10553824 DOI: 10.1371/journal.pone.0287208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/01/2023] [Indexed: 10/07/2023] Open
Abstract
The Short-Form McGill Pain Questionnaire-2 (SF-MPQ-2; Dworkin et al., 2009) is intended to measure the multidimensional qualities of pain (i.e., continuous, intermittent, neuropathic, and affective) as well as total pain. Using structural equation modeling, we evaluated the fit of four competing measurement models of the SF-MPQ-2-an oblique 4-factor model, a 1-factor model, a higher-order model, and a bifactor model-in 552 adults diagnosed with Chiari malformation, a chronic health condition whose primary symptoms include head and neck pain. Results revealed the strongest support for the bifactor model, suggesting that SF-MPQ-2 item responses are due to both a general pain factor and a specific pain factor that is orthogonal to the general pain factor. Additional bifactor analyses of the SF-MPQ-2's model-based reliability and dimensionality revealed that most of the SF-MPQ-2's reliable variance is explained by a general pain factor, and that the instrument can be modeled unidimensionally and scored as a general pain measure. Results also indicated that the general and affective pain factors in the bifactor model uniquely predicted pain-related external criteria (e.g., depression, anxiety, and stress); however, the continuous, intermittent, and neuropathic factors did not.
Collapse
Affiliation(s)
- David M. Tokar
- Department of Social and Behavioral Sciences, Central State University, Wilberforce, OH, United States of America
| | - Kevin P. Kaut
- Department of Psychology, University of Akron, Akron, OH, United States of America
| | - Philip A. Allen
- Department of Psychology, University of Akron, Akron, OH, United States of America
| |
Collapse
|
3
|
Lee HJ, Lee SJ, Jung JM, Lee TH, Jeong C, Lee TJ, Jang JE, Lee JW. Biomechanical Evaluation of Lateral Lumbar Interbody Fusion with Various Fixation Options for Adjacent Segment Degeneration: A Finite Element Analysis. World Neurosurg 2023; 173:e156-e167. [PMID: 36775239 DOI: 10.1016/j.wneu.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Adjacent segment degeneration (ASD) is a common phenomenon after lumbar fusion. Lateral lumbar interbody fusion (LLIF) may provide an alternative treatment method for ASD. This study used finite element analysis to evaluate the biomechanical effects of LLIF with various fixation options and identify an optimal surgical strategy for ASD. METHODS A validated L1-S1 finite element model was modified for simulation. Six finite element models of the lumbar spine were created and were divided into group 1 (L4-5 posterior lumbar interbody fusion [PLIF] + L3-4 LLIF) and group 2 (L5-S1 PLIF + L4-5 LLIF). Each group consisted of 1) cage-alone, 2) cage + lateral screw fixation (LSF), and 3) cage + bilateral pedicle screw fixation (BPSF) models. The range of motion, intradiscal pressure, and facet loads of adjacent segments as well as interbody cage stress were analyzed. RESULTS The stress on the LLIF cage-superior endplate interface was highest in the cage-alone model followed by the cage + LSF model and cage + BPSF model. The increase in range of motion, intradiscal pressure, and facet loads at the adjacent segment was highest in the cage + BPSF model followed by the cage + LSF model and cage-alone model. However, the biomechanical effect on the adjacent segment seemed similar in the cage-alone and cage + LSF models. CONCLUSIONS LLIF with BPSF is recommended when performing LLIF surgery for ASD after L4-5 and L5-S1 PLIF. Considering cage subsidence and biomechanical effects on the adjacent segment, LLIF with LSF may be a suboptimal option for ASD surgery.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Sung-Jae Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jong-Myung Jung
- Department of Neurosurgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea.
| | - Tae Hoon Lee
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Chandong Jeong
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Tae Jin Lee
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Ji-Eun Jang
- R&D Center, GS Medical Co., Ltd., Cheongju, Republic of Korea
| | - Jae-Won Lee
- R&D Center, GS Medical Co., Ltd., Cheongju, Republic of Korea
| |
Collapse
|
4
|
Gholampour S, Frim D, Yamini B. Long-term recovery behavior of brain tissue in hydrocephalus patients after shunting. Commun Biol 2022; 5:1198. [PMID: 36344582 PMCID: PMC9640582 DOI: 10.1038/s42003-022-04128-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
The unpredictable complexities in hydrocephalus shunt outcomes may be related to the recovery behavior of brain tissue after shunting. The simulated cerebrospinal fluid (CSF) velocity and intracranial pressure (ICP) over 15 months after shunting were validated by experimental data. The mean strain and creep of the brain had notable changes after shunting and their trends were monotonic. The highest stiffness of the hydrocephalic brain was in the first consolidation phase (between pre-shunting to 1 month after shunting). The viscous component overcame and damped the input load in the third consolidation phase (after the fifteenth month) and changes in brain volume were stopped. The long-intracranial elastance (long-IE) changed oscillatory after shunting and there was not a linear relationship between long-IE and ICP. We showed the long-term effect of the viscous component on brain recovery behavior of hydrocephalic brain. The results shed light on the brain recovery mechanism after shunting and the mechanisms for shunt failure.
Collapse
Affiliation(s)
| | - David Frim
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Bakhtiar Yamini
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
A Clinical Study on the Treatment of Recurrent Chiari (Type I) Malformation with Syringomyelia Based on the Dynamics of Cerebrospinal Fluid. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9770323. [DOI: 10.1155/2022/9770323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Objective. Combining the dynamics of cerebrospinal fluid, our study investigates the clinical effects of syringomyelia after the combination of fourth ventricle-subarachnoid shunt (FVSS) for recurrent Chiari (type I) malformations after cranial fossa decompression (foramen magnum decompression (FMD)). Methods. From December 2018 to December 2020, 15 patients with recurrent syringomyelia following posterior fossa decompression had FVSS surgery. Before and after the procedure, the clinical and imaging data of these individuals were retrospectively examined. Results. Following FVSS, none of the 15 patients experienced infection, nerve injury, shunt loss, or obstruction. 13 patients improved dramatically after surgery, while 2 patients improved significantly in the early postoperative period, but the primary symptoms returned 2 months later. The Japanese Orthopedic Association (JOA) score was
, which was considerably better than preoperatively (
,
0.001). The MRI results revealed that the cavities in 13 patients were reduced by at least 50% compared to the cavities measured preoperatively. The shrinkage rate of syringomyelia was 86.67% (13/15). One patient’s cavities nearly vanished following syringomyelia. The size of the cavity in the patient remain unchanged, and the cavity’s maximal diameter was significantly smaller than the size measured preoperatively (
) PC-MRI results indicated that the peak flow rate of cerebrospinal fluid at the central segment of the midbrain aqueduct and the foramen magnum in patients during systole and diastole were significantly reduced after surgery (
). Conclusion. After posterior fossa decompression, FVSS can effectively restore the smooth circulation of cerebrospinal fluid and alleviate clinical symptoms in patients with recurrent Chiari (type I) malformation and syringomyelia. It is a highly effective way of treatment.
Collapse
|
6
|
Shuman WH, DiRisio A, Carrasquilla A, Lamb CD, Quinones A, Pionteck A, Yang Y, Kurt M, Shrivastava RK. Is there a morphometric cause of Chiari malformation type I? Analysis of existing literature. Neurosurg Rev 2021; 45:263-273. [PMID: 34254195 DOI: 10.1007/s10143-021-01592-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Although many etiologies have been proposed for Chiari malformation type I (CM-I), there currently is no singular known cause of CM-I pathogenesis. Advances in imaging have greatly progressed the study of CM-I. This study reviews the literature to determine if an anatomical cause for CM-I could be proposed from morphometric studies in adult CM-I patients. After conducting a literature search using relevant search terms, two authors screened abstracts for relevance. Full-length articles of primary morphometric studies published in peer-reviewed journals were included. Detailed information regarding methodology and symptomatology, craniocervical instability, syringomyelia, operative effects, and genetics were extracted. Forty-six studies met inclusion criteria, averaging 93.2 CM-I patients and 41.4 healthy controls in size. To obtain measurements, 40 studies utilized MRI and 10 utilized CT imaging, whereas 41 analyzed parameters within the posterior fossa and 20 analyzed parameters of the craniovertebral junction. The most commonly measured parameters included clivus length (n = 30), tonsillar position or descent (n = 28), McRae line length (n = 26), and supraocciput length (n = 26). While certain structural anomalies including reduced clivus length have been implicated in CM-I, there is a lack of consensus on how several other morphometric parameters may or may not contribute to its development. Heterogeneity in presentation with respect to the extent of tonsillar descent suggests alternate methods utilizing morphometric measurements that may help to identify CM-I patients and may benefit future research to better understand underlying pathophysiology and sequelae such as syringomyelia.
Collapse
Affiliation(s)
- William H Shuman
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| | - Aislyn DiRisio
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Alejandro Carrasquilla
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Colin D Lamb
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Addison Quinones
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Aymeric Pionteck
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Yang Yang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine At Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
7
|
García M, Eppelheimer MS, Houston JR, Houston ML, Nwotchouang BST, Kaut KP, Labuda R, Bapuraj JR, Maleki J, Klinge PM, Vorster S, Luciano MG, Loth F, Allen PA. Adult Age Differences in Self-Reported Pain and Anterior CSF Space in Chiari Malformation. THE CEREBELLUM 2021; 21:194-207. [PMID: 34106419 DOI: 10.1007/s12311-021-01289-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Chiari malformation type I (CMI) is a neural disorder with sensory, cognitive, and motor defects, as well as headaches. Radiologically, the cerebellar tonsils extend below the foramen magnum. To date, the relationships among adult age, brain morphometry, surgical status, and symptom severity in CMI are unknown. The objective of this study was to better understand the relationships among these variables using causal modeling techniques. Adult CMI patients (80% female) who either had (n = 150) or had not (n = 151) undergone posterior fossa decompression surgery were assessed using morphometric measures derived from magnetic resonance images (MRI). MRI-based morphometry showed that the area of the CSF pocket anterior to the cervico-medullary junction (anterior CSF space) correlated with age at the time of MRI (r = - .21). Also, self-reported pain increased with age (r = .11) and decreased with anterior CSF space (r = - .18). Age differences in self-reported pain were mediated by anterior CSF space in the cervical spine area-and this effect was particularly salient for non-decompressed CMI patients. As CMI patients age, the anterior CSF space decreases, and this is associated with increased pain-especially for non-decompressed CMI patients. It is recommended that further consideration of age-related decreases in anterior CSF space in CMI patients be given in future research.
Collapse
Affiliation(s)
- Maitane García
- Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Maggie S Eppelheimer
- Department of Biomedical Engineering, College of Engineering, The University of Akron, Akron, OH, USA
| | - James R Houston
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Michelle L Houston
- Department of Psychology, The University of Akron, Akron, OH, 44325-4301, USA
| | | | - Kevin P Kaut
- Department of Psychology, The University of Akron, Akron, OH, 44325-4301, USA
| | | | - J Rajiv Bapuraj
- Department of Radiology, Division of Neuroradiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Jahangir Maleki
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Petra M Klinge
- Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School Brown University, Providence, RI, USA
| | - Sarel Vorster
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark G Luciano
- Department of Neurosurgery, Johns Hopkins Medical Center, Baltimore, MD, USA
| | - Francis Loth
- Department of Biomedical Engineering, College of Engineering, The University of Akron, Akron, OH, USA.,Department of Mechanical Engineering, College of Engineering, The University of Akron, Akron, OH, USA
| | - Philip A Allen
- Department of Psychology, The University of Akron, Akron, OH, 44325-4301, USA.
| |
Collapse
|
8
|
Gholampour S, Fatouraee N. Boundary conditions investigation to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus patients. Commun Biol 2021; 4:394. [PMID: 33758352 PMCID: PMC7988041 DOI: 10.1038/s42003-021-01920-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Three-D head geometrical models of eight healthy subjects and 11 hydrocephalus patients were built using their CINE phase-contrast MRI data and used for computer simulations under three different inlet/outlet boundary conditions (BCs). The maximum cerebrospinal fluid (CSF) pressure and the ventricular system volume were more effective and accurate than the other parameters in evaluating the patients' conditions. In constant CSF pressure, the computational patient models were 18.5% more sensitive to CSF volume changes in the ventricular system under BC "C". Pulsatile CSF flow rate diagrams were used for inlet and outlet BCs of BC "C". BC "C" was suggested to evaluate the intracranial compliance of the hydrocephalus patients. The results suggested using the computational fluid dynamic (CFD) method and the fully coupled fluid-structure interaction (FSI) method for the CSF dynamic analysis in patients with external and internal hydrocephalus, respectively.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Nasser Fatouraee
- Biological Fluid Mechanics Research Laboratory, Biomechanics Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Gholampour S. Computerized biomechanical simulation of cerebrospinal fluid hydrodynamics: Challenges and opportunities. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105938. [PMID: 33485075 DOI: 10.1016/j.cmpb.2021.105938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Gholampour S, Gholampour H. Correlation of a new hydrodynamic index with other effective indexes in Chiari I malformation patients with different associations. Sci Rep 2020; 10:15907. [PMID: 32985602 PMCID: PMC7523005 DOI: 10.1038/s41598-020-72961-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to find a new CSF hydrodynamic index to assess Chiari type I malformation (CM-I) patients’ conditions and examine the relationship of this new index with morphometric and volumetric changes in these patients and their clinical symptoms. To this end, 58 CM-I patients in four groups and 20 healthy subjects underwent PC-MRI. Ten morphometric and three volumetric parameters were calculated. The CSF hydrodynamic parameters were also analyzed through computational fluid dynamic (CFD) simulation. The maximum CSF pressure was identified as a new hydrodynamic parameter to assess the CM-I patients’ conditions. This parameter was similar in patients with the same symptoms regardless of the group to which they belonged. The result showed a weak correlation between the maximum CSF pressure and the morphometric parameters in the patients. Among the volumetric parameters, PCF volume had the highest correlation with the maximum CSF pressure, which its value being higher in patients with CM-I/SM/scoliosis (R2 = 65.6%, P = 0.0022) than in the other patients. PCF volume was the more relevant volumetric parameter to assess the patients’ symptoms. The values of PCF volume were greater in patients that headache symptom was more obvious than other symptoms, as compared to the other patients.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Hanie Gholampour
- Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Naghibzadeh M, Gholampour S, Naghibzadeh M, Sadeghian-Nodoushan F, Nikukar H. The effect of electromagnetic field on decreasing and increasing of the growth and proliferation rate of dermal fibroblast cell. Dermatol Ther 2020; 33:e13803. [PMID: 32526050 DOI: 10.1111/dth.13803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/06/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Maintaining the health of dermal fibroblast cells and controlling their growth and proliferation would directly affect the health of skin tissues. The present study encompassed three control and three experimental specimens, which were different in terms of the duration of exposure to electromagnetic field (EMF) and intensity. With a decrease in intensity from 2 to 1 mT during 24, 48, and 72 h after exposing the cells to EMF, the frequency of the sample fibroblast cells increased by 60.3%, 144.9%, and 90.1%, respectively. With an increase in intensity from 3 to 4 mT during 48 and 72 h of exposure to EMF, the frequencies of the sample fibroblast cells decreased by 6.8% and 86.7%, respectively. It seems to be possible to achieve the most desirable condition to help the restoration of wounds and skin lesions through decreasing the exposure intensity from 2 to 0.5 mT and increasing EMF exposure time from 24 to 72 h simultaneously and non-invasively. The most desirable approach to improve the treatment of skin cancers non-invasively is to increase the intensity from 3 to 5 mT and to enhance EMF exposure time from 48 to 72 h.
Collapse
Affiliation(s)
- Mehran Naghibzadeh
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Naghibzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadeghian-Nodoushan
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Nikukar
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
Effect of Ambient Temperature Changes on Blood Flow in Anterior Cerebral Artery of Patients with Skull Prosthesis. World Neurosurg 2019; 135:e358-e365. [PMID: 31837495 DOI: 10.1016/j.wneu.2019.11.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND In many cases, an injury to the head leads to the replacement of a part of the skull with materials such as titanium and polyether ether ketone. METHODS Three-dimensional heads model of 15 healthy individuals and 13 patients were prepared. The models were simulated using thermal fluid structure interaction analysis to evaluate the effects of cold (5°C) and hot (55°C) temperatures of the skull on the conditions of blood flow in the anterior cerebral artery. RESULTS The results showed negligible changes (<3%) in wall shear stress (WSS) vessel and von Mises stress between the healthy individuals and patients both at 25°C and 55°C. However, at 5°C, the values of these 2 parameters in the patients were 2.1 and 2.5 times those in healthy individuals, respectively. The value of WSS in healthy individuals and the patients in cold temperature was 1.2 and 2.9 times those at normal temperature. The corresponding values for von Mises stress were 1.1 and 2.2, respectively. Accordingly, the stress changes between cold and hot ambient temperatures were found to be negligible in all samples. CONCLUSIONS The changes in stress were significant only for the patients when exposed to cold ambient temperature, and only in patients, exposure to a cold ambient temperature significantly increased the risks of vascular aneurysm and damage to the brain tissue surrounding the blood vessels. These risks were found to be negligible for both healthy individuals and patients when exposed to hot ambient temperature and also for healthy individuals exposed to cold ambient temperature.
Collapse
|
13
|
Kurucz P, Meszaros C, Ganslandt O, Buchfelder M, Barany L. The "Valva Cerebri": Morphometry, Topographic Anatomy and Histology of the Rhomboid Membrane at the Craniocervical Junction. Clin Anat 2019; 33:56-65. [PMID: 31444925 DOI: 10.1002/ca.23460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022]
Abstract
The arachnoid membranes' anatomy is a controversial topic in the literature, and the rhomboid membrane at the craniovertebral junction is an element of this system that has been described poorly. Hence, the objective of our study was to examine this membrane's anatomy and histology. A total of 45 fresh formalin-fixed human cadaveric heads were examined, and anatomic dissections and histologic examinations using standard staining methods were performed. The membrane was found to be a constant structure. It has a rhomboid shape and is located on the medulla oblongata and upper cervical spine's ventral surface within the subarachnoid space. Its average craniocaudal length is 49 mm and the short axis is 26 mm. The cranial apex is attached to the vertebral arteries' junction, and the caudal apex reaches the level of C4. The lateral apices are attached to the dura mater at the level of the denticulate ligament's second insertion. The C1 spinal nerves perforate the membrane, while the C2 roots are located dorsal to it. The membrane is attached strongly to the underlying pia mater. Histologically, it has a typical arachnoid structure, in which its adhesions to the vertebral arteries as well as to the pia mater could be verified histologically. This is the first detailed examination of the rhomboid membrane. Our results suggest that the membrane serves a valve-like function between the spinal and cranial subarachnoid spaces. Based on our findings, further hydrodynamic studies should clarify the membrane's physiological role. Clin. Anat. 32:56-65, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter Kurucz
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany.,Department of Neurosurgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Cintia Meszaros
- Laboratory for Applied and Clinical Anatomy, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Oliver Ganslandt
- Department of Neurosurgery, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Laszlo Barany
- Laboratory for Applied and Clinical Anatomy, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Gholampour S, Gholampour H, Khanmohammadi H. Finite element analysis of occlusal splint therapy in patients with bruxism. BMC Oral Health 2019; 19:205. [PMID: 31484524 PMCID: PMC6727492 DOI: 10.1186/s12903-019-0897-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background Bruxism is among the habits considered generally as contributory factors for temporomandibular joint (TMJ) disorders and its etiology is still controversial. Methods Three-dimensional models of maxilla and mandible and teeth of 37 patients and 36 control subjects were created using in-vivo image data. The maximum values of stress and deformation were calculated in 21 patients six months after using a splint and compared with those in the initial conditions. Results The maximum stresses in the jaw bone and head of mandible were respectively 4.4 and 4.1 times higher in patients than in control subjects. Similar values for deformation were 5.8 and 4.9, respectively. The maximum stress in the jaw bone and head of mandible decreased six months after splint application by up to 71.0 and 72.8%, respectively. Similar values for the maximum deformation were 80.7 and 78.7%, respectively. Following the occlusal splint therapy, the approximation of maximum deformation to the relevant values in control subjects was about 2.6 times the approximation of maximum stress to the relevant values in control subjects. The maximum stress and maximum deformation occurred in all cases in the head of the mandible and the splint had the highest effectiveness in jaw bone adjacent to the molar teeth. Conclusions Splint acts as a stress relaxer and dissipates the extra stresses generated as well as the TMJ deformation and deviations due to bruxism. The splint also makes the bilateral and simultaneous loading possible and helps with the treatment of this disorder through regulation of bruxism by creating a biomechanical equilibrium between the physiological loading and the generated stress.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Hanie Gholampour
- Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Khanmohammadi
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Gholampour S, Bahmani M, Shariati A. Comparing the Efficiency of Two Treatment Methods of Hydrocephalus: Shunt Implantation and Endoscopic Third Ventriculostomy. Basic Clin Neurosci 2019; 10:185-198. [PMID: 31462974 PMCID: PMC6712634 DOI: 10.32598/bcn.9.10.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/28/2018] [Accepted: 08/26/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction: Hydrocephalus is one of the most common diseases in children, and its treatment requires brain operation. However, the pathophysiology of the disease is very complicated and still unknown. Methods: Endoscopic Third Ventriculostomy (ETV) and Ventriculoperitoneal Shunt (VPS) implantation are among the common treatments of hydrocephalus. In this study, Cerebrospinal Fluid (CSF) hydrodynamic parameters and efficiency of the treatment methods were compared with numerical simulation and clinical follow-up of the treated patients. Results: Studies have shown that in patients under 19 years of age suffering from hydrocephalus related to a Posterior Fossa Brain Tumor (PFBT), the cumulative failure rate was 21% and 29% in ETV and VPS operation, respectively. At first, the ETV survival curve shows a sharp decrease and after two months it gets fixed while VPS curve makes a gradual decrease and reaches to a level lower than ETV curve after 5.7 months. Post-operative complications in ETV and VPS methods are 17% and 31%, respectively. In infants younger than 12 months with hydrocephalus due to congenital Aqueduct Stenosis (AS), and also in the elderly patients suffering from Normal Pressure Hydrocephalus (NPH), ETV is a better treatment option. Computer simulations show that the maximum CSF pressure is the most reliable hydrodynamic index for the evaluation of the treatment efficacy in these patients. After treatment by ETV and shunt methods, CSF pressure decreases about 9 and 5.3 times, respectively and 2.5 years after shunt implantation, this number returns to normal range. Conclusion: In infants with hydrocephalus, initial treatment by ETV was more reasonable than implanting the shunt. In adult with hydrocephalus, the initial failure in ETV occurred sooner compared to shunt therapy; however, ETV was more efficient.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnoush Bahmani
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Shariati
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Gholampour S, Hajirayat K. Minimizing thermal damage to vascular nerves while drilling of calcified plaque. BMC Res Notes 2019; 12:338. [PMID: 31200774 PMCID: PMC6570876 DOI: 10.1186/s13104-019-4381-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/11/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Drilling of calcified plaque (DCP) inside the artery is a method for removing calcified plaques. This study investigated the effect of drill. To validate the maximum temperature calculated by computer simulation, this value was also measured by an experimental on a phantom model. RESULTS Increasing drill bit diameter during drilling would increase the temperature in vascular nerves. In a drill bit with a diameter of 4 mm, the risk of thermal necrosis in vascular nerves of the artery wall decreased by 8.57% by changing the drill from WC to NT. The same value for a drill bit with a diameter of 6 mm was 10.17%. However, the trend of the generated temperature in the vascular nerves did not change significantly with change of the material and diameter of the drill bit. The results showed that for DCP with the least risk of thermal necrosis in vascular nerves and subsequently the lowest risk of restenosis, coagulation and thermal stroke of the patient, the best option is to use a drill bit with a diameter of 4 mm and NT material for drilling.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, Islamic Azad University-Tehran North Branch, Tehran, Iran
| | - Keyvan Hajirayat
- Department of Biomedical Engineering, Islamic Azad University-Tehran North Branch, Tehran, Iran
| |
Collapse
|
17
|
Gholampour S, Deh HHH. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis. Biomed Eng Online 2019; 18:65. [PMID: 31126308 PMCID: PMC6534826 DOI: 10.1186/s12938-019-0686-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE This study was designed to investigate heat accumulation and bone thermal necrosis for various distances between holes and time delays between drillings. METHODS The tests were performed at three distances (6, 12, 16 mm) and three time delays: 0, 5 and 10 s. To examine the efficiency of coolants, CO2 coolant was also tested in addition to two common cooling modes in bone drilling. RESULTS The main results were the trend of temperature-time graph, maximum temperature at drilling site, temperature distribution on the surface of drilling site, temperature durability and returning time. The effect of lateral drillings on the initial hole was notable in drilling at a distance of 6 mm without cooling. This effect did not disappear even by increasing the time delay up to 10 s. The results obtained for drilling with normal saline coolant were not sufficiently acceptable due to the manual and non-uniform cooling process as well as the relative obstruction of the chips exit path. Generally, drillings with two common cooling modes, even when the distances between holes and time delays between drillings were controlled, did not yield all favorable conditions for preventing bone thermal necrosis. CONCLUSION Bone drilling using CO2 coolant eliminates the risk of bone thermal necrosis completely even in cases that the distances between holes in plates or implants are 6 mm and there is no time delay between drillings. These results can be especially useful in emergency orthopedic surgeries and for designing the location of screw holes in implants and plates.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, Islamic Azad University-North Tehran Branch, P.O.B. 1651153311, Tehran, Iran.
| | | |
Collapse
|