1
|
Wang Y, Chen P, Liang Y, Deng Y, Zhou W. Association between admission serum potassium concentration and the island sign on cranial CT in HICH patients: a cross-sectional study. Front Neurol 2024; 15:1337168. [PMID: 38895694 PMCID: PMC11184062 DOI: 10.3389/fneur.2024.1337168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Objective This study aimed to explore the correlation between serum potassium (K+) concentration upon admission and the presence of the Island Sign (IS) in cranial CT scans of patients diagnosed with Hypertensive Intracerebral Hemorrhage (HICH), including the potential presence of a non-linear relationship. Methods This investigation constituted a single-center cross-sectional study. We systematically gathered comprehensive general clinical characteristics, biological indicators, and imaging data from a cohort of 330 patients diagnosed with HICH. These patients received treatment within the neurosurgery department of Chongqing Emergency Medical Center during the period spanning from July 1, 2018, to July 7, 2023. Our primary objective was to scrutinize the potential connection between serum K+ concentration upon admission and the presence of the IS observed in cranial CT scans. To meticulously address this inquiry, we employed logistic regression modeling, thereby meticulously evaluating the correlation aforementioned. Moreover, in order to delve deeper into the intricacies of the relationship, we extended our analysis by employing a smoothed curve-fitting model to meticulously authenticate the potential non-linear interrelation between these two critical variables. Results In this investigation, a total of 330 patients diagnosed with HICH were ultimately enrolled, exhibiting an average age of 58.4 ± 13.1 years, comprising 238 (72.1%) males and 92 (27.9%) females. Among these participants, 118 individuals (35.7%) presented with the IS upon admission cranial CT scans, while 212 patients (64.3%) did not exhibit this characteristic. Upon comprehensive multifactorial adjustments, a non-linear association was uncovered between serum K+ concentration and the presence of IS. Notably, an inflection point was identified at approximately 3.54 mmol/L for serum K+ concentration. Prior to the patient's serum K+ concentration reaching around 3.54 mmol/L upon admission, a discernible trend was observed-every 0.1 mmol/L increment in serum K+ concentration was associated with an 8% decrease in the incidence of IS (OR: 0.914, 95% CI: 0.849-0.983, p = 0.015). Conclusion The findings of this study underscore a negative association between reduced serum K+ concentration upon admission and the occurrence of the IS on cranial CT scans among patients diagnosed with hypertensive cerebral hemorrhage. Furthermore, this negative correlation appears to manifest within the realm of a non-linear relationship. This study elucidates the potential significance of serum K+ concentration levels among patients with HICH, highlighting the role they play. Moreover, the maintenance of a physiological equilibrium in serum K+ concentrations emerges as a conceivable protective factor for individuals within the stroke population.
Collapse
Affiliation(s)
| | | | | | | | - Weiduo Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Huang YW, Huang HL, Li ZP, Yin XS. Research advances in imaging markers for predicting hematoma expansion in intracerebral hemorrhage: a narrative review. Front Neurol 2023; 14:1176390. [PMID: 37181553 PMCID: PMC10166819 DOI: 10.3389/fneur.2023.1176390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Stroke is a major global health concern and is ranked as the second leading cause of death worldwide, with the third highest incidence of disability. Intracerebral hemorrhage (ICH) is a devastating form of stroke that is responsible for a significant proportion of stroke-related morbidity and mortality worldwide. Hematoma expansion (HE), which occurs in up to one-third of ICH patients, is a strong predictor of poor prognosis and can be potentially preventable if high-risk patients are identified early. In this review, we provide a comprehensive summary of previous research in this area and highlight the potential use of imaging markers for future research studies. Recent advances Imaging markers have been developed in recent years to aid in the early detection of HE and guide clinical decision-making. These markers have been found to be effective in predicting HE in ICH patients and include specific manifestations on Computed Tomography (CT) and CT Angiography (CTA), such as the spot sign, leakage sign, spot-tail sign, island sign, satellite sign, iodine sign, blend sign, swirl sign, black hole sign, and hypodensities. The use of imaging markers holds great promise for improving the management and outcomes of ICH patients. Conclusion The management of ICH presents a significant challenge, and identifying high-risk patients for HE is crucial to improving outcomes. The use of imaging markers for HE prediction can aid in the rapid identification of such patients and may serve as potential targets for anti-HE therapies in the acute phase of ICH. Therefore, further research is needed to establish the reliability and validity of these markers in identifying high-risk patients and guiding appropriate treatment decisions.
Collapse
Affiliation(s)
- Yong-Wei Huang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Hai-Lin Huang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Zong-Ping Li
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xiao-Shuang Yin
- Department of Immunology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Wang J, Feng Q, Zhang Y, Qiu W, Gao H. Elevated Glucose-Potassium Ratio Predicts Preoperative Rebleeding in Patients With Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2022; 12:795376. [PMID: 35095738 PMCID: PMC8793357 DOI: 10.3389/fneur.2021.795376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Recent reports revealed that higher serum glucose-potassium ratio (GPR) levels at admission were significantly associated with poor outcomes at 3 months following aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to investigate the association between GPR and the risk of rebleeding following aSAH. Methods: This single-center retrospective study of patients with aSAH was conducted in our hospital between January 2008 and December 2020. Patients meeting the inclusion criteria were divided into the rebleed group and the non-rebleed group. Univariate and multivariate analyses were implemented to assess the association between risk factors of rebleeding and outcomes. Results: A total of 1,367 patients experiencing aSAH, 744 patients who met the entry criteria in the study [mean age (54.89 ± 11.30) years; 60.50% female patients], of whom 45 (6.05%) developed rebleeding. The patients in the rebleed group had significantly higher GPR levels than those of patients without rebleeding [2.13 (1.56-3.20) vs. 1.49 (1.23-1.87); p < 0.001]. Multivariable analysis revealed that higher mFisher grade and GPR were associated with rebleeding [mFisher grade, odds ratios (OR) 0.361, 95% CI 0.166-0.783, p = 0.01; GPR, OR 0.254, 95% CI 0.13-0.495, p < 0.001]. The receiver operating characteristics (ROCs) analysis described that the suitable cut-off value for GPR as a predictor for rebleeding in patients with aSAH was determined as 2.09 (the area under the curve [AUC] was 0.729, 95% CI 0.696-0.761, p < 0.0001; the sensitivity was 53.33%, and the specificity was 83.98%). Pearson correlation analysis showed a significant positive correlation between GPR and mFisher grade, between GPR and Hunt-Hess grade (mFisher grade r = 0.4271, OR 0.1824, 95% CI 0.3665-0.4842, p < 0.001; Hunt-Hess grade r = 0.4248, OR 0.1836, 95% CI 0.3697-0.4854, p < 0.001). The patients in the poor outcome had significantly higher GPR levels than those of patients in the good outcome [1.87 (1.53-2.42) vs. 1.45 (1.20-1.80); p < 0.001]. Multivariable analysis demonstrated that GPR was an independent predictor for poor prognosis. The AUC of GPR was 0.709 (95% CI 0.675-0.741; p < 0.0001) (sensitivity = 77.70%; specificity = 55.54%) for poor prognosis. Conclusion: Higher preoperative serum GPR level was associated with Hunt-Hess grade, mFisher grade, rebleeding, and unfunctional outcome, and that they predicted preoperative rebleeding and the 90-days outcome of non-diabetic patients with aSAH, who had potentially relevant clinical implications in patients with aSAH.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Qiangqiang Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Yinbin Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
MicroRNA Transcriptomics Analysis Identifies Dysregulated Hedgehog Signaling Pathway in a Mouse Model of Acute Intracerebral Hemorrhage Exposed to Hyperglycemia. J Stroke Cerebrovasc Dis 2022; 31:106281. [PMID: 35026495 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice. METHODS We employed the collagenase model of intracerebral hemorrhage. Twenty male C57BL/6 mice were used and randomly divided in normo- and hyperglycemic. The hyperglycemia was induced by intraperitoneally injection of 50% of Dextrose (8 mL/kg) 3 hours after intracerebral hemorrhage. The neurologic impairment was investigated by neurologic deficit scale. To study the specific mechanisms of hyperglycemia, microRNAs expression in perihematomal area was investigated by RNA sequencing. MicroRNAs expression in hyperglycemic intracerebral hemorrhage animals were compared normoglycemic mice. Functional annotation analysis was used to indicate potential pathological pathway, underlying observed effects. Finally, polymerase chain reaction validation was administered. RESULTS Intraperitoneal injection of dextrose significantly increased blood glucose level. That was associated with aggravation of neurological deficits in hyperglycemic compared to normoglycemic animals. A total of 73 differentially expressed microRNAs were identified via transcriptomics analysis. Bioinformatics analyses showed that these microRNAs were significantly altered in several signaling pathways, of which the hedgehog signaling pathway was regarded as the most potential pathway associated with the effect of hyperglycemia on acute intracerebral hemorrhage. Furthermore, polymerase chain reaction results validated the correlation between microRNAs and hedgehog signaling pathway. CONCLUSIONS MicroRNA elevated in hyperglycemia group may be involved in worsening the neurological function via inhibiting the hedgehog signaling, which provides a novel molecular physiological mechanism and lays the foundation for treatment of intracerebral hemorrhage.
Collapse
|
5
|
Ye XH, Cai XL, Nie DL, Chen YJ, Li JW, Xu XH, Cai JS, Liu ZR, Yin XZ, Song SJ, Tong LS, Gao F. Stress-Induced Hyperglycemia and Remote Diffusion-Weighted Imaging Lesions in Primary Intracerebral Hemorrhage. Neurocrit Care 2021; 32:427-436. [PMID: 31313140 DOI: 10.1007/s12028-019-00747-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Stress-induced hyperglycemia (SIH) is the relative transient increase in glucose during a critical illness such as intracerebral hemorrhage (ICH) and is likely to play an important role in the pathogenesis of remote diffusion-weighted imaging (DWI) lesion (R-DWIL) in primary ICH. We sought to determine the association between SIH and the occurrence of R-DWILs. METHODS We prospectively enrolled primary ICH patients within 14 days after onset from November 2016 to May 2018. In these patients, cerebral magnetic resonance imaging was performed within 14 days after ICH onset. R-DWIL was defined as a hyperintensity signal in DWI with corresponding hypointensity in apparent diffusion coefficient, and at least 20 mm apart from the hematoma. SIH was measured by stress-induced hyperglycemia ratio (SHR). SHR was calculated by fasting blood glucose (FBG) divided by estimated average glucose derived from glycosylated hemoglobin. The included patients were dichotomized into two groups by the 50th percentile of SHR, and named as SHR (-P50) group and SHR (P50+) group, respectively. We evaluated the association between SHR and R-DWIL occurrence using multivariable logistic regression modeling adjusted for potential confounders. RESULTS Among the 288 patients enrolled, forty-six (16.0%) of them had one or more R-DWILs. Compared with the patients in the lower 50% of SHR (SHR [-P50]), the odds ratio (OR) [95% confidence interval (CI)] for the higher 50% of SHR (SHR [P50+]) group for R-DWIL occurrence was 3.13 (1.39-7.07) in the total population and 6.33 (2.19-18.30) in population absent of background hyperglycemia after adjusting for potential covariates. Similar results were observed after further adjusted for FBG. CONCLUSIONS Our study demonstrated that SIH was associated with the occurrence of R-DWILs in patients with primary ICH within 14 days of symptom onset.
Collapse
Affiliation(s)
- Xiang-Hua Ye
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, 289 Kuocang Rd., Lishui, 323000, Zhejiang, China
| | - Xue-Li Cai
- Department of Neurology, Lishui Hospital, Zhejiang University School of Medicine, 289 Kuocang Rd., Lishui, 323000, Zhejiang, China
| | - Dong-Liang Nie
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Ye-Jun Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Jia-Wen Li
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Xu-Hua Xu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Rd., Yiwu, 322000, Zhejiang, China
| | - Jin-Song Cai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Zhi-Rong Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Xin-Zhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Shui-Jiang Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China
| | - Lu-Sha Tong
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China.
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
6
|
Li Z, You M, Long C, Bi R, Xu H, He Q, Hu B. Hematoma Expansion in Intracerebral Hemorrhage: An Update on Prediction and Treatment. Front Neurol 2020; 11:702. [PMID: 32765408 PMCID: PMC7380105 DOI: 10.3389/fneur.2020.00702] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal type of stroke, but there is no specific treatment. After years of effort, neurologists have found that hematoma expansion (HE) is a vital predictor of poor prognosis in ICH patients, with a not uncommon incidence ranging widely from 13 to 38%. Herein, the progress of studies on HE after ICH in recent years is updated, and the topics of definition, prevalence, risk factors, prediction score models, mechanisms, treatment, and prospects of HE are covered in this review. The risk factors and prediction score models, including clinical, imaging, and laboratory characteristics, are elaborated in detail, but limited by sensitivity, specificity, and inconvenience to clinical practice. The management of HE is also discussed from bench work to bed practice. However, the upmost problem at present is that there is no treatment for HE proven to definitely improve clinical outcomes. Further studies are needed to identify more accurate predictors and effective treatment to reduce HE.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunnan Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoqiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, Yu Z, Zheng J, Zhou Z, Aviv RI, Shoamanesh A, Sporns PB, Rosand J, Greenberg SM, Al-Shahi Salman R, Qureshi AI, Demchuk AM, Anderson CS, Goldstein JN, Charidimou A. Standards for Detecting, Interpreting, and Reporting Noncontrast Computed Tomographic Markers of Intracerebral Hemorrhage Expansion. Ann Neurol 2019; 86:480-492. [PMID: 31364773 DOI: 10.1002/ana.25563] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
Significant hematoma expansion (HE) affects one-fifth of people within 24 hours after acute intracerebral hemorrhage (ICH), and its prevention is an appealing treatment target. Although the computed tomography (CT)-angiography spot sign predicts HE, only a minority of ICH patients receive contrast injection. Conversely, noncontrast CT (NCCT) is used to diagnose nearly all ICH, so NCCT markers represent a widely available alternative for prediction of HE. However, different NCCT signs describe similar features, with lack of consensus on the optimal image acquisition protocol, assessment, terminology, and diagnostic criteria. In this review, we propose practical guidelines for detecting, interpreting, and reporting NCCT predictors of HE. ANN NEUROL 2019;86:480-492.
Collapse
Affiliation(s)
- Andrea Morotti
- Department of Neurology and Neurorehabilitation, IRCCS Mondino Foundation, Pavia, Italy
| | - Gregoire Boulouis
- Université de Paris, INSERM UMR 1266 IMA-BRAIN, Department of Neuroradiology, Centre Hospitalier Sainte Anne, Paris, France
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Qi Li
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Christen D Barras
- South Australian Health and Medical Research Institute and Department of Radiology, Royal Adelaide Hospital and University of Adelaide, Adelaide, South Australia, Australia
| | - Candice Delcourt
- Department of Neurology, Royal Prince Alfred Hospital, Sydney Health Partners, University of Sydney, Sydney, New South Wales, Australia.,George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Zhiyuan Yu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zien Zhou
- George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Richard I Aviv
- Division of Neuroradiology and Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, Ontario, Canada
| | - Peter B Sporns
- Institute of Clinical Radiology, University of Münster, Münster, Germany
| | - Jonathan Rosand
- J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA
| | - Steven M Greenberg
- J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Andrew M Demchuk
- Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Craig S Anderson
- Department of Neurology, Royal Prince Alfred Hospital, Sydney Health Partners, University of Sydney, Sydney, New South Wales, Australia.,George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua N Goldstein
- J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Andreas Charidimou
- J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
8
|
Wang C, Niu X, Ren Y, Lan Z, Zhang Y. Risk Factors for Postoperative Intracranial Hemorrhage After Resection of Intracranial Tumor in 2259 Consecutive Patients. World Neurosurg 2019; 129:e663-e668. [PMID: 31176060 DOI: 10.1016/j.wneu.2019.05.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative hemorrhage (POH), an uncommon complication after cranial operation, may result in prolonged postoperative hospitalization, severe neurologic impairment, or even death. Most models in studies detecting risk factors for POH include all kinds of cranial lesions; however, factors associated with POH may vary among intracranial diseases. There is a paucity of large sample studies focusing solely on POH after intracranial tumor surgery. Therefore, this study was designed to investigate the preoperative risk factors for POH after surgery for intracranial tumor. METHODS Medical records of 2259 adult patients who underwent primary surgical resection of single intracranial tumor between January 2017 and June 2018 at West China Hospital of Sichuan University were retrospectively studied. Univariate and multivariate analyses were performed to identify the risk factors for POH after resection of intracranial tumor. RESULTS POH (defined as postoperative hematoma requiring surgical evacuation) occurred in 40 of 2259 patients (1.8%). Univariate analysis revealed that older age (P = 0.037, Wilcoxon-Mann-Whitney test), higher international normalized ratio (INR) (P = 0.037, Wilcoxon-Mann-Whitney test), and larger tumor size (P = 0.001, Wilcoxon-Mann-Whitney test) were significantly associated with POH. Then it was confirmed by multivariate analysis that all of the 3 factors (older age: P = 0.033, higher INR: P = 0.044, larger tumor size: P = 0.002) were independent risk factors for POH after removal of intracranial tumor. CONCLUSIONS Older age, higher INR, and larger tumor size were identified as independent risk factors for POH after resection of intracranial tumor in adults.
Collapse
Affiliation(s)
- Chenghong Wang
- Departments of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaodong Niu
- Departments of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yanming Ren
- Departments of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zhigang Lan
- Departments of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuekang Zhang
- Departments of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
9
|
Zhang F, Zhang S, Tao C, Yang Z, Li X, You C, Xin T, Yang M. Association between serum glucose level and spot sign in intracerebral hemorrhage. Medicine (Baltimore) 2019; 98:e14748. [PMID: 30882643 PMCID: PMC6426545 DOI: 10.1097/md.0000000000014748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia was proved to cause neuron death in both animal experiments and poor outcome of hemorrhage patients, but the predictive ability of admission blood glucose level for early hematoma growth in patients with intracranial hemorrhage (ICH) is still controversial. Spot sign is a well-established imaging predictor for early hematoma growth, implying active microvascular bleeding. Here, we aim to assess associations between admission serum glucose and early hematoma expansion in ICH patients, as well as spot sign.We retrospectively reviewed all the patients with ICH from January 2017 to March 2018 in West China Hospital, Sichuan University. Admission blood glucose, clinical variables, radiological characteristics, and laboratorial parameters were obtained from medical record. According to computed tomography (CT) and computed tomography angiography (CTA) scan results, hematoma expansion and spot sign were identified by 2 experienced neuroradiologists. Multivariate logistic regression analyses were employed to adjust the associations of hematoma expansion and spot sign with other clinical parameters.Around 42 patients exhibited early hematoma expansions and 26 exhibited spot signs over 138 enrolled patients. The average level of admission blood glucose was 7.55 mmol/L. Multivariate logistic regression analyses revealed that Glasgow Coma Scale (GCS) score on admission, hematoma volume, spot sign, and hyperglycemia were associated with hematoma expansion, whereas admission serum glucose and hematoma size were only associated with spot sign, respectively.Admission blood glucose level is correlated with hematoma growth and incidence of spot sign. These results indicated that hyperglycemia probably plays a critical role in the pathological process of the active bleeding. Further studies should be drawn urgently to understand the potential molecular mechanism of systemic hyperglycemia in affecting prognosis of patients with ICH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, Case Western Reserve University, Ohio
| | - Si Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zijia Yang
- Department of Neurosurgery, Chengdu First People's Hospital, Chengdu
| | - Xi Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology and Neurosurgery
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|