1
|
Pesaresi A, La Cava P, Bonada M, Zeppa P, Melcarne A, Cofano F, Fiaschi P, Garbossa D, Bianconi A. Combined Fluorescence-Guided Surgery with 5-Aminolevulinic Acid and Fluorescein in Glioblastoma: Technical Description and Report of 100 Cases. Cancers (Basel) 2024; 16:2771. [PMID: 39199544 PMCID: PMC11353032 DOI: 10.3390/cancers16162771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Fluorescence-guided resection (FGR) of glioblastomas has been previously explored with the use of 5-amivelulinic acid (5-ALA) and sodium fluoresceine (SF), allowing us to maximize the extent of resection (EoR). In this study, we highlight the most relevant concerns regarding this technique and present the methods and results from the experience of our center. METHODS A case series of 100 patients operated on in AOU Città della Salute e della Scienza in Turin with a histological diagnosis of glioblastoma (grade IV, according to WHO 2021) was retrospectively analyzed. Both 5-ALA and SF were administered and intraoperatively assessed with an optical microscope. RESULTS 5-ALA is the only approved drug for FGR in glioblastoma, reporting an increased EoR. Nevertheless, SF can be positively used in addition to 5-ALA to reduce the risk of false positives without increasing the rate of adverse effects. In our experience, SF was used to guide the initial phase of resection while 5-ALA was used to visualize tumor spots within the surgical cavity. In 96% of cases, gross total resection was achieved, with supra-maximal resection in 11% of cases. CONCLUSIONS Combined FGR using 5-ALA and SF seems to be a promising method of increasing the extent of resection and to improving the prognosis in glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Pesaresi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Pietro La Cava
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Marta Bonada
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Antonio Melcarne
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Pietro Fiaschi
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy (A.M.); (F.C.)
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
2
|
Chen ZB, Zhu XP, Zheng W, Xiang Y, Huang YK, Fang HJ, Deng AJ, Yi FR, Chen HW, Han DQ, Lv SQ. Relationship between the sodium fluorescein yellow fluorescence boundary and the actual boundary of high-grade gliomas during surgical resection. Br J Neurosurg 2024; 38:825-832. [PMID: 34542381 DOI: 10.1080/02688697.2021.1976392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Resection of high-grade glioma with sodium fluorescein can improve the resection rate of the glioma and improve survival. However, it is unclear whether the yellow fluorescence boundary of the high-grade glioma is consistent with the actual boundary of the tumor. This study explores the yellow fluorescence boundary and the actual tumor boundary in high-grade glioma surgery. METHODS This is a retrospective analysis of 10 patients with high-grade gliomas who underwent tumor visualization with sodium fluorescein. After staining of the tumor, random selections of both developed and non-developed yellow fluorescent border tissue at the fluorescence chromogenic boundary were made, followed by pathological examination. Claudin-5, an important component of the tight connections between vascular endothelial cells, was assessed by immunohistochemistry and qRT-PCR in the tumor and surrounding tissues in order to determine the tumor cell content of the tissue, blood-brain barrier damage, and vascular proliferation. The yellow fluorescence boundary was compared with the actual tumor boundary and the results analyzed. RESULTS Tumor cells were still detected outside the yellow fluorescence boundary during high-grade glioma surgery (P < 0.05). Claudin-5 expression was higher in high-grade gliomas than in adjacent normal tissues (P < 0.05), while disconnected Claudin-5 expression was associated with intraoperative yellow fluorescence imaging (r = 0.67). CONCLUSIONS There is a difference between the yellow fluorescence boundary and the actual boundary of the tumor in high-grade glioma, and there are glioma cell infiltrations in the brain tissue of the undeveloped yellow fluorescent border. To ensure patient recovery and function, it is recommended that tumor resection be expanded based on yellow fluorescence visualization. Claudin-5 is overall up-regulated in high-grade gliomas, but some Claudin-5 expression is disconnected. This Claudin-5 expression pattern may be related to the development of yellow fluorescence.
Collapse
Affiliation(s)
- Ze-Bo Chen
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Xiao-Peng Zhu
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Wei Zheng
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yong-Kai Huang
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hong-Jun Fang
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Ai-Jun Deng
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Fu-Rong Yi
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Hui-Wei Chen
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - De-Qing Han
- Department of Neurosurgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Ullah Z, Roy S, Muhammad S, Yu C, Huang H, Chen D, Long H, Yang X, Du X, Guo B. Fluorescence imaging-guided surgery: current status and future directions. Biomater Sci 2024; 12:3765-3804. [PMID: 38961718 DOI: 10.1039/d4bm00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Surgery is one of the most important paradigms for tumor therapy, while fluorescence imaging (FI) offers real-time intraoperative guidance, greatly boosting treatment prognosis. The imaging fidelity heavily relies on not only imaging facilities but also probes for imaging-guided surgery (IGS). So far, a great number of IGS probes with emission in visible (400-700 nm) and near-infrared (NIR 700-1700 nm) windows have been developed for pinpointing disease margins intraoperatively. Herein, the state-of-the-art fluorescent probes for IGS are timely updated, with a special focus on the fluorescent probes under clinical examination. For a better demonstration of the superiority of NIR FI over visible FI, both imaging modalities are critically compared regarding signal-to-background ratio, penetration depth, resolution, tissue autofluorescence, photostability, and biocompatibility. Various types of fluorescence IGS have been summarized to demonstrate its importance in the medical field. Furthermore, the most recent progress of fluorescent probes in NIR-I and NIR-II windows is summarized. Finally, an outlook on multimodal imaging, FI beyond NIR-II, efficient tumor targeting, automated IGS, the use of AI and machine learning for designing fluorescent probes, and the fluorescence-guided da Vinci surgical system is given. We hope this review will stimulate interest among researchers in different areas and expedite the translation of fluorescent probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Dongxiang Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Haodong Long
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Xiulan Yang
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| | - Xuelian Du
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1, Fuhua Road, Futian District, Shenzhen, 518033, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
4
|
Xi C, Jinli S, Jianyao M, Yan C, Huijuan L, Zhongjie S, Zhangyu L, Liwei Z, Yukui L, Sifang C, Guowei T. Fluorescein-guided surgery for high-grade glioma resection: a five-year-long retrospective study at our institute. Front Oncol 2023; 13:1191470. [PMID: 37333818 PMCID: PMC10272354 DOI: 10.3389/fonc.2023.1191470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objective This study investigates the extent of resection, duration of surgery, intraoperative blood loss, and postoperative complications in patients with high-grade glioma who received surgery with or without sodium fluorescein guidance. Methods A single-center retrospective cohort study was conducted on 112 patients who visited our department and underwent surgery between July 2017 and June 2022, with 61 in the fluorescein group and 51 in the non-fluorescein group. Baseline characteristics, intraoperative blood loss, surgery duration, resection extent, and postoperative complications were documented. Results The duration of surgery was significantly shorter in the fluorescein group than in the non-fluorescein group (P = 0.022), especially in patients with tumors in the occipital lobes (P = 0.013). More critically, the gross total resection (GTR) rate was significantly higher in the fluorescein group than in the non-fluorescein group (45.9% vs. 19.6%, P = 0.003). The postoperative residual tumor volume (PRTV) was also significantly lower in the fluorescein group than in the non-fluorescein group (0.40 [0.12-7.11] cm3 vs. 4.76 [0.44-11.00] cm3, P = 0.020). Particularly in patients with tumors located in the temporal and occipital lobes (temporal, GTR 47.1% vs. 8.3%, P = 0.026; PRTV 0.23 [0.12-8.97] cm3 vs. 8.35 [4.05-20.59] cm3, P = 0.027; occipital, GTR 75.0% vs. 0.0%, P = 0.005; PRTV 0.15 [0.13-1.50] cm3 vs. 6.58 [3.70-18.79] cm3, P = 0.005). However, the two groups had no significant difference in intraoperative blood loss (P = 0.407) or postoperative complications (P = 0.481). Conclusions Fluorescein-guided resection of high-grade gliomas using a special operating microscope is a feasible, safe, and convenient technique that significantly improves GTR rates and reduces postoperative residual tumor volume when compared to conventional white light surgery without fluorescein guidance. This technique is particularly advantageous for patients with tumors located in non-verbal, sensory, motor, and cognitive areas such as the temporal and occipital lobes, and does not increase the incidence of postoperative complications.
Collapse
Affiliation(s)
- Chen Xi
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Sun Jinli
- Department of Reproduction, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mao Jianyao
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chen Yan
- Department of Orthopedic Sports Medicine, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Li Huijuan
- Department of Trauma Center and Acute Abdomen Surgery, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Shi Zhongjie
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Li Zhangyu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhou Liwei
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Li Yukui
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chen Sifang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Tan Guowei
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Zhang X, Habib A, Jaman E, Mallela AN, Amankulor NM, Zinn PO. Headlight and loupe-based fluorescein detection system in brain tumor surgery: a first-in-human experience. J Neurosurg Sci 2023; 67:374-379. [PMID: 34647714 PMCID: PMC11225590 DOI: 10.23736/s0390-5616.21.05469-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluorescein is an agent that accumulates in areas of blood-brain barrier breakdown and is commonly used in neurosurgical oncology to assist with lesion localization and visualizing the extent of resection. It is considered to be cost-effective and has a favorable safety profile. Studies on the utilization of fluorescein demonstrate an improved extent of tumor resection and increased overall survival. Currently, fluorescein detection systems are all microscope based, leading to limitations such as decreased maneuverability, limited visualization of the entire operative field, and significant cost associated with obtaining and maintaining a neurosurgical operating microscope. Three consecutive craniotomy patients for tumor resection were included, and surgery was carried out under loupe fluorescence guidance using the ReVeal 450 System, and also a surgical microscope for comparison. Loupe-mounted fluorescence system enabled excellent visualization of fluorescence in all three cases. In this manuscript, we describe our experience with a loupe-mounted fluorescein detection system in three patients with malignant gliomas. We found that the loupe-mounted system offered excellent ability to visualize fluorescein fluorescence. Although loupe-mounted systems are not an alternative to surgical microscopes, they could be a useful surgical adjunct for superficial lesions and in low-middle income counties.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ahmed Habib
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA -
| |
Collapse
|
6
|
Tan AJL, Tey ML, Seow WT, Low DCY, Chang KTE, Ng LP, Looi WS, Wong RX, Tan EEK, Low SYY. Intraoperative Fluorescein Sodium in Pediatric Neurosurgery: A Preliminary Case Series from a Singapore Children's Hospital. NEUROSCI 2023; 4:54-64. [PMID: 39484294 PMCID: PMC11523705 DOI: 10.3390/neurosci4010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 11/03/2024] Open
Abstract
(1) Background: Fluorescein sodium (Na-Fl) has been described as a safe and useful neurosurgical adjunct in adult neurooncology. However, its use has yet to be fully established in children. We designed a study to investigate the use of intraoperative Na-Fl in pediatric brain tumor surgery. (2) Methods: This is a single-institution study for pediatric brain tumor patients managed by the Neurosurgical Service, KK Women's and Children's Hospital. Inclusion criteria consists of patients undergoing surgery for suspected brain tumors from 3 to 19 years old. A predefined intravenous dose of 2 mg/kg of 10% Na-Fl is administered per patient. Following craniotomy, surgery is performed under alternating white light and YELLOW-560 nm filter illumination. (3) Results: A total of 21 patients with suspected brain tumours were included. Median age was 12.1 years old. For three patients (14.3%), there was no significant Na-Fl fluorescence detected and their final histologies reported a cavernoma and two radiation-induced high grade gliomas. The remaining patients (85.7%) had adequate intraoperative fluorescence for their lesions. No adverse side effects were encountered with the use of Na-Fl. (4) Conclusions: Preliminary findings demonstrate the safe and efficacious use of intraoperative Na-Fl for brain tumors as a neurosurgical adjunct in our pediatric patients.
Collapse
Affiliation(s)
- Audrey J. L. Tan
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Min Li Tey
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Wan Tew Seow
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - David C. Y. Low
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Kenneth T. E. Chang
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Lee Ping Ng
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Wen Shen Looi
- Department of Radiation Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Ru Xin Wong
- Department of Radiation Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore
| | - Enrica E. K. Tan
- Paediatric Haematology/Oncology Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Sharon Y. Y. Low
- Department of Neurosurgery, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Neurosurgical Service, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
- SingHealth Duke-NUS Neuroscience Academic Clinical Program, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
7
|
Bonosi L, Marrone S, Benigno UE, Buscemi F, Musso S, Porzio M, Silven MP, Torregrossa F, Grasso G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci 2023; 13:brainsci13020216. [PMID: 36831759 PMCID: PMC9954589 DOI: 10.3390/brainsci13020216] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Collapse
|
8
|
Falco J, Rubiu E, Broggi M, Farinotti M, Vetrano IG, Schiariti M, Anghileri E, Eoli M, Pollo B, Moscatelli M, Restelli F, Mazzapicchi E, La Corte E, Bonomo G, Gemma M, Broggi G, Ferroli P, Acerbi F. Towards an Established Intraoperative Oncological Favorable Tool: Results of Fluorescein-Guided Resection from a Monocentric, Prospective Series of 93 Primary Glioblastoma Patients. J Clin Med 2022; 12:jcm12010178. [PMID: 36614980 PMCID: PMC9820993 DOI: 10.3390/jcm12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
It is commonly reported that maximizing surgical resection of contrast-enhancing regions in patients with glioblastoma improves overall survival. Efforts to achieve an improved rate of resection have included several tools: among those, the recent widespread of fluorophores. Sodium fluorescein is an unspecific, vascular dye which tends to accumulate in areas with an altered blood-brain barrier. In this retrospective analysis of patients prospectively enrolled in the FLUOCERTUM study, we aimed to assess the role of fluorescein-guided surgery on surgical radicality, survival, and morbidity. A retrospective review based on 93 consecutively and prospectively enrolled IDH wild-type glioblastoma patients (2016-2022) was performed; fluorescence characteristics, rate of resection, clinical outcome, and survival were analyzed. No side effect related to fluorescein occurred; all of the tumors presented a strong yellow-green enhancement and fluorescein was judged fundamental in distinguishing tumors from viable tissue in all cases. Gross total resection was achieved in 77 cases out of 93 patients (82.8%). After a mean follow-up time of 17.4 months (3-78 months), the median progression-free survival was 12 months, with a PFS-6 and PFS-12 of 94.2% and 50%, respectively, whereas median overall survival was estimated to be 16 months; survival at 6, 12, and 24 months was 91.8%, 72.3%, and 30.1%, respectively. Based on these results, we can assert that the fluorescein-guided technique is a safe and valuable method for patients harboring a newly diagnosed, untreated glioblastoma.
Collapse
Affiliation(s)
- Jacopo Falco
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Emanuele Rubiu
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Morgan Broggi
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Mariangela Farinotti
- Neuroepidemiology Unit, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ignazio G. Vetrano
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Marco Schiariti
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elena Anghileri
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Marco Moscatelli
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Francesco Restelli
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elio Mazzapicchi
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Emanuele La Corte
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giulio Bonomo
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Marco Gemma
- Neurointensive Care Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanni Broggi
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paolo Ferroli
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Francesco Acerbi
- Neurosurgical Unit 2, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Experimental Microsurgical Laboratory, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-2394-2309
| |
Collapse
|
9
|
Falco J, Broggi M, Vetrano IG, Rubiu E, Schiariti M, Restelli F, Mazzapicchi E, Bonomo G, La Corte E, Ferroli P, Acerbi F. Fluorescein sodium in the surgical treatment of pleomorphic xanthoastrocytomas: Results from a retrospective study. Front Oncol 2022; 12:1009796. [PMID: 36452506 PMCID: PMC9702556 DOI: 10.3389/fonc.2022.1009796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Pleomorphic xanthoastrocytoma (PXA) is a rare brain tumor, most commonly affecting children and young adults. Surgical resection represents the mainstay of treatment, and extent of resection is associated with improved survival. In this study, we analyzed the role of sodium fluorescein (SF) in improving intraoperative visualization easing resection. METHODS Surgical database of FLUOCERTUM study (Besta Institute, Milan, Italy) was retrospectively reviewed to find pleomorphic xanthoastrocytomas and anaplastic xanthoastrocytomas, according to WHO-2016/2021 classification, surgically removed by a fluorescein-guided technique from March 2016 to February 2022. SF was intravenously injected (5mg/kg) immediately after induction of general anesthesia. Tumors were removed using a microsurgical technique with the YELLOW 560 filter (Carl Zeiss Meditec, Oberkochen, Germany). RESULTS Twelve patients (7 males and 5 females; 3 pediatric patients, mean age 10 years, range 5 to 13 years and 9 adult patients, mean age 50.6 years, range 35 to 63 years) underwent fluorescein-guided surgery. No side effects related to SF occurred. In all tumors, contrast enhancement on preoperative MRI correlated with intense, heterogeneous yellow fluorescence with bright fluorescent cystic fluid. Fluorescein was considered helpful in distinguishing tumors from viable tissue in all cases. Gross total resection was achieved in 8 cases (66.7%); in 4 cases, otherwise, the resection was subtotal with fluorescent residual spots to avoid neurological worsening (33.3%). CONCLUSIONS The use of SF is a valuable method for safe fluorescence-guided tumor resection. Our data documented a positive effect of fluorescein-guided surgery on intraoperative visualization, suggesting a probable role in improving the extent of resection during yellow surgery of PXA.
Collapse
Affiliation(s)
- Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Rubiu
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulio Bonomo
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
10
|
Falco J, Höhne J, Broggi M, Rubiu E, Restelli F, Vetrano IG, Schiariti M, Mazzapicchi E, Bonomo G, Ferroli P, Schebesch KM, Acerbi F. Fluorescein-guided surgery for the resection of pilocytic astrocytomas: A multicentric retrospective study. Front Oncol 2022; 12:943085. [PMID: 36016608 PMCID: PMC9395669 DOI: 10.3389/fonc.2022.943085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePilocytic astrocytomas (PAs) are relatively benign tumors, usually enhancing on post-contrast MRI and often characterized by a mural nodule within a cystic component. Surgical resection represents the mainstay of treatment, and extent of resection (EOR) is associated with improved survival. In this study, we analyzed the effect of sodium fluorescein (SF) on the visualization and resection of these circumscribed astrocytic gliomas.MethodsSurgical databases at two neurosurgical departments (Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy and Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany) were retrospectively reviewed to identify the cohort of patients with pilocytic astrocytoma who had undergone fluorescein-guided tumor resection at any of the centers between March 2016 and February 2022. SF was intravenously injected (5 mg/kg) immediately after the induction of general anesthesia. Tumors were removed using a microsurgical technique with the YELLOW 560 filter (Carl Zeiss Meditec, Oberkochen, Germany).ResultsForty-four patients (25 males and 19 females; 26 pediatric patients, mean age of 9.77 years, range 2 to 17 years; and 18 adult patients, mean age of 34.39 years, range 18 to 58 years) underwent fluorescein-guided surgery. No side effects related to SF occurred. In all tumors, contrast enhancement on preoperative MRI was correlated with intense, heterogeneous yellow fluorescence with bright fluorescent cystic fluid. Fluorescein was considered helpful in distinguishing tumors from viable tissue in all cases except three patients due to faint fluorescein enhancement. Biopsy was intended in two operations, and partial resection was intended in three operations. Gross total resection was achieved in 24 cases out of 39 patients scheduled for tumor removal (61.54%), in five cases a minimal residual volume was highlighted by postoperative MRI despite the intraoperative subjective evaluation of complete tumor removal (12.82%); in the other 10 cases, the resection was subtotal with fluorescent residual spots to avoid neurological worsening (25.64%).ConclusionsThe use of SF is a valuable method for safe fluorescence-guided tumor resection. Our data showed a positive effect of fluorescein-guided surgery on intraoperative visualization during resection of Pas, suggesting a possible role in improving the extent of resection of these lesions.
Collapse
Affiliation(s)
- Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Julius Höhne
- Department of Neurosurgery, Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Rubiu
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulio Bonomo
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karl-Michael Schebesch
- Department of Neurosurgery, Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Acerbi,
| |
Collapse
|
11
|
Chen ZH, Zhang XH, Lin FH, Li C, Jin JT, Zhou ZH, Zhu SH, Cheng ZQ, Zhong S, He ZQ, Duan H, Wen X, Wang J, Mou YG. The application of fluorescein sodium for the resection of medulloblastoma. J Neurooncol 2022; 158:463-470. [PMID: 35657459 PMCID: PMC9256568 DOI: 10.1007/s11060-022-04035-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Introduction Surgical resection of medulloblastoma (MB) remains a challenge. At present, a variety of tracers have been used for intraoperative tumor visualization. However, there are few reports on the intraoperative visualization of MB. Hence, we reported our experience of applying fluorescein sodium (FS) in MB surgery. Methods We retrospectively analyzed the clinical information of patients with MB confirmed by surgery and pathology from January 2016 to December 2020 from Sun Yat-sen University Cancer Center. A total of 62 patients were enrolled, of which 27 received intraoperative FS and 35 did not. The intraoperative dose of FS was 3 mg/kg. Results Among the 62 patients, 42 were males, and twenty were females. The age of onset in the FS group was 9.588 ± 7.322, which in the non-fluorescein sodium group was 13.469 ± 10.968, p = 0.198. We did not find significant differences in tumor location, tumor size, tumor resection, tumor histology, and preoperative symptoms (hydrocephalus, headache, vomit, balance disorder) between the groups. There was no significant difference in the postoperative symptoms (hydrocephalus, headache, vomiting, balance disorder, and cerebellar mutism). However, patients in the FS group had a relatively low incidence of balance disorder and cerebellar mutism. There was definite fluorescence of tumor in all cases of the FS group, and even the tiny metastatic lesion was visible. No case had side effects related to the use of FS. Conclusions FS is safe and effective in MB surgery. Whether the application of FS for surgery can reduce complications remains to be studied in the future.
Collapse
Affiliation(s)
- Zheng-he Chen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Xiang-heng Zhang
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Fu-hua Lin
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Chang Li
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jie-tian Jin
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Zhi-huan Zhou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Si-han Zhu
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Zhu-qing Cheng
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Sheng Zhong
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Zhen-qiang He
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Hao Duan
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Xia Wen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jian Wang
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Yong-gao Mou
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Yuexiu District, Guangzhou, 510060 People’s Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060 People’s Republic of China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| |
Collapse
|
12
|
Patrick HH, Sherman JH, Elder JB, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of cytoreductive surgery in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:167-177. [PMID: 35246769 DOI: 10.1007/s11060-021-03881-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
QUESTION In patients with previously diagnosed glioblastoma who are suspected of experiencing progression, does repeat cytoreductive surgery improve progression free survival or overall survival compared to alternative interventions? TARGET POPULATION These recommendations apply to adults with previously diagnosed glioblastoma who are suspected of experiencing progression of the neoplastic process and are amenable to surgical resection. RECOMMENDATION Level II: Repeat cytoreductive surgery is recommended in progressive glioblastoma patients to improve overall survival.
Collapse
Affiliation(s)
- Hayes H Patrick
- Department of Neurological Surgery, George Washington University, 900 23rd St NW, Washington, DC, 20037, USA.
| | - Jonathan H Sherman
- Department of Neurosurgery, West Virginia University Rockefeller Neuroscience Institute, Martinsburg, WV, USA
| | - J Bradley Elder
- Department of Neurosurgical Oncology, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals (Basel) 2022; 15:550. [PMID: 35631376 PMCID: PMC9143023 DOI: 10.3390/ph15050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives.
Collapse
Affiliation(s)
- Oluwakanyinsolami Netufo
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Liam P. Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kieron J. Sweeney
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Centre for Neurosurgery, Beaumont Hospital, 9, D09 V2N0 Dublin, Ireland
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
14
|
Feng J, Ren X, Fu H, Li D, Chen X, Zu X, Liu Q, Wu M. LRRC4 mediates the formation of circular RNA CD44 to inhibitGBM cell proliferation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:473-487. [PMID: 34631278 PMCID: PMC8479294 DOI: 10.1016/j.omtn.2021.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/20/2021] [Indexed: 11/19/2022]
Abstract
Mounting evidence reveals that dysregulation of circular RNAs (circRNAs) is involved in the development of glioblastoma. Leucine-rich repeat-containing 4 (LRRC4) has been shown to suppress tumors in glioblastoma. However, whether LRRC4 can regulate the formation of circRNA is not yet understood. In this study, LRRC4 was found to interact with SAM68. LRRC4 promoted the generation of circCD44 by inhibiting the binding between SAM68 and CD44 pre-mRNA. Moreover, downregulated expression of circCD44 was found in glioblastoma multiforme (GBM) tissues and GBM primary cells. Re-expression of circCD44 significantly suppressed the proliferation, colony formation, and invasion of GBM cells and inhibited tumor growth in vivo. Mechanistically, circCD44 could regulate the expression of SMAD6 via sponging miR-326 and miR-330-5p involved in the progression of GBM. Thus, the LRRC4/SAM68/circCD44/miR-326/miR-330-5p/SMAD6 signaling axis could be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Jianbo Feng
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xing Ren
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xiguang Chen
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuyu Zu
- Cancer Research Institute, First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qing Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Corresponding author: Qing Liu, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Corresponding author: Minghua Wu, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
15
|
Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov 2021; 7:311. [PMID: 34689169 PMCID: PMC8542043 DOI: 10.1038/s41420-021-00709-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
A growing body of evidence suggests that long-chain non-coding RNA (lncRNA) plays an important role in the malignant biological behavior and drug resistance of glioblastoma (GBM) cells. In this study, we analyzed the role and potential mechanism of lncRNA TMEM161B-AS1 in the malignant biological behavior of GBM cells and temozolomide (TMZ) resistance. Studies have found that FANCD2 and CD44 are significantly related to the occurrence of GBM, TMZ resistance and the survival of GBM patients. Knockdown of TMEM161B-AS1 down-regulated the expression of FANCD2 and CD44 by sponging hsa-miR-27a-3p, inhibited the proliferation, migration, invasion and promoted apoptosis, ferroptosis of U87 cells and U251 cells. Down-regulation of lncRNA TMEM161B-AS1 and/or over-expression of hsa-miR-27a-3p down-regulated the expression of FANCD2 and CD44, and inhibited the tumor growth in nude mice. These results demonstrated that the lncRNA TMEM161B-AS1-hsa-miR-27a-3p-FANCD2/CD44 signal axis regulated the malignant biological behavior of GBM and TMZ resistance. These findings were expected to provide promising therapeutic targets for the treatment of glioma.
Collapse
|
16
|
Fluorescein-Guided Resection of High Grade Gliomas: A Meta-Analysis. World Neurosurg 2021; 155:181-188.e7. [PMID: 34492388 DOI: 10.1016/j.wneu.2021.08.126] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND High-grade gliomas (HGGs) have a poor prognosis despite current standard of care of surgery, chemotherapy, and radiation therapy. Achieving gross total resection (GTR) has been found to prolong survival in these patients. Intraoperative fluorescent agents are often used to aid in the resection of HGGs. One commonly used fluorescent agent is fluorescein sodium, which is U.S. Food and Drug Administration-approved for ocular surgeries and has a better side effect profile and is less costly than 5-aminolevulinic acid (5-ALA). In this meta-analysis, we provide statistical evidence of the efficacy in using fluorescein for HGG resection. METHODS Following the PRISMA framework, we assessed 119 reports from PubMed, Medline (Ovid), and BIOSIS Citation Index and found 21 eligible studies for meta-analysis, assessing the rates of GTR with fluorescein-guided resection of HGGs. RESULTS A pooled cohort of 336 patients underwent fluorescein-guided HGG resection with a GTR rate of 81% (95% confidence interval 73%-89%; P < 0.001). Ten case-controlled studies were analyzed, showing a 29.5% increase in GTR rate in the fluorescein group compared with non-fluorescein-guided surgeries. CONCLUSIONS This meta-analysis shows that fluorescein-guided surgery improves GTR rates of HGGs when compared with non-fluorescence guided surgery and has similar GTR rates when compared with reported 5-ALA-guided resection rates.
Collapse
|
17
|
Wang LM, Banu MA, Canoll P, Bruce JN. Rationale and Clinical Implications of Fluorescein-Guided Supramarginal Resection in Newly Diagnosed High-Grade Glioma. Front Oncol 2021; 11:666734. [PMID: 34123831 PMCID: PMC8187787 DOI: 10.3389/fonc.2021.666734] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Current standard of care for glioblastoma is surgical resection followed by temozolomide chemotherapy and radiation. Recent studies have demonstrated that >95% extent of resection is associated with better outcomes, including prolonged progression-free and overall survival. The diffusely infiltrative pattern of growth in gliomas results in microscopic extension of tumor cells into surrounding brain parenchyma that makes complete resection unattainable. The historical goal of surgical management has therefore been maximal safe resection, traditionally guided by MRI and defined as removal of all contrast-enhancing tumor. Optimization of surgical resection has led to the concept of supramarginal resection, or removal beyond the contrast-enhancing region on MRI. This strategy of extending the cytoreductive goal targets a tumor region thought to be important in the recurrence or progression of disease as well as resistance to systemic and local treatment. This approach must be balanced against the risk of impacting eloquent regions of brain and causing permanent neurologic deficit, an important factor affecting overall survival. Over the years, fluorescent agents such as fluorescein sodium have been explored as a means of more reliably delineating the boundary between tumor core, tumor-infiltrated brain, and surrounding cortex. Here we examine the rationale behind extending resection into the infiltrative tumor margins, review the current literature surrounding the use of fluorescein in supramarginal resection of gliomas, discuss the experience of our own institution in utilizing fluorescein to maximize glioma extent of resection, and assess the clinical implications of this treatment strategy.
Collapse
Affiliation(s)
- Linda M Wang
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Matei A Banu
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Peter Canoll
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jeffrey N Bruce
- Gabriele Bartoli Brain Tumor Laboratory, Department of Neurological Surgery and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
18
|
Szczupak M, Peña SA, Bracho O, Mei C, Bas E, Fernandez-Valle C, Liu XZ, Telischi FF, Ivan M, Dinh CT. Fluorescent Detection of Vestibular Schwannoma Using Intravenous Sodium Fluorescein In Vivo. Otol Neurotol 2021; 42:e503-e511. [PMID: 33492057 PMCID: PMC8590806 DOI: 10.1097/mao.0000000000002988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vestibular schwannoma (VS) are intracranial tumors caused by merlin deficiency. Sodium fluorescein (SF) is a fluorescent compound that accumulates in various intracranial tumors, causing tumors to emit green fluorescence after blue light excitation. HYPOTHESIS Intravenous SF preferentially deposits in VS, helping surgeons differentiate tumor from surrounding tissue. METHODS Merlin-deficient Schwann cells were grafted onto cochleovestibular nerves of immunodeficient rats. Rats were randomized to receive SF (7.5 mg/kg; n = 5) or saline (n = 3). Tissues were harvested at 1 hour and photographed in white and blue light. Sixteen surgeons identified and marked the tumor-tissue interfaces on images. Fluorescence was measured on tissue specimens using the IVIS imaging system and on tissue cross-sections obtained with confocal microscopy. Western blot was performed to measure levels of organic anion transporting polypeptide (OATP), a drug transporter specific for SF. RESULTS Under blue light, tumors from SF rats demonstrated bright green fluorescence under direct visualization, higher fluorescence measurements on tissue specimens (p < 0.001), and more SF deposition on tissue cross-sections (p < 0.001), when compared with surrounding tissues and placebo rats. Surgeons were better able to distinguish the tumor-tissue interfaces in SF rats. Furthermore, the expression level of OATP1C1 was significantly higher in tumors than in surrounding tissues (p < 0.0001). CONCLUSION In a xenograft model of VS, intravenous SF preferentially deposits in tumors, compared with normal surrounding tissue. Under blue light, tumors emit an intense green fluorescence that can help surgeons differentiate tumor from critical structures nearby, which may improve clinical outcomes in complicated VS surgery.
Collapse
Affiliation(s)
- Mikhaylo Szczupak
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefanie A. Peña
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine T. Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Kutlay M, Durmaz O, Ozer İ, Kırık A, Yasar S, Kural C, Temiz Ç, Tehli Ö, Ezgu MC, Daneyemez M, Izci Y. Fluorescein Sodium-Guided Neuroendoscopic Resection of Deep-Seated Malignant Brain Tumors: Preliminary Results of 18 Patients. Oper Neurosurg (Hagerstown) 2021; 20:206-218. [PMID: 33047137 DOI: 10.1093/ons/opaa313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Deep-seated intracranial lesions are challenging to resect completely and safely. Fluorescence-guided surgery (FGS) promotes the resection of malignant brain tumors (MBTs). Classically, FGS is performed using microscope equipped with a special filter. Fluorescence-guided neuroendoscopic resection of deep-seated brain tumors has not been reported yet. OBJECTIVE To evaluate the feasibility, safety, and effectiveness of the fluorescence-guided neuroendoscopic surgery in deep-seated MBTs. METHODS A total of 18 patients with high-grade glioma (HGG) and metastatic tumor (MT) underwent fluorescein sodium (FS)-guided neuroendoscopic surgery. Tumor removal was carried out using bimanual microsurgical techniques under endoscopic view. The degree of fluorescence staining was classified as "helpful" and "unhelpful" based on surgical observation. Extent of resection was determined using magnetic resonance imaging (MRI). Karnofsky Performance Status (KPS) score was used for evaluation of general physical performances of patients. RESULTS A total of 11 patients had HGG, and 7 had MT. No technical difficulty was encountered regarding the use of endoscopic technique. "Helpful" fluorescence staining was observed in 16 patients and fluorescent tissue was completely removed. Postoperative MRI confirmed gross total resection (88.9%). In 2 patients, FS enhancement was not helpful enough for tumor demarcation and postoperative MRI revealed near total resection (11.1%). No complication, adverse events, or side effects were encountered regarding the use of FS. KPS score of patients was improved at 3-mo follow-up. CONCLUSION FS-guided endoscopic resection is a feasible technique for deep-seated MBTs. It is safe, effective, and allows for a high rate of resection. Future prospective randomized studies are needed to confirm these preliminary data.
Collapse
Affiliation(s)
- Murat Kutlay
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Ozan Durmaz
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - İlker Ozer
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Alpaslan Kırık
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Soner Yasar
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Cahit Kural
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Çağlar Temiz
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Özkan Tehli
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mehmet Can Ezgu
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mehmet Daneyemez
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Yusuf Izci
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
20
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
21
|
Alexiou GA, Vartholomatos G, Voulgaris S, Kyritsis AP. Letter to the Editor Regarding "Fluorescein Sodium in Surgical Treatment of Recurrent Glioblastoma Multiforme". World Neurosurg 2019; 128:616. [PMID: 31675764 DOI: 10.1016/j.wneu.2019.03.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Affiliation(s)
- George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece; Neurosurgical Research Institute, University Hospital of Ioannina, Ioannina, Greece.
| | - George Vartholomatos
- Neurosurgical Research Institute, University Hospital of Ioannina, Ioannina, Greece; Department of Hematology-Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Spyridon Voulgaris
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece; Neurosurgical Research Institute, University Hospital of Ioannina, Ioannina, Greece
| | - Athanasios P Kyritsis
- Neurosurgical Research Institute, University Hospital of Ioannina, Ioannina, Greece; Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
22
|
Pedro MT, Eissler A, Scheuerle A, Schmidberger J, Kratzer W, Wirtz CR, Antoniadis G, Koenig RW. Sodium Fluorescein as Intraoperative Visualization Tool During Peripheral Nerve Biopsies. World Neurosurg 2019; 133:e513-e521. [PMID: 31550541 DOI: 10.1016/j.wneu.2019.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Owing to technical development of specific fluorophore filters, the neurosurgical application of sodium fluorescein (SF) has regained value in brain tumor surgery. The aim of this study was to determine the usefulness of SF during nerve biopsies. METHODS This single-center study included 5 cases of nerve biopsies performed under microscope-based fluorescence with SF performed between March 2016 and February 2017. SF was applied intravenously (1 mg/kg body weight). After microsurgical dissection of the involved nerve segment, fluorescence-guided fascicular biopsy was performed. Selection of target fascicles was at the surgeon's discretion and took into account nerve stimulation for preservation of motor function and fluorescence intensity. Correlation to histopathologic examination was examined. Video analysis of intraoperative images comparing target fascicles with intense fluorescent response to adjacent fascicles of the same nerve segment was performed using ImageJ. RESULTS All patients had motor or sensory deficits. Magnetic resonance imaging findings were similar, depicting long segments of gadolinium enhancement (minimum 11.7 cm). Each biopsy sample was positive resulting in diverse histopathologic results. Digital image analysis revealed a statistically significant difference of the complementary color green (P = 0.0473). CONCLUSIONS Magnetic resonance imaging is the gold standard in diagnostic work-up of peripheral nerve disorders. Longitudinal nerve thickening with positive contrast enhancement is an unspecific magnetic resonance imaging finding. Various pathologies, such as tumors and inflammatory lesions, may cause this morphologic phenomenon. Nerve biopsies may be needed for diagnostic work-up. Intraoperative SF may help to depict the most affected fascicles and identify target fascicles for biopsy and increase diagnostic certainty of nerve biopsies.
Collapse
Affiliation(s)
- Maria Teresa Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, University of Ulm, Günzburg, Germany.
| | | | | | | | | | - Christian R Wirtz
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Ralph Werner Koenig
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, University of Ulm, Günzburg, Germany
| |
Collapse
|
23
|
Höhne J, Schebesch KM, de Laurentis C, Akçakaya MO, Pedersen CB, Brawanski A, Poulsen FR, Kiris T, Cavallo C, Broggi M, Ferroli P, Acerbi F. In Reply to the Letter to the Editor Regarding “Fluorescein Sodium in the Surgical Treatment of Recurrent Glioblastoma Multiforme”. World Neurosurg 2019; 128:617. [DOI: 10.1016/j.wneu.2019.05.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
|