1
|
Lansinger J, Swartz MF, Scheffler EJ, Duncan A, Cholette JM, Yoshitake S, Clifford HS, Wang H, Alfieris GM. Quantitative Electroencephalography Alpha:Delta Ratio and Suppression Ratio Monitoring During Infant Aortic Arch Reconstruction. Pediatr Neurol 2025; 163:96-103. [PMID: 39754913 DOI: 10.1016/j.pediatrneurol.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND During infant aortic arch reconstruction, traditional electroencephalography (EEG) provides only qualitative data limiting neuromonitoring efficacy. Interhemispheric differences in the alpha:delta ratio (ADR) and suppression ratio (SR) measured using quantitative EEG generate numerical trends that may suggest cerebral ischemia. We hypothesized that the ADR and SR during cardiopulmonary bypass (CPB) would correlate with hemodynamics, and that ADR and SR interhemispheric differences would precede neurological injury from infants requiring aortic arch reconstruction. METHODS During aortic arch reconstruction, bilateral hemispheric ADRs and SRs were recorded every five minutes in conjunction with mean arterial pressure, temperature, CPB flow, and cerebral oximetry. Data were grouped into the cooling, antegrade cerebral perfusion (ACP), and rewarming periods of CPB. Correlation analysis determined relationships between the ADR, SR, and hemodynamic data. The cumulative interhemispheric ADR and SR differences were calculated during CPB. Neurological injury was defined as clinical/subclinical seizure or stroke. RESULTS Among 79 infants, the ADRs decreased significantly during rewarming, whereas SRs were significantly greatest during ACP. There was a direct correlation between the ADR and cerebral oximetry (R2 = 0.734; P < 0.001) and an inverse correlation between the SR and temperature (R2 = 0.882; P < 0.001). Eight infants developed neurological injury that was more often preceded by an interhemispheric ADR difference >0.1 (50% vs 7.8%; P = 0.01) or SR difference >18% (41.7% vs 4.8%; P = 0.008). CONCLUSIONS The ADR and SR correlate with cerebral oximetry and temperature, respectively, and significant interhemispheric differences often preceded neurological injury, suggesting the importance of quantitative EEG monitoring during infant aortic arch reconstruction.
Collapse
Affiliation(s)
- Justin Lansinger
- Department of Internal Medicine - Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Michael F Swartz
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Emelie-Jo Scheffler
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Aubrey Duncan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Jill M Cholette
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Shuichi Yoshitake
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Hugo S Clifford
- Department of Anesthesia, University of Rochester Medical Center, Rochester, New York
| | - Hongyue Wang
- Department of Biostatistics, University of Rochester Medical Center, Rochester, New York
| | - George M Alfieris
- Department of Surgery, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
2
|
Faiver L, Coppler PJ, Tam J, Ratay CR, Flickinger K, Drumheller BC, Elmer J. Association of hyperosmolar therapy with cerebral oxygen extraction after cardiac arrest. Resuscitation 2024:110429. [PMID: 39521267 DOI: 10.1016/j.resuscitation.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Elevated jugular bulb venous oxygen saturation (SjvO2) after cardiac arrest may be due to diffusion-limited oxygen extraction secondary to perivascular edema. Treatment with hyperosmolar solution (HTS) may decrease this edema and thus the barrier to oxygen diffusion. Alternatively, SjvO2 may rise when cerebral metabolic rate declines due to irreversible cellular injury, which would not be affected by HTS. Electroencephalography (EEG) may differentiate between these etiologies of elevated SjvO2. We hypothesized SjvO2 would be lower after treatment with HTS and EEG could identify treatment responders. METHODS We conducted a retrospective observational cohort study including comatose survivors of cardiac arrest who had at least one elevated SjvO2 (>75%) and were EEG-monitored. We quantified the change in consecutive SjvO2 values within a sample pair using a multivariable mixed-effects regression, treating HTS as a fixed effect, adjusting for mean arterial pressure, partial pressure of arterial oxygen, and partial pressure of carbon dioxide. We classified pretreatment EEG patterns as benign or indicative of potential metabolic failure and tested for an interaction of EEG pattern with HTS. RESULTS Our primary adjusted analysis showed an independent association of HTS treatment with change in SjvO2 (β -2.2; 95% confidence interval [CI], -4.0 to -0.3%). In our interaction model, the effect of treatment differed by EEG pattern (β for interaction term -10.9%, 95% CI -17.9 to -3.9%). HTS was associated with a significant change in SjvO2 among those with benign pre-treatment EEG patterns (-12.4%, 95% CI -18.4 to -6.4%) but was not associated with a change in SjvO2 in those with ominous pre-treatment EEG patterns (-1.6%, 95% CI -3.6 to 0.4%). CONCLUSIONS HTS was independently associated with decreased SjvO2 in patients resuscitated from cardiac arrest, and this effect was limited to patients with benign pretreatment EEG patterns. Our results suggest diffusion-limited oxygen extraction secondary to modifiable perivascular edema as the etiology of elevated SjvO2, and EEG pattern may be useful to identify treatment responders.
Collapse
Affiliation(s)
- Laura Faiver
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Tam
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecelia R Ratay
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kate Flickinger
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Byron C Drumheller
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Khan IR, Dar IA, Johnson TW, Loose E, Xu YY, Santiago E, Donohue KL, Marinescu MA, Gosev I, Schifitto G, Maddox RK, Busch DR, Choe R, Selioutski O. Correlations Between Quantitative EEG Parameters and Cortical Blood Flow in Patients Undergoing Extracorporeal Membrane Oxygenation With and Without Encephalopathy. J Clin Neurophysiol 2024; 41:597-605. [PMID: 37934074 DOI: 10.1097/wnp.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE The neurologic examination of patients undergoing extracorporeal membrane oxygenation (ECMO) is crucial for evaluating irreversible encephalopathy but is often obscured by sedation or neuromuscular blockade. Noninvasive neuromonitoring modalities including diffuse correlation spectroscopy and EEG measure cerebral perfusion and neuronal function, respectively. We hypothesized that encephalopathic ECMO patients with greater degree of irreversible cerebral injury demonstrate less correlation between electrographic activity and cerebral perfusion than those whose encephalopathy is attributable to medications. METHODS We performed a prospective observational study of adults undergoing ECMO who underwent simultaneous continuous EEG and diffuse correlation spectroscopy monitoring. (Alpha + beta)/delta ratio and alpha/delta Rartio derived from quantitative EEG analysis were correlated with frontal cortical blood flow index. Patients who awakened and followed commands during sedation pauses were included in group 1, whereas patients who could not follow commands for most neuromonitoring were placed in group 2. (Alpha + beta)/delta ratio-blood flow index and ADR-BFI correlations were compared between the groups. RESULTS Ten patients (five in each group) underwent 39 concomitant continuous EEG and diffuse correlation spectroscopy monitoring sessions. Four patients (80%) in each group received some form of analgosedation during neuromonitoring. (Alpha + beta)/delta ratio-blood flow index correlation was significantly lower in group 2 than group 1 (left: 0.05 vs. 0.52, P = 0.03; right: -0.12 vs. 0.39, P = 0.04). Group 2 ADR-BFI correlation was lower only over the right hemisphere (-0.06 vs. 0.47, P = 0.04). CONCLUSIONS Correlation between (alpha + beta)/delta ratio and blood flow index were decreased in encephalopathic ECMO patients compared with awake ones, regardless of the analgosedation use. The combined use of EEG and diffuse correlation spectroscopy may have utility in monitoring cerebral function in ECMO patients.
Collapse
Affiliation(s)
| | - Irfaan A Dar
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | - Emily Loose
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Yama Y Xu
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Esmeralda Santiago
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Kelly L Donohue
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Mark A Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, U.S.A
| | - Igor Gosev
- Division of Cardiac Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | - Ross K Maddox
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, U.S.A
| | - David R Busch
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Regine Choe
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, U.S.A.; and
| | - Olga Selioutski
- Departments of Neurology and
- Department of Neurology, University of Mississippi, Jackson, Mississippi, U.S.A
| |
Collapse
|
4
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Busse TL, Munthe S, Ketharanathan B, Bülow K, Jóhannsson B, Diaz A, Nielsen TH. Perfusion Computed Tomography as a Screening Tool for Pending Delayed Cerebral Ischemia in Comatose Patients After Aneurysmal Subarachnoid Hemorrhage: A Retrospective Cohort Study. Neurocrit Care 2024; 40:964-975. [PMID: 37821720 PMCID: PMC11147906 DOI: 10.1007/s12028-023-01855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is frequently complicated by delayed cerebral ischemia (DCI), leading to poor outcomes. Early diagnosis of DCI is crucial for improving survival and outcomes but remains challenging in comatose patients. In this study, we aimed to evaluate computed tomography with angiography and perfusion (P-CT) as a screening modality on postictal days four and eight for impending DCI after aSAH in comatose patients using vasospasm with hypoperfusion (hVS) as a surrogate and DCI-related infarction as an outcome measure. Two objectives were set: (1) to evaluate the screening's ability to accurately risk stratify patients and (2) to assess the validity of P-CT screening. METHODS We conducted a retrospective review of the records of comatose patients with aSAH from January 2019 to December 2021 who were monitored with P-CT scans on days four and eight. The event rates of DCI-related infarction, hVS, and endovascular rescue therapy (ERT) were analyzed, and the sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for DCI were calculated. DCI-related infarction was defined as new secondary cerebral infarction > 48 h < 6 weeks post aSAH not attributable to other causes, and hVS was defined as arterial narrowing with corresponding hypoperfusion on P-CT. RESULTS Fifty-six comatose patients were included, and 98 P-CT scans were performed. The incidence of DCI-related infarction was 40%. Screening P-CT on days four and eight found vasospasm in 23% of all patients, including 11% with hVS. A positive hVS on day four or eight revealed a relative risk of 2.4 [95% confidence interval (CI) 1.13-5.11, p = 0.03], sensitivity of 23% (95% CI 8-45, p = 0.03), specificity of 95% (95% CI 36-100, p = 0.03), PPV of 0.83 (95% CI 0.36-1.00, p = 0.03), and NPV of 0.65 (95% CI 0.50-0.78). Six positive P-CT scans led to digital subtraction angiography in five patients, three of whom received ERT. All ERT-intervened patients developed DCI-related infarction. CONCLUSIONS P-CT resulted in few interventions and often resulted in late detection of DCI at an irreversible stage. Although a positive P-CT result accurately predicts impending DCI-related infarction, screening on days four and eight alone in comatose patients with aSAH often fails to timely detect impending DCI. Based on our analysis, we cannot recommend P-CT as a screening modality. P-CT is likely best used as a confirmatory test prior to invasive interventions when guided by continuous multimodal monitoring; however, prospective studies with comparison groups are warranted. The need for a reliable continuous screening modality is evident because of the high rate of deterioration and narrow treatment window.
Collapse
Affiliation(s)
- Thor Löwe Busse
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
| | - Sune Munthe
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | | | - Karsten Bülow
- Department of Anaesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
| | - Bjarni Jóhannsson
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - Anabel Diaz
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
6
|
Gobert F, Dailler F, Rheims S, André-Obadia N, Balança B. Electrophysiological monitoring of neurological functions at the acute phase of brain injury: An overview of current knowledge and future perspectives in the adult population. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2024; 3:e0044. [PMID: 39917609 PMCID: PMC11798378 DOI: 10.1097/ea9.0000000000000044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
The continuous monitoring of physiological parameters is now considered as a standard of care in intensive care units (ICU). While multiple techniques are available to guide hemodynamic or respiratory management, the monitoring of neurological function in unconscious patients is usually limited to discontinuous bedside neurological examination or morphological brain imaging. However, cortical activity is accessible at the bedside with electroencephalography (EEG), electrocorticography (ECoG) or evoked potentials. The analysis of the unprocessed signal requires a trained neurophysiologist and could be time consuming. During the past decades, advances in neurophysiological signal acquisition make it possible to calculate quantified EEG parameters in real-time. New monitors also provide ICU friendly display for a dynamic and live assessment of neurological function changes. In this review, we will describe the technical aspects of EEG, ECoG and evoked potentials required for a good signal quality before interpretation. We will discuss how to use those electrophysiological techniques in the ICU to assess neurological function in comatose patients at the acute phase of brain injuries such as traumatic brain injuries, haemorrhagic or ischemic stroke. We will discuss, which quantitative EEG or evoked potentials monitoring parameters can be used at the bedside to guide sedation, evaluate neurological function during awaking and look for new neurological (encephalic or brainstem) injuries. We will present the state of the art and discuss some analyses, which may develop shortly.
Collapse
Affiliation(s)
- Florent Gobert
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Frédéric Dailler
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Sylvain Rheims
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Nathalie André-Obadia
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| | - Baptiste Balança
- From the Département d'anesthésie réanimation neurologique, Hospices Civils de Lyon, Hôpital Pierre Wertheimer (FG, FD, BB), Lyon Neuroscience Research Centre, Inserm U1028, CNRS UMR 5292 (FG, SR, NA-O, BB) and Département de neurophysiologie clinique et épileptologie, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Bron, France (SR, NA-O)
| |
Collapse
|
7
|
Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a Biomarker of Prognosis in Acute Brain Injury. Semin Neurol 2023; 43:675-688. [PMID: 37832589 DOI: 10.1055/s-0043-1775816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Electroencephalography (EEG) is a noninvasive tool that allows the monitoring of cerebral brain function in critically ill patients, aiding with diagnosis, management, and prognostication. Specific EEG features have shown utility in the prediction of outcomes in critically ill patients with status epilepticus, acute brain injury (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, and traumatic brain injury), anoxic brain injury, and toxic-metabolic encephalopathy. Studies have also found an association between particular EEG patterns and long-term functional and cognitive outcomes as well as prediction of recovery of consciousness following acute brain injury. This review summarizes these findings and demonstrates the value of utilizing EEG findings in the determination of prognosis.
Collapse
Affiliation(s)
- Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Vyas Viswanathan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Lorena Figueredo
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Carolina B Maciel
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Pease M, Elmer J, Shahabadi AZ, Mallela AN, Ruiz-Rodriguez JF, Sexton D, Barot N, Gonzalez-Martinez JA, Shutter L, Okonkwo DO, Castellano JF. Predicting posttraumatic epilepsy using admission electroencephalography after severe traumatic brain injury. Epilepsia 2023; 64:1842-1852. [PMID: 37073101 PMCID: PMC11293840 DOI: 10.1111/epi.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) develops in as many as one third of severe traumatic brain injury (TBI) patients, often years after injury. Analysis of early electroencephalographic (EEG) features, by both standardized visual interpretation (viEEG) and quantitative EEG (qEEG) analysis, may aid early identification of patients at high risk for PTE. METHODS We performed a case-control study using a prospective database of severe TBI patients treated at a single center from 2011 to 2018. We identified patients who survived 2 years postinjury and matched patients with PTE to those without using age and admission Glasgow Coma Scale score. A neuropsychologist recorded outcomes at 1 year using the Expanded Glasgow Outcomes Scale (GOSE). All patients underwent continuous EEG for 3-5 days. A board-certified epileptologist, blinded to outcomes, described viEEG features using standardized descriptions. We extracted 14 qEEG features from an early 5-min epoch, described them using qualitative statistics, then developed two multivariable models to predict long-term risk of PTE (random forest and logistic regression). RESULTS We identified 27 patients with and 35 without PTE. GOSE scores were similar at 1 year (p = .93). The median time to onset of PTE was 7.2 months posttrauma (interquartile range = 2.2-22.2 months). None of the viEEG features was different between the groups. On qEEG, the PTE cohort had higher spectral power in the delta frequencies, more power variance in the delta and theta frequencies, and higher peak envelope (all p < .01). Using random forest, combining qEEG and clinical features produced an area under the curve of .76. Using logistic regression, increases in the delta:theta power ratio (odds ratio [OR] = 1.3, p < .01) and peak envelope (OR = 1.1, p < .01) predicted risk for PTE. SIGNIFICANCE In a cohort of severe TBI patients, acute phase EEG features may predict PTE. Predictive models, as applied to this study, may help identify patients at high risk for PTE, assist early clinical management, and guide patient selection for clinical trials.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ameneh Zare Shahabadi
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arka N. Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | - Daniel Sexton
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jorge A. Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Lori Shutter
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - James F. Castellano
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, Derdeyn CP, Du R, Hänggi D, Hetts SW, Ifejika NL, Johnson R, Keigher KM, Leslie-Mazwi TM, Lucke-Wold B, Rabinstein AA, Robicsek SA, Stapleton CJ, Suarez JI, Tjoumakaris SI, Welch BG. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023; 54:e314-e370. [PMID: 37212182 DOI: 10.1161/str.0000000000000436] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AIM The "2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage" replaces the 2012 "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage." The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage. METHODS A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate. Structure: Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients' and their families' and caregivers' interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
Collapse
|
10
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
11
|
Denchev K, Gomez J, Chen P, Rosenblatt K. Traumatic Brain Injury: Intraoperative Management and Intensive Care Unit Multimodality Monitoring. Anesthesiol Clin 2023; 41:39-78. [PMID: 36872007 DOI: 10.1016/j.anclin.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Traumatic brain injury is a devastating event associated with substantial morbidity. Pathophysiology involves the initial trauma, subsequent inflammatory response, and secondary insults, which worsen brain injury severity. Management entails cardiopulmonary stabilization and diagnostic imaging with targeted interventions, such as decompressive hemicraniectomy, intracranial monitors or drains, and pharmacological agents to reduce intracranial pressure. Anesthesia and intensive care requires control of multiple physiologic variables and evidence-based practices to reduce secondary brain injury. Advances in biomedical engineering have enhanced assessments of cerebral oxygenation, pressure, metabolism, blood flow, and autoregulation. Many centers employ multimodality neuromonitoring for targeted therapies with the hope to improve recovery.
Collapse
Affiliation(s)
- Krassimir Denchev
- Department of Anesthesiology, Wayne State University, 44555 Woodward Avenue, SJMO Medical Office Building, Suite 308, Pontiac, MI 48341, USA
| | - Jonathan Gomez
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA
| | - Pinxia Chen
- Department of Anesthesiology and Critical Care Medicine, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA
| | - Kathryn Rosenblatt
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA.
| |
Collapse
|
12
|
Harrar DB, Sun LR, Segal JB, Lee S, Sansevere AJ. Neuromonitoring in Children with Cerebrovascular Disorders. Neurocrit Care 2023; 38:486-503. [PMID: 36828980 DOI: 10.1007/s12028-023-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Cerebrovascular disorders are an important cause of morbidity and mortality in children. The acute care of a child with an ischemic or hemorrhagic stroke or cerebral sinus venous thrombosis focuses on stabilizing the patient, determining the cause of the insult, and preventing secondary injury. Here, we review the use of both invasive and noninvasive neuromonitoring modalities in the care of pediatric patients with arterial ischemic stroke, nontraumatic intracranial hemorrhage, and cerebral sinus venous thrombosis. METHODS Narrative review of the literature on neuromonitoring in children with cerebrovascular disorders. RESULTS Neuroimaging, near-infrared spectroscopy, transcranial Doppler ultrasonography, continuous and quantitative electroencephalography, invasive intracranial pressure monitoring, and multimodal neuromonitoring may augment the acute care of children with cerebrovascular disorders. Neuromonitoring can play an essential role in the early identification of evolving injury in the aftermath of arterial ischemic stroke, intracranial hemorrhage, or sinus venous thrombosis, including recurrent infarction or infarct expansion, new or recurrent hemorrhage, vasospasm and delayed cerebral ischemia, status epilepticus, and intracranial hypertension, among others, and this, is turn, can facilitate real-time adjustments to treatment plans. CONCLUSIONS Our understanding of pediatric cerebrovascular disorders has increased dramatically over the past several years, in part due to advances in the neuromonitoring modalities that allow us to better understand these conditions. We are now poised, as a field, to take advantage of advances in neuromonitoring capabilities to determine how best to manage and treat acute cerebrovascular disorders in children.
Collapse
Affiliation(s)
- Dana B Harrar
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA.
| | - Lisa R Sun
- Divisions of Pediatric Neurology and Vascular Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Bradley Segal
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnold J Sansevere
- Division of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
13
|
Alsbrook DL, Di Napoli M, Bhatia K, Desai M, Hinduja A, Rubinos CA, Mansueto G, Singh P, Domeniconi GG, Ikram A, Sabbagh SY, Divani AA. Pathophysiology of Early Brain Injury and Its Association with Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Review of Current Literature. J Clin Med 2023; 12:jcm12031015. [PMID: 36769660 PMCID: PMC9918117 DOI: 10.3390/jcm12031015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Background: Delayed cerebral ischemia (DCI) is a common and serious complication of aneurysmal subarachnoid hemorrhage (aSAH). Though many clinical trials have looked at therapies for DCI and vasospasm in aSAH, along with reducing rebleeding risks, none have led to improving outcomes in this patient population. We present an up-to-date review of the pathophysiology of DCI and its association with early brain injury (EBI). Recent Findings: Recent studies have demonstrated that EBI, as opposed to delayed brain injury, is the main contributor to downstream pathophysiological mechanisms that play a role in the development of DCI. New predictive models, including advanced monitoring and neuroimaging techniques, can help detect EBI and improve the clinical management of aSAH patients. Summary: EBI, the severity of subarachnoid hemorrhage, and physiological/imaging markers can serve as indicators for potential early therapeutics in aSAH. The microcellular milieu and hemodynamic pathomechanisms should remain a focus of researchers and clinicians. With the advancement in understanding the pathophysiology of DCI, we are hopeful that we will make strides toward better outcomes for this unique patient population.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, 67039 L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Masoom Desai
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania, 80138 Naples, Italy
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India
| | - Gustavo G Domeniconi
- Unidad de Cuidados Intensivos, Sanatorio de la Trinidad San Isidro, Buenos Aires 1640, Argentina
| | - Asad Ikram
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
14
|
Hernández-Hernández MA, Cherchi MS, Torres-Díez E, Orizaola P, Martín-Láez R, Fernández-Torre JL. Bispectral index monitoring to detect delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Crit Care 2022; 72:154154. [PMID: 36152563 DOI: 10.1016/j.jcrc.2022.154154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Evaluate the bispectral index (BIS) monitoring to detect delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). MATERIALS AND METHODS A single-center prospective study in patients with aSAH. BIS monitoring was recorded during 25-120 min in two periods, within the initial 72 h (BIS1) and between days 4 and 6 (BIS2) from admission. The median for each exported BIS parameter was analyzed. Transcranial Doppler (TCD) sonography was simultaneously performed with BIS1 (TCD1) and BIS2 (TCD2) monitoring. A multivariate logistic regression model was built to identify the variables associated with DCI. RESULTS Sixty-four patients were included and 16 (25%) developed DCI. During BIS2 monitoring, significant differences were found in BIS value (left, p = 0.01; right, p = 0.009), 95% spectral edge frequency (left and right, p = 0.04), and total power (left and right, p = 0.04). In multivariable analysis, vasospasm on TCD2 (OR 42.8 [95% CI 3.1-573]; p = 0.005), a median BIS2 value <85 in one or both sides (OR 6.2 [95% CI 1.28-30]; p = 0.023), and age (OR 1.08 [95% CI 1.00-1.17]; p = 0.04) were associated with the development of DCI. CONCLUSIONS BIS value is the most useful BIS parameter for detecting DCI after aSAH. Pending further validation, BIS monitoring might be even more accurate than TCD.
Collapse
Affiliation(s)
- Miguel A Hernández-Hernández
- Department of Intensive Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Marina S Cherchi
- Department of Intensive Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Biomedical Research Institute (IDIVAL), Santander, Spain.
| | - Eduardo Torres-Díez
- Interventional Neuroradiology, Department of Radiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Pedro Orizaola
- Department of Clinical Neurophysiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rubén Martín-Láez
- Biomedical Research Institute (IDIVAL), Santander, Spain; Department of Neurosurgery and Surgical Spine Unit, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - José L Fernández-Torre
- Biomedical Research Institute (IDIVAL), Santander, Spain; Department of Clinical Neurophysiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Department of Physiology and Pharmacology, University of Cantabria (UNICAN), Santander, Spain
| |
Collapse
|
15
|
Wang J, Huang L, Ma X, Zhao C, Liu J, Xu D. Role of Quantitative EEG and EEG Reactivity in Traumatic Brain Injury. Clin EEG Neurosci 2022; 53:452-459. [PMID: 33405972 DOI: 10.1177/1550059420984934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study aimed to explore the effectiveness of quantitative electroencephalogram (EEG) and EEG reactivity (EEG-R) to predict the prognosis of patients with severe traumatic brain injury. METHODS This was a prospective observational study on severe traumatic brain injury. Quantitative EEG monitoring was performed for 8 to 12 hours within 14 days of onset. The EEG-R was tested during the monitoring period. We then followed patients for 3 months to determine their level of consciousness. The Glasgow Outcome Scale (GOS) score was used. The score 3, 4, 5 of GOS were defined good prognosis, and score 1 and 2 as poor prognosis. Univariate and multivariate analyses were employed to assess the association of predictors with poor prognosis. RESULTS A total of 56 patients were included in the study. Thirty-two patients (57.1%) awoke (good prognosis) in 3 months after the onset. Twenty-four patients (42.9%) did not awake (poor prognosis), including 11 cases deaths. Univariate analysis showed that Glasgow coma scale (GCS) score, the amplitude-integrated EEG (aEEG), the relative band power (RBP), the relative alpha variability (RAV), the spectral entropy (SE), and EEG-R reached significant difference between the poor-prognosis and good-prognosis groups. However, age, gender, and pupillary light reflex did not correlate significantly with poor prognosis. Furthermore, multivariate logistic regression analysis showed that only RAV and EEG-R were significant independent predictors of poor prognosis, and the prognostic model containing these 2 variables yielded a predictive performance with an area under the curve of 0.882. CONCLUSIONS Quantitative EEG and EEG-R may be used to assess the prognosis of patients with severe traumatic brain injury early. RAV and EEG-R were the good predictive indicators of poor prognosis.
Collapse
Affiliation(s)
- Jian Wang
- Neurosurgery ICU, Xiangya Hospital, Central South University, Changsha, China
| | - Li Huang
- General ICU/Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xinhua Ma
- General ICU/Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunguang Zhao
- General ICU/Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jinfang Liu
- Neurosurgery ICU, Xiangya Hospital, Central South University, Changsha, China
| | - Daomiao Xu
- General ICU/Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Hwang J, Cho SM, Ritzl EK. Recent applications of quantitative electroencephalography in adult intensive care units: a comprehensive review. J Neurol 2022; 269:6290-6309. [DOI: 10.1007/s00415-022-11337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
17
|
García Pretelt FJ, Suárez Relevo JX, Aguillón D, Lopera F, Ochoa JF, Tobón Quintero CA. Automatic Classification of Subjects of the PSEN1-E280A Family at Risk of Developing Alzheimer’s Disease Using Machine Learning and Resting State Electroencephalography. J Alzheimers Dis 2022; 87:817-832. [DOI: 10.3233/jad-210148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The study of genetic variant carriers provides an opportunity to identify neurophysiological changes in preclinical stages. Electroencephalography (EEG) is a low-cost and minimally invasive technique which, together with machine learning, provide the possibility to construct systems that classify subjects that might develop Alzheimer’s disease (AD). Objective: The aim of this paper is to evaluate the capacity of the machine learning techniques to classify healthy Non-Carriers (NonCr) from Asymptomatic Carriers (ACr) of PSEN1-E280A variant for autosomal dominant Alzheimer’s disease (ADAD), using spectral features from EEG channels and brain-related independent components (ICs) obtained using independent component analysis (ICA). Methods: EEG was recorded in 27 ACr and 33 NonCr. Statistical significance analysis was applied to spectral information from channels and group ICA (gICA), standardized low-resolution tomography (sLORETA) analysis was applied over the IC as well. Strategies for feature selection and classification like Chi-square, mutual informationm and support vector machines (SVM) were evaluated over the dataset. Results: A test accuracy up to 83% was obtained by implementing a SVM with spectral features derived from gICA. The main findings are related to theta and beta rhythms, generated in the parietal and occipital regions, like the precuneus and superior parietal lobule. Conclusion: Promising models for classification of preclinical AD due to PSEN-1-E280A variant can be trained using spectral features, and the importance of the beta band and precuneus region is highlighted in asymptomatic stages, opening up the possibility of its use as a screening methodology.
Collapse
Affiliation(s)
- Francisco J. García Pretelt
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Jazmín X. Suárez Relevo
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - David Aguillón
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Carlos A. Tobón Quintero
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
18
|
Baang HY, Chen HY, Herman AL, Gilmore EJ, Hirsch LJ, Sheth KN, Petersen NH, Zafar SF, Rosenthal ES, Westover MB, Kim JA. The Utility of Quantitative EEG in Detecting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. J Clin Neurophysiol 2022; 39:207-215. [PMID: 34510093 PMCID: PMC8901442 DOI: 10.1097/wnp.0000000000000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY In this review, we discuss the utility of quantitative EEG parameters for the detection of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage in the context of the complex pathophysiology of DCI and the limitations of current diagnostic methods. Because of the multifactorial pathophysiology of DCI, methodologies solely assessing blood vessel narrowing (vasospasm) are insufficient to detect all DCI. Quantitative EEG has facilitated the exploration of EEG as a diagnostic modality of DCI. Multiple quantitative EEG parameters such as alpha power, relative alpha variability, and alpha/delta ratio show reliable detection of DCI in multiple studies. Recent studies on epileptiform abnormalities suggest that their potential for the detection of DCI. Quantitative EEG is a promising, continuous, noninvasive, monitoring modality of DCI implementable in daily practice. Future work should validate these parameters in larger populations, facilitated by the development of automated detection algorithms and multimodal data integration.
Collapse
Affiliation(s)
| | - Hsin Yi Chen
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| | | | | | | | - Kevin N Sheth
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| | | | - Sahar F Zafar
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - Eric S Rosenthal
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - M Brandon Westover
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - Jennifer A Kim
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| |
Collapse
|
19
|
Yao S, Zhu J, Li S, Zhang R, Zhao J, Yang X, Wang Y. Bibliometric Analysis of Quantitative Electroencephalogram Research in Neuropsychiatric Disorders From 2000 to 2021. Front Psychiatry 2022; 13:830819. [PMID: 35677873 PMCID: PMC9167960 DOI: 10.3389/fpsyt.2022.830819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND With the development of quantitative electroencephalography (QEEG), an increasing number of studies have been published on the clinical use of QEEG in the past two decades, particularly in the diagnosis, treatment, and prognosis of neuropsychiatric disorders. However, to date, the current status and developing trends of this research field have not been systematically analyzed from a macroscopic perspective. The present study aimed to identify the hot spots, knowledge base, and frontiers of QEEG research in neuropsychiatric disorders from 2000 to 2021 through bibliometric analysis. METHODS QEEG-related publications in the neuropsychiatric field from 2000 to 2021 were retrieved from the Web of Science Core Collection (WOSCC). CiteSpace and VOSviewer software programs, and the online literature analysis platform (bibliometric.com) were employed to perform bibliographic and visualized analysis. RESULTS A total of 1,904 publications between 2000 and 2021 were retrieved. The number of QEEG-related publications in neuropsychiatric disorders increased steadily from 2000 to 2021, and research in psychiatric disorders requires more attention in comparison to research in neurological disorders. During the last two decades, QEEG has been mainly applied in neurodegenerative diseases, cerebrovascular diseases, and mental disorders to reveal the pathological mechanisms, assist clinical diagnosis, and promote the selection of effective treatments. The recent hot topics focused on QEEG utilization in neurodegenerative disorders like Alzheimer's and Parkinson's disease, traumatic brain injury and related cerebrovascular diseases, epilepsy and seizure, attention-deficit hyperactivity disorder, and other mental disorders like major depressive disorder and schizophrenia. In addition, studies to cross-validate QEEG biomarkers, develop new biomarkers (e.g., functional connectivity and complexity), and extract compound biomarkers by machine learning were the emerging trends. CONCLUSION The present study integrated bibliometric information on the current status, the knowledge base, and future directions of QEEG studies in neuropsychiatric disorders from a macroscopic perspective. It may provide valuable insights for researchers focusing on the utilization of QEEG in this field.
Collapse
Affiliation(s)
- Shun Yao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jieying Zhu
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- Department of Rehabilitation Medicine, School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiubo Zhao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueling Yang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - You Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Lissak IA, Locascio JJ, Zafar SF, Schleicher RL, Patel AB, Leslie-Mazwi T, Stapleton CJ, Koch MJ, Kim JA, Anderson K, Rosand J, Westover MB, Kimberly WT, Rosenthal ES. Electroencephalography, Hospital Complications, and Longitudinal Outcomes After Subarachnoid Hemorrhage. Neurocrit Care 2021; 35:397-408. [PMID: 33483913 PMCID: PMC7822587 DOI: 10.1007/s12028-020-01177-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Following non-traumatic subarachnoid hemorrhage (SAH), in-hospital delayed cerebral ischemia is predicted by two chief events on continuous EEG (cEEG): new or worsening epileptiform abnormalities (EAs) and deterioration of cEEG background frequencies. We evaluated the association between longitudinal outcomes and these cEEG biomarkers. We additionally evaluated the association between longitudinal outcomes and other in-hospital complications. METHODS Patients with nontraumatic SAH undergoing ≥ 3 days of cEEG monitoring were enrolled in a prospective study evaluating longitudinal outcomes. Modified Rankin Scale (mRS) was assessed at discharge, and at 3- and 6-month follow-up time points. Adjusting for baseline severity in a cumulative proportional odds model, we modeled the mRS ordinally and measured the association between mRS and two forms of in-hospital cEEG deterioration: (1) cEEG evidence of new or worsening epileptiform abnormalities and (2) cEEG evidence of new background deterioration. We compared the magnitude of these associations at each time point with the association between mRS and other in-hospital complications: (1) delayed cerebral ischemia (DCI), (2) hospital-acquired infections (HAI), and (3) hydrocephalus. In a secondary analysis, we employed a linear mixed effects model to examine the association of mRS over time (dichotomized as 0-3 vs. 4-6) with both biomarkers of cEEG deterioration and with other in-hospital complications. RESULTS In total, 175 mRS assessments were performed in 59 patients. New or worsening EAs developed in 23 (39%) patients, and new background deterioration developed in 24 (41%). Among cEEG biomarkers, new or worsening EAs were independently associated with mRS at discharge, 3, and 6 months, respectively (adjusted cumulative proportional odds 4.99, 95% CI 1.60-15.6; 3.28, 95% CI 1.14-9.5; and 2.71, 95% CI 0.95-7.76), but cEEG background deterioration lacked an association. Among hospital complications, DCI was associated with discharge, 3-, and 6-month outcomes (adjusted cumulative proportional odds 4.75, 95% CI 1.64-13.8; 3.4; 95% CI 1.24-9.01; and 2.45, 95% CI 0.94-6.6), but HAI and hydrocephalus lacked an association. The mixed effects model demonstrated that these associations were sustained over longitudinal assessments without an interaction with time. CONCLUSION Although new or worsening EAs and cEEG background deterioration have both been shown to predict DCI, only new or worsening EAs are associated with a sustained impairment in functional outcome. This novel finding raises the potential for identifying therapeutic targets that may also influence outcomes.
Collapse
Affiliation(s)
- India A Lissak
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistics Group, Massachusetts General Hospital, Boston, MA, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Riana L Schleicher
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Thabele Leslie-Mazwi
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Matthew J Koch
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Kasey Anderson
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Neuromonitoring After Cardiac Arrest: Can Twenty-First Century Medicine Personalize Post Cardiac Arrest Care? Neurol Clin 2021; 39:273-292. [PMID: 33896519 DOI: 10.1016/j.ncl.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac arrest survivors comprise a heterogeneous population, in which the etiology of arrest, systemic and neurologic comorbidities, and sequelae of post-cardiac arrest syndrome influence the severity of secondary brain injury. The degree of secondary neurologic injury can be modifiable and is influenced by factors that alter cerebral physiology. Neuromonitoring techniques provide tools for evaluating the evolution of physiologic variables over time. This article reviews the pathophysiology of hypoxic-ischemic brain injury, provides an overview of the neuromonitoring tools available to identify risk profiles for secondary brain injury, and highlights the importance of an individualized approach to post cardiac arrest care.
Collapse
|
22
|
Sheikh ZB, Maciel CB, Dhakar MB, Hirsch LJ, Gilmore EJ. Nonepileptic Electroencephalographic Correlates of Episodic Increases in Intracranial Pressure. J Clin Neurophysiol 2020; 39:149-158. [PMID: 32701765 DOI: 10.1097/wnp.0000000000000750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Continuous EEG can potentially be used as real-time brain telemetry for the early detection of neurologic decline. Scant literature on EEG changes related to elevated intracranial pressure (ICP) limits its use in this context. METHODS Retrospective, observational case series of patients in whom we noted EEG changes correlating with a clinical concern for elevated ICP, measured or unmeasured. RESULTS We noted EEG changes of varying severity and duration correlating with either measured or unmeasured clinical concern for elevated ICP. In two patients with recurrent transient unresponsiveness (presumed from plateau waves), generalized rhythmic delta activity and attenuation of fast activity occurred 30 minutes before a clinical change. Elevated ICP in two patients, one related to progressive mass effect from infarctions, and the other to dialysis, correlated with generalized slowing and attenuation of fast activity up to 24 hours before clinical deterioration, leading to diffuse suppression. Two patients with intraventricular hemorrhage had cyclic patterns at ∼1 per minute and ∼6 per minute (similar frequency to described frequency of Lundberg B and C waves, respectively). CONCLUSIONS Cyclic patterns and varying degrees of slowing and attenuation often preceded clinical deterioration associated with intracranial hypertension. Future systematic studies of EEG changes in this setting will facilitate early and noninvasive detection of elevated ICP.
Collapse
Affiliation(s)
- Zubeda B Sheikh
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.,Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A
| | - Carolina B Maciel
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.,Department of Neurology, University of Florida School of Medicine, Gainesville, Florida, U.S.A
| | - Monica B Dhakar
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.,Department of Neurology, Epilepsy section, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| |
Collapse
|
23
|
Lissak IA, Zafar SF, Westover MB, Schleicher RL, Kim JA, Leslie-Mazwi T, Stapleton CJ, Patel AB, Kimberly WT, Rosenthal ES. Soluble ST2 Is Associated With New Epileptiform Abnormalities Following Nontraumatic Subarachnoid Hemorrhage. Stroke 2020; 51:1128-1134. [PMID: 32156203 DOI: 10.1161/strokeaha.119.028515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background and Purpose- We evaluated the association between 2 types of predictors of delayed cerebral ischemia after nontraumatic subarachnoid hemorrhage, including biomarkers of the innate immune response and neurophysiologic changes on continuous electroencephalography. Methods- We studied subarachnoid hemorrhage patients that had at least 72 hours of continuous electroencephalography and blood samples collected within the first 5 days of symptom onset. We measured inflammatory biomarkers previously associated with delayed cerebral ischemia and functional outcome, including soluble ST2 (sST2), IL-6 (interleukin-6), and CRP (C-reactive protein). Serial plasma samples and cerebrospinal fluid sST2 levels were available in a subgroup of patients. Neurophysiologic changes were categorized into new or worsening epileptiform abnormalities (EAs) or new background deterioration. The association of biomarkers with neurophysiologic changes were evaluated using the Wilcoxon rank-sum test. Plasma and cerebrospinal fluid sST2 were further examined longitudinally using repeated measures mixed-effects models. Results- Forty-six patients met inclusion criteria. Seventeen (37%) patients developed new or worsening EAs, 21 (46%) developed new background deterioration, and 8 (17%) developed neither. Early (day, 0-5) plasma sST2 levels were higher among patients with new or worsening EAs (median 115 ng/mL [interquartile range, 73.8-197]) versus those without (74.7 ng/mL [interquartile range, 44.8-102]; P=0.024). Plasma sST2 levels were similar between patients with or without new background deterioration. Repeated measures mixed-effects modeling that adjusted for admission risk factors showed that the association with new or worsening EAs remained independent for both plasma sST2 (β=0.41 [95% CI, 0.09-0.73]; P=0.01) and cerebrospinal fluid sST2 (β=0.97 [95% CI, 0.14-1.8]; P=0.021). IL-6 and CRP were not associated with new background deterioration or with new or worsening EAs. Conclusions- In patients admitted with subarachnoid hemorrhage, sST2 level was associated with new or worsening EAs but not new background deterioration. This association may identify a link between a specific innate immune response pathway and continuous electroencephalography abnormalities in the pathogenesis of secondary brain injury after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- India A Lissak
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| | - Sahar F Zafar
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| | - M Brandon Westover
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| | - Riana L Schleicher
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT (J.A.K)
| | - Thabele Leslie-Mazwi
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston.,Department of Neurosurgery (T.L.-M., C.J.S., A.B.P.), Massachusetts General Hospital, Boston
| | - Christopher J Stapleton
- Department of Neurosurgery (T.L.-M., C.J.S., A.B.P.), Massachusetts General Hospital, Boston
| | - Aman B Patel
- Department of Neurosurgery (T.L.-M., C.J.S., A.B.P.), Massachusetts General Hospital, Boston
| | - W Taylor Kimberly
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| | - Eric S Rosenthal
- From the Department of Neurology (I.A.L., S.F.Z., M.B.W., R.L.S., T.L.-M., W.T.K., E.S.R.), Massachusetts General Hospital, Boston
| |
Collapse
|
24
|
Varga DP, Szabó Í, Varga VÉ, Menhyárt Á, M Tóth O, Kozma M, Bálint AR, Krizbai IA, Bari F, Farkas E. The antagonism of prostaglandin FP receptors inhibits the evolution of spreading depolarization in an experimental model of global forebrain ischemia. Neurobiol Dis 2020; 137:104780. [PMID: 31991249 DOI: 10.1016/j.nbd.2020.104780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous, recurrent spreading depolarizations (SD) are increasingly more appreciated as a pathomechanism behind ischemic brain injuries. Although the prostaglandin F2α - FP receptor signaling pathway has been proposed to contribute to neurodegeneration, it has remained unexplored whether FP receptors are implicated in SD or the coupled cerebral blood flow (CBF) response. We set out here to test the hypothesis that FP receptor blockade may achieve neuroprotection by the inhibition of SD. Global forebrain ischemia/reperfusion was induced in anesthetized rats by the bilateral occlusion and later release of the common carotid arteries. An FP receptor antagonist (AL-8810; 1 mg/bwkg) or its vehicle were administered via the femoral vein 10 min later. Two open craniotomies on the right parietal bone served the elicitation of SD with 1 M KCl, and the acquisition of local field potential. CBF was monitored with laser speckle contrast imaging over the thinned parietal bone. Apoptosis and microglia activation, as well as FP receptor localization were evaluated with immunohistochemistry. The data demonstrate that the antagonism of FP receptors suppressed SD in the ischemic rat cerebral cortex and reduced the duration of recurrent SDs by facilitating repolarization. In parallel, FP receptor antagonism improved perfusion in the ischemic cerebral cortex, and attenuated hypoemic CBF responses associated with SD. Further, FP receptor antagonism appeared to restrain apoptotic cell death related to SD recurrence. In summary, the antagonism of FP receptors (located at the neuro-vascular unit, neurons, astrocytes and microglia) emerges as a promising approach to inhibit the evolution of SDs in cerebral ischemia.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Írisz Szabó
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Viktória É Varga
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Ákos Menhyárt
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Orsolya M Tóth
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Mihály Kozma
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary
| | - Armand R Bálint
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - István A Krizbai
- Physiology and Pathology of the Blood-Brain Barrier Research Group, Molecular Neurobiology Research Unit, Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62, Hungary; Institute of Life Sciences, Vasile Goldis Western University; Revolutiei Blvd n°94, Arad 310025, Romania
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged; H-6720 Szeged, Korányi fasor 9, Hungary.
| |
Collapse
|