1
|
Al-Salihi MM, Al-Jebur MS, Al-Salihi Y, Saha R, Daie MM, Rahman MM, Ayyad A. Diffusion tensor imaging with tractography in surgical resection of brainstem cavernous malformations: a systematic review and meta-analysis. Int J Neurosci 2024; 134:1075-1097. [PMID: 37194114 DOI: 10.1080/00207454.2023.2214696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Brainstem cavernous malformations are benign subset of cerebral cavernous malformations, which need a special intervention owing to being vital and complex. The diffusion tensor imaging technique, a well-recognized neuroimaging tool, can visualize the white matter tracts and their surroundings and provide promising surgical outcomes. This systematic review and meta-analysis evaluated the effect of preoperative diffusion tensor imaging in patients undergoing surgical resection of brainstem cavernous malformations. Five databases, including PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar, were searched using a comprehensive search strategy to find any article matching our inclusion criteria. We used Comprehensive Meta-Analysis (CMA) software to analyze the collected data, get the evidence, and report the results as event rate (ER), with their 95% confidence interval (CI). Twenty-eight studies involving 467 patients matched our criteria and 19 studies entered the analysis. Our analysis showed that, in patients undergoing surgical resection of brainstem cavernous malformations assisted by preoperative diffusion tensor imaging, 82.21% achieved total resection. About 12.4% of patients achieved partial resection, 65.65% improved, 8.07% worsened, 25.04% showed no change, 3.59% experienced postoperative re-bleeding, and 0.87% died. The utilization of preoperative diffusion tensor imaging significantly increased the proportion of improved patients and decreased the proportion of worsened patients. However, further controlled research is needed to draw a definite conclusion about the usefulness of its role.
Collapse
Affiliation(s)
- Mohammed Maan Al-Salihi
- Department of Neurosurgery, Hamad General Hospital, Doha, Qatar
- College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | | | - Ram Saha
- Department of Neurology, VA Commonwealth University, Richmond, VA, USA
| | | | - Md Moshiur Rahman
- Neurosurgery Department, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Ali Ayyad
- Department of Neurosurgery, Hamad General Hospital, Doha, Qatar
- Department of Neurosurgery, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
2
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Sharma M, Plou PL, Gunawan K, Ivan M, Chen CC. Survey Assessment of Utility in Preoperative Magnetic Resonance (MR) Tractography Surgical Planning. World Neurosurg 2023; 180:e468-e473. [PMID: 37774789 DOI: 10.1016/j.wneu.2023.09.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Although tractography-guided surgery is used by many surgeons, there is controversy in the published literature as it relates to its clinical utility. Here we adopted a survey-based approach with the goal of attaining a broader view of how tractography influence preoperative planning in a sampling of practicing neurosurgeons. METHODS Three cases were prepared where the presence of a tumor distorted the optic radiation (case 1), arcuate fasciculus (case 2), and corticospinal tract (case 3). This survey was administered at the Medtronic Cranial Consortium attended by 20 practicing neurosurgeons. To avoid commercial bias, we used both the Brainlab and Medtronic platform to compute tractography. Each participant is asked to vote on a surgical trajectory before and after seeing the tractography images, as well as whether tractography added value in validating their surgical approach. RESULTS In the 3 cases surveyed, 16%-44% of the surgeons changed the surgical corridor selected after seeing the tractography images. The most common finding associated with a change in surgical corridor involved intersection of the surgical corridor with visualized tracts. Consistently, >80% of the surgeons surveyed felt that tractography added value in their surgical planning. CONCLUSIONS The clinical utility of tractography in preoperative planning varies as a function of surgeon and the tumor anatomy, with >80% of the participating surgeons believing that tractography added value in preoperative surgical planning.
Collapse
Affiliation(s)
- Mayur Sharma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pedro L Plou
- Neurosurgery Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Kevin Gunawan
- Department of Neurosurgery, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Michael Ivan
- Department of Neurosurgery, University of Miami, Miller SOM, Miami, Florida, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
4
|
Pertichetti M, Corbo D, Belotti F, Saviola F, Gasparotti R, Fontanella MM, Panciani PP. Neuropsychological Evaluation and Functional Magnetic Resonance Imaging Tasks in the Preoperative Assessment of Patients with Brain Tumors: A Systematic Review. Brain Sci 2023; 13:1380. [PMID: 37891749 PMCID: PMC10605177 DOI: 10.3390/brainsci13101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Current surgical treatment of gliomas relies on a function-preserving, maximally safe resection approach. Functional Magnetic Resonance Imaging (fMRI) is a widely employed technology for this purpose. A preoperative neuropsychological evaluation should accompany this exam. However, only a few studies have reported both neuropsychological tests and fMRI tasks for preoperative planning-the current study aimed to systematically review the scientific literature on the topic. METHODS PRISMA guidelines were followed. We included studies that reported both neuropsychological tests and fMRI. Exclusion criteria were: no brain tumors, underage patients, no preoperative assessment, resting-state fMRI only, or healthy sample population/preclinical studies. RESULTS We identified 123 papers, but only 15 articles were included. Eight articles focused on language; three evaluated cognitive performance; single papers studied sensorimotor cortex, prefrontal functions, insular cortex, and cerebellar activation. Two qualitative studies focused on visuomotor function and language. According to some authors, there was a strong correlation between performance in presurgical neuropsychological tests and fMRI. Several papers suggested that selecting well-adjusted and individualized neuropsychological tasks may enable the development of personalized and more efficient protocols. The fMRI findings may also help identify plasticity phenomena to avoid unintentional damage during neurosurgery. CONCLUSIONS Most studies have focused on language, the most commonly evaluated cognitive function. The correlation between neuropsychological and fMRI results suggests that altered functions during the neuropsychological assessment may help identify patients who could benefit from an fMRI and, possibly, functions that should be tested. Neuropsychological evaluation and fMRI have complementary roles in the preoperative assessment.
Collapse
Affiliation(s)
- Marta Pertichetti
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Daniele Corbo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
| | - Francesco Belotti
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Francesca Saviola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (D.C.); (F.S.); (R.G.)
- Neuroradiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Marco Maria Fontanella
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| | - Pier Paolo Panciani
- Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25123 Brescia, Italy (M.M.F.); (P.P.P.)
| |
Collapse
|
5
|
Ordonez-Rubiano EG, Johnson JM, Abdalá-Vargas N, Zorro OF, Marin-Munoz JH, Álvarez-Tobián R, Forlizzi V, Rangel CC, Luzzi S, Campero A, Patiño-Gómez JG, Baldoncini M. Preoperative tractography algorithm for safe resection of tumors located in the descending motor pathways zone. Surg Neurol Int 2023; 14:255. [PMID: 37560574 PMCID: PMC10408624 DOI: 10.25259/sni_230_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) tractography facilitates maximal safe resection and optimizes planning to avoid injury during subcortical dissection along descending motor pathways (DMPs). We provide an affordable, safe, and timely algorithm for preoperative DTI motor reconstruction for gliomas adjacent to DMPs. METHODS Preoperative DTI reconstructions were extracted from a prospectively acquired registry of glioma resections adjacent to DMPs. The surgeries were performed over a 7-year period. Demographic, clinical, and radiographic data were extracted from patients' electronic medical records. RESULTS Nineteen patients (12 male) underwent preoperative tractography between January 1, 2013, and May 31, 2020. The average age was 44.5 years (range, 19-81 years). A complete radiological resection was achieved in nine patients, a subtotal resection in five, a partial resection in three, and a biopsy in two. Histopathological diagnoses included 10 patients with high-grade glioma and nine with low-grade glioma. A total of 16 perirolandic locations (10 frontal and six frontoparietal) were recorded, as well as two in the insula and one in the basal ganglia. In 9 patients (47.3%), the lesion was in the dominant hemisphere. The median preoperative and postoperative Karnofsky Performance Scores were 78 and 80, respectively. Motor function was unchanged or improved over time in 15 cases (78.9%). CONCLUSION This protocol of DTI reconstruction for glioma removal near the DMP shows good results in low-term neurological functional outcomes.
Collapse
Affiliation(s)
- Edgar G. Ordonez-Rubiano
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Nadin Abdalá-Vargas
- Department of Neurological Surgery, Hospital de San José - Sociedad de Cirugía de Bogotá, Colombia
| | - Oscar F. Zorro
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Jorge H. Marin-Munoz
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Ricardo Álvarez-Tobián
- Department of Diagnostic Imaging and Diagnostic Radiology, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Valeria Forlizzi
- Department of Anatomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos Castillo Rangel
- Department of Neurosurgery, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Sabino Luzzi
- Department of Neurosurgery, University of Pavia, Pavia, Italy
| | - Alvaro Campero
- Department of Neurosurgery, Hospital Padilla de Tucuman, Tucuman, Argentina
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Hospital de San José - Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| | - Matias Baldoncini
- Department of Neurosurgery, San Fernando Hospital, San Fernando, Argentina
| |
Collapse
|
6
|
Manan AA, Yahya NA, Taib NHM, Idris Z, Manan HA. The Assessment of White Matter Integrity Alteration Pattern in Patients with Brain Tumor Utilizing Diffusion Tensor Imaging: A Systematic Review. Cancers (Basel) 2023; 15:3326. [PMID: 37444435 DOI: 10.3390/cancers15133326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Alteration in the surrounding brain tissue may occur in the presence of a brain tumor. The present study aims to assess the characteristics and criteria of the pattern of white matter tract microstructure integrity alteration in brain tumor patients. The Scopus, PubMed/Medline, and Web of Science electronic databases were searched for related articles based on the guidelines established by PRISMA. Twenty-five studies were selected on the morphological changes of white matter tract integrity based on the differential classification of white matter tract (WMT) patterns in brain tumor patients through diffusion tensor imaging (DTI). The characterization was based on two criteria: the visualization of the tract-its orientation and position-and the DTI parameters, which were the fractional anisotropy and apparent diffusion coefficient. Individual evaluations revealed no absolute, mutually exclusive type of tumor in relation to morphological WMT microstructure integrity changes. In most cases, different types and grades of tumors have shown displacement or infiltration. Characterizing morphological changes in the integrity of the white matter tract microstructures is vital in the diagnostic and prognostic evaluation of the tumor's progression and could be a potential assessment for the early detection of possible neurological defects that may affect the patient, as well as aiding in surgery decision-making.
Collapse
Affiliation(s)
- Aiman Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noorazrul Azmie Yahya
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Sciences, School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nur Hartini Mohd Taib
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Radiology, School of Medical Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Zamzuri Idris
- Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Radiology and Intervency, Hospital Pakar Kanak-Kanak (Specialist Children Hospital), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Duy Hung N, Duy Linh N, Ha Vi N, Van Anh NT, Dinh Hieu N, Dai Ha D, Minh Duc N. Predictive Value of Preoperative Diffusion Tensor Imaging for Evaluating Postoperative Outcomes of Supratentorial Glioma in the Motor Function Area. Ther Clin Risk Manag 2023; 19:269-278. [PMID: 36941979 PMCID: PMC10024488 DOI: 10.2147/tcrm.s402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Objective This study aimed to assess the predictive value of preoperative diffusion tensor imaging (DTI) data for surgical outcomes of patients with supratentorial glioma in the motor function area. Patients and Methods This is a retrospective study of 43 patients receiving navigation-guided surgery for histopathologically demonstrated supratentorial glioma in the motor function area. All patients underwent preoperative 3 Tesla magnetic resonance imaging examinations with conventional and DTI sequences. Data on preoperative imaging and pre- and postoperative clinical characteristics of patients were retrospectively collected. Univariate and multivariate linear regressions were applied to analyze the relationships between preoperative parameters and pre- and postoperative muscle strength and the Karnofsky Performance Status (KPS) score. Results Fourteen patients had low-grade gliomas and 29 had high-grade gliomas. Although the corticospinal tract (CST) score did not differ significantly between tumor grades, edema and deviation were common in low-grade gliomas (64.3%), while destroyed and infiltrated lesions were common in high-grade gliomas (58.6%). Muscle strength improved after surgery in the deviated tract group (40%) more than in the infiltrated tract group (33.3%). Two independent indices, preoperative muscle strength (p = 0.000) and glioma-to-CST distance (p = 0.001), were linearly related to postoperative muscle strength. The preoperative KPS score was the only indicator that affected the postoperative KPS score (p = 0.000). Conclusion DTI should be considered in surgical management of supratentorial gliomas in the motor function area to determine the appropriate surgical strategy and predict the nature of the tumor and postoperative motor function.
Collapse
Affiliation(s)
- Nguyen Duy Hung
- Department of Radiology, Hanoi Medical University, Hanoi, Vietnam
- Department of Radiology, Viet Duc Hospital, Hanoi, Vietnam
| | - Nguyen Duy Linh
- Department of Surgery, Hanoi Medical University, Hanoi, Vietnam
- Department of Surgery, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Nguyen Ha Vi
- Department of Radiology, Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Thi Van Anh
- Department of Radiology, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Dinh Hieu
- Department of Radiology, Hanoi Medical University, Hanoi, Vietnam
- Department of Radiology, Ha Dong General Hospital, Ha Noi, Vietnam
| | - Duong Dai Ha
- Department of Surgery, Hanoi Medical University, Hanoi, Vietnam
- Neurosurgery Center, Viet Duc Hospital, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Carrabba G, Fiore G, Di Cristofori A, Bana C, Borellini L, Zarino B, Conte G, Triulzi F, Rocca A, Giussani C, Caroli M, Locatelli M, Bertani G. Diffusion tensor imaging, intra-operative neurophysiological monitoring and small craniotomy: Results in a consecutive series of 103 gliomas. Front Oncol 2022; 12:897147. [PMID: 36176387 PMCID: PMC9513471 DOI: 10.3389/fonc.2022.897147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows visualization of the main white matter tracts while intraoperative neurophysiological monitoring (IONM) represents the gold standard for surgical resection of gliomas. In recent years, the use of small craniotomies has gained popularity thanks to neuronavigation and to the low morbidity rates associated with shorter surgical procedures. The aim of this study was to review a series of patients operated for glioma using DTI, IONM, and tumor-targeted craniotomies. The retrospective analysis included patients with supratentorial glioma who met the following inclusion criteria: preoperative DTI, intraoperative IONM, tumor-targeted craniotomy, pre- and postoperative MRI, and complete clinical charts. The DTI was performed on a 3T scanner. The IONM included electroencephalography (EEG), transcranial (TC) and/or cortical motor-evoked potentials (MEP), electrocorticography (ECoG), and direct electrical stimulation (DES). Outcomes included postoperative neurological deficits, volumetric extent of resection (EOR), and overall survival (OS). One hundred and three patients (61 men, 42 women; mean age 54 ± 14 years) were included and presented the following WHO histologies: 65 grade IV, 19 grade III, and 19 grade II gliomas. After 3 months, only three patients had new neurological deficits. The median postoperative volume was 0cc (IQR 3). The median OS for grade IV gliomas was 15 months, while for low-grade gliomas it was not reached. In our experience, a small craniotomy and a tumor resection supported by IONM and DTI permitted to achieve satisfactory results in terms of neurological outcomes, EOR, and OS for glioma patients.
Collapse
Affiliation(s)
- Giorgio Carrabba
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
- *Correspondence: Giorgio Carrabba,
| | - Giorgio Fiore
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Andrea Di Cristofori
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
| | - Cristina Bana
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Linda Borellini
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Barbara Zarino
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Conte
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Fabio Triulzi
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Alessandra Rocca
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Carlo Giussani
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Manuela Caroli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Marco Locatelli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Bertani
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Manan AA, Yahya N, Idris Z, Manan HA. The Utilization of Diffusion Tensor Imaging as an Image-Guided Tool in Brain Tumor Resection Surgery: A Systematic Review. Cancers (Basel) 2022; 14:2466. [PMID: 35626069 PMCID: PMC9139820 DOI: 10.3390/cancers14102466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The diffusion tensor imaging technique has been recognized as a neuroimaging tool for in vivo visualization of white matter tracts. However, DTI is not a routine procedure for preoperative planning for brain tumor resection. Our study aimed to systematically evaluate the effectiveness of DTI and the outcomes of surgery. The electronic databases, PubMed/MEDLINE and Scopus, were searched for relevant studies. Studies were systematically reviewed based on the application of DTI in pre-surgical planning, modification of operative planning, re-evaluation of preoperative DTI data intraoperatively, and the outcome of surgery decisions. Seventeen studies were selected based on the inclusion and exclusion criteria. Most studies agreed that preoperative planning using DTI improves postoperative neuro-deficits, giving a greater resection yield and shortening the surgery time. The results also indicate that the re-evaluation of preoperative DTI intraoperatively assists in a better visualization of white matter tract shifts. Seven studies also suggested that DTI modified the surgical decision of the initial surgical approach and the rate of the GTR in tumor resection surgery. The utilization of DTI may give essential information on white matter tract pathways, for a better surgical approach, and eventually reduce the risk of neurologic deficits after surgery.
Collapse
Affiliation(s)
- Aiman Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia;
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Penang 16150, Malaysia;
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
- Department of Radiology and Intervensy, Hospital Pakar Kanak-Kanak (HPKK), Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|