1
|
Bahadori AR, Javadnia P, Davari A, Sheikhvatan M, Ranji S, Shafiee S, Tafakhori A. Efficacy and safety of deep brain stimulation in drug resistance epilepsy: A systematic review and meta-analysis. Neurosurg Rev 2024; 47:855. [PMID: 39557745 DOI: 10.1007/s10143-024-03090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
In the context of drug-resistant epilepsy, deep brain stimulation (DBS) has received FDA approval. However, there have been reports of potential adverse effects, such as depression and memory impairment associated with DBS.This systematic review and meta-analysis aimed to investigate the impact of DBS on the quality of life (QoL), and seizure frequency of patients who had DRE, and assess its potential adverse events. The study followed PRISMA guidelines and thoroughly assessed databases, including Pubmed, Scopus, Embase, Web of Science, and the Cochrane Library, up to 31 July. Statistical analysis, fixed effect model analysis, performed by the Comprehensive Meta-analysis software (CMA) version 3.0. Additionally, Cochran's Q test was conducted to determine the statistical heterogeneity. The systematic review encompassed 54 studies, with 38 studies included in the subsequent meta-analysis. The total number of patients included in the studies was 999. The findings indicated a significant decrease in the mean seizure frequency of subjects following DBS (SMD: 0.609, 95% CI: 0.519 to 0.700, p-value < 0.001). Moreover, patients' QoL significantly improved after DBS (SMD: -0.442, 95% CI: -0.576 to -0.308, p-value < 0.001). The hippocampus displayed the most notable effect size among the different DBS targets. Subgroup analysis based on follow-up duration revealed increased DBS efficacy after two years. There are few reports of adverse events, such as insertional-related complications, infection, and neuropsychiatric complications, but the majority of these were temporary and non-fatal. DBS emerged as an effective and safe procedure for reducing seizure frequency and enhancing the quality of life in DRE patients, with minimal adverse events. Furthermore, the efficacy of DBS was observed to improve over time.
Collapse
Affiliation(s)
- Amir Reza Bahadori
- Iranian Center of Neurological Research Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Javadnia
- Department of Neurosurgery School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshan Davari
- Iranian Center of Neurological Research Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical colleges, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Sheikhvatan
- Medical Biology and Genetics Department, Okan University, Istanbul, Turkey
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Sara Ranji
- Iranian Center of Neurological Research Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Shafiee
- Stereotactic and Functional Neurosurgeon Associate Professor of Neurosurgery, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Samanta D, Haneef Z, Albert GW, Naik S, Reeders PC, Jain P, Abel TJ, Al-Ramadhani R, Ibrahim GM, Warren AEL. Neuromodulation strategies in developmental and epileptic encephalopathies. Epilepsy Behav 2024; 160:110067. [PMID: 39393142 DOI: 10.1016/j.yebeh.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of childhood-onset epilepsy syndromes characterized by frequent seizures, severe cognitive and behavioral impairments, and poor long-term outcomes. These conditions are typically refractory to currently available medical therapies, prompting recent exploration of neuromodulation treatments such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), which aim to modulate epileptic networks spanning cortical and subcortical regions. These advances have occurred alongside an improved understanding of syndrome-specific and interictal epileptiform discharge/seizure-specific brain networks. By targeting key nodes within these networks, DBS and RNS hold promise for influencing seizures and associated cognitive and behavioral comorbidities. Initial experiences with centromedian (CM) thalamic DBS for Lennox-Gastaut syndrome (LGS) have shown modest efficacy across multiple seizure types. Reports also indicate the application of DBS and RNS across various genetic and structural etiologies commonly associated with DEEs, with mixed success. Although DBS and RNS are increasingly used in LGS and other DEEs, their mixed efficacy highlights a knowledge gap in understanding why some patients with LGS do not respond and which neuromodulation approach is most effective for other DEEs. To address these issues, this review first discusses recent neuroimaging studies showing similarities and differences in the epileptic brain networks underlying various DEEs, revealing the common involvement of the thalamus and the default-mode network (DMN) across multiple DEEs. We then examine thalamic DBS for LGS to illustrate how such network insights may be used to optimize neuromodulation. Although network-based neuromodulation is still in its infancy, the LGS model may serve as a framework for other DEEs, where optimal treatment necessitates consideration of the underlying epileptic networks. Lastly, the review suggests future research directions, including individualized connectivity assessment and biomarker identification through collaborative efforts, which may enhance the therapeutic potential of neuromodulation for individuals living with DEEs.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Departmen of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruba Al-Ramadhani
- Division of Child Neurology, University of Pittsburgh, Department of Pediatrics, Pittsburgh, PA, USA
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Silva NA, Barrios-Martinez J, Yeh FC, Hodaie M, Roque D, Boerwinkle VL, Krishna V. Diffusion and functional MRI in surgical neuromodulation. Neurotherapeutics 2024; 21:e00364. [PMID: 38669936 PMCID: PMC11064589 DOI: 10.1016/j.neurot.2024.e00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nicole A Silva
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Daniel Roque
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Varina L Boerwinkle
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Vibhor Krishna
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Sperling MR, Wu C, Kang J, Makhalova J, Bartolomei F, Southwell D. The Temporal Lobe Club: Newer Approaches to Treat Temporal Lobe Epilepsy. Epilepsy Curr 2024; 24:10-15. [PMID: 38327532 PMCID: PMC10846515 DOI: 10.1177/15357597231213161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
This brief review summarizes presentations at the Temporal Lobe Club Special Interest Group session held in December 2022 at the American Epilepsy Society meeting. The session addressed newer methods to treat temporal epilepsy, including methods currently in clinical use and techniques under investigation. Brief summaries are provided for each of 4 lectures. Dr Chengyuan Wu discussed ablative techniques such as laser interstitial thermal ablation, radiofrequency ablation, focused ultrasound; Dr Joon Kang reviewed neuromodulation techniques including electrical stimulation and focused ultrasound; Dr Julia Makhalova discussed network effects of the aforementioned techniques; and Dr Derek Southwell reviewed inhibitory interneuron transplantation. These summaries are intended to provide a brief overview and references are provided for the reader to learn more about each topic.
Collapse
Affiliation(s)
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joon Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Derek Southwell
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Hines K, Wu C. Epilepsy Networks and Their Surgical Relevance. Brain Sci 2023; 14:31. [PMID: 38248246 PMCID: PMC10813558 DOI: 10.3390/brainsci14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Surgical epilepsy is a rapidly evolved field. As the understanding and concepts of epilepsy shift towards a network disorder, surgical outcomes may shed light on numerous components of these systems. This review documents the evolution of the understanding of epilepsy networks and examines the data generated by resective, ablative, neuromodulation, and invasive monitoring surgeries in epilepsy patients. As these network tools are better integrated into epilepsy practice, they may eventually inform surgical decisions and improve clinical outcomes.
Collapse
Affiliation(s)
- Kevin Hines
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| | | |
Collapse
|
6
|
Aggleton JP, Vann SD, O'Mara SM. Converging diencephalic and hippocampal supports for episodic memory. Neuropsychologia 2023; 191:108728. [PMID: 37939875 DOI: 10.1016/j.neuropsychologia.2023.108728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
To understand the neural basis of episodic memory it is necessary to appreciate the significance of the fornix. This pathway creates a direct link between those temporal lobe and medial diencephalic sites responsible for anterograde amnesia. A collaboration with Andrew Mayes made it possible to recruit and scan 38 patients with colloid cysts in the third ventricle, a condition associated with variable fornix damage. Complete fornix loss was seen in three patients, who suffered chronic long-term memory problems. Volumetric analyses involving all 38 patients then revealed a highly consistent relationship between mammillary body volume and the recall of episodic memory. That relationship was not seen for working memory or tests of recognition memory. Three different methods all supported a dissociation between recollective-based recognition (impaired) and familiarity-based recognition (spared). This dissociation helped to show how the mammillary body-anterior thalamic nuclei axis, as well as the hippocampus, is vital for episodic memory yet is not required for familiarity-based recognition. These findings set the scene for a reformulation of temporal lobe and diencephalic amnesia. In this revised model, these two regions converge on overlapping cortical areas, including retrosplenial cortex. The united actions of the hippocampal formation and the anterior thalamic nuclei on these cortical areas enable episodic memory encoding and consolidation, impacting on subsequent recall.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College, Dublin - the University of Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
7
|
Venkatesh P, Wolfe C, Lega B. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
8
|
Peng C, Wang Z. Diagnosis of motor function injury based on near-infrared spectroscopy brain imaging (fNIRS) technology. Prev Med 2023; 174:107641. [PMID: 37481167 DOI: 10.1016/j.ypmed.2023.107641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Most clinical stroke patients may have difficulty moving, affecting their self-care ability and quality of life, and causing serious interference with the normal life and work of other family members. At present, in clinical literature, researchers provide functional training for patients with motor disorders through repeated and effective training, which can ultimately effectively promote the recovery of limb function. Therefore, the near-infrared spectroscopy imaging technology (fNIRS) used in this study combines the diagnosis of sports injury with the mechanism of brain function. FNIRS technology has many advantages, such as fast, and non-invasive, and has shown great value in detecting brain activity. Therefore, it has become a promising method in the biomedical field, especially in the field of brain science. Based on the clinical effects of sports injury treatment, fNIRS technology is used to detect the hemodynamic changes of hemoglobin circulation in the patient's brain tissue during training, and to detect the brain activity mechanism in the exercise mechanism, providing a basis for the clinical application of this method.
Collapse
Affiliation(s)
- Cheng Peng
- School of Rehabilitation Medicine, Jiangsu Vocational College Of Medicine, Yancheng, Jiangsu 224000, China.
| | - Ziyi Wang
- School of Rehabilitation Medicine, Jiangsu Vocational College Of Medicine, Yancheng, Jiangsu 224000, China
| |
Collapse
|
9
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Freund BE, Greco E, Okromelidze L, Mendez J, Tatum WO, Grewal SS, Middlebrooks EH. Clinical outcome of imaging-based programming for anterior thalamic nucleus deep brain stimulation. J Neurosurg 2023; 138:1008-1015. [PMID: 36087330 DOI: 10.3171/2022.7.jns221116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors hypothesized that the proximity of deep brain stimulator contacts to the anterior thalamic nucleus-mammillothalamic tract (ANT-MMT) junction determines responsiveness to treatment with ANT deep brain stimulation (DBS) in drug-resistant epilepsy and conducted this study to test that hypothesis. METHODS This retrospective study evaluated patients who had undergone ANT DBS electrode implantation and whose devices were programmed to stimulate nearest the ANT-MMT junction based on direct MRI visualization. The proximity of the active electrode to the ANT and the ANT-MMT junction was compared between responders (≥ 50% reduction in seizure frequency) and nonresponders. Linear regression was performed to assess the percentage of seizure reduction and distance to both the ANT and the ANT-MMT junction. RESULTS Four (57.1%) of 7 patients had ≥ 50% reduction in seizures. All 4 responders had at least one contact within 1 mm of the ANT-MMT junction, whereas the 3 patients with < 50% seizure improvement did not have a contact within 1 mm of the ANT-MMT junction. Additionally, the 4 responders demonstrated contact positioning closer to the ANT-MMT junction than the 3 nonresponders (mean distance from MMT: 0.7 mm on the left and 0.6 mm on the right in responders vs 3.0 mm on the left and 2.3 mm on the right in nonresponders). However, proximity of the electrode contact to any point in the ANT nucleus did not correlate with seizure reduction. Greater seizure improvement was correlated with a contact position closer to the ANT-MMT junction (R2 = 0.62, p = 0.04). Seizure improvement was not significantly correlated with proximity of the contact to any ANT border (R2 = 0.24, p = 0.26). CONCLUSIONS Obtained using a combination of direct visualization and targeted programming of the ANT-MMT junction, data in this study support the hypothesis that proximity to the ANT alone does not correlate with seizure reduction in ANT DBS, whereas proximity to the ANT-MMT junction does. These findings support the importance of direct targeting in ANT DBS, as well as imaging-informed programming. Additionally, the authors provide supportive evidence for future prospective trials using ANT-MMT junction for direct surgical targeting.
Collapse
|
11
|
Zheng Y, Wan KR. Letter to the Editor. Precision deep brain stimulation. J Neurosurg 2023; 138:1165-1166. [PMID: 36334290 DOI: 10.3171/2022.9.jns222170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Middlebrooks EH, Popple RA, Greco E, Okromelidze L, Walker HC, Lakhani DA, Anderson AR, Thomas EM, Deshpande HD, McCullough BA, Stover NP, Sung VW, Nicholas AP, Standaert DG, Yacoubian T, Dean MN, Roper JA, Grewal SS, Holland MT, Bentley JN, Guthrie BL, Bredel M. Connectomic Basis for Tremor Control in Stereotactic Radiosurgical Thalamotomy. AJNR Am J Neuroradiol 2023; 44:157-164. [PMID: 36702499 PMCID: PMC9891328 DOI: 10.3174/ajnr.a7778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Given the increased use of stereotactic radiosurgical thalamotomy and other ablative therapies for tremor, new biomarkers are needed to improve outcomes. Using resting-state fMRI and MR tractography, we hypothesized that a "connectome fingerprint" can predict tremor outcomes and potentially serve as a targeting biomarker for stereotactic radiosurgical thalamotomy. MATERIALS AND METHODS We evaluated 27 patients who underwent unilateral stereotactic radiosurgical thalamotomy for essential tremor or tremor-predominant Parkinson disease. Percentage postoperative improvement in the contralateral limb Fahn-Tolosa-Marin Clinical Tremor Rating Scale (TRS) was the primary end point. Connectome-style resting-state fMRI and MR tractography were performed before stereotactic radiosurgery. Using the final lesion volume as a seed, "connectivity fingerprints" representing ideal connectivity maps were generated as whole-brain R-maps using a voxelwise nonparametric Spearman correlation. A leave-one-out cross-validation was performed using the generated R-maps. RESULTS The mean improvement in the contralateral tremor score was 55.1% (SD, 38.9%) at a mean follow-up of 10.0 (SD, 5.0) months. Structural connectivity correlated with contralateral TRS improvement (r = 0.52; P = .006) and explained 27.0% of the variance in outcome. Functional connectivity correlated with contralateral TRS improvement (r = 0.50; P = .008) and explained 25.0% of the variance in outcome. Nodes most correlated with tremor improvement corresponded to areas of known network dysfunction in tremor, including the cerebello-thalamo-cortical pathway and the primary and extrastriate visual cortices. CONCLUSIONS Stereotactic radiosurgical targets with a distinct connectivity profile predict improvement in tremor after treatment. Such connectomic fingerprints show promise for developing patient-specific biomarkers to guide therapy with stereotactic radiosurgical thalamotomy.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - R A Popple
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E Greco
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - L Okromelidze
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
| | - H C Walker
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D A Lakhani
- From the Departments of Radiology (E.H.M., E.G., L.O., D.A.L.)
- Department of Radiology (D.A.L.), West Virginia University, Morgantown, West Virginia
| | - A R Anderson
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| | - E M Thomas
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
- Department of Radiation Oncology (E.M.T.), Ohio State University, Columbus, Ohio
| | | | - B A McCullough
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - N P Stover
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - V W Sung
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - A P Nicholas
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - D G Standaert
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - T Yacoubian
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - M N Dean
- Neurology (H.C.W., B.A.M., N.P.S., V.W.S., A.P.N., D.G.S., T.Y., M.N.D.)
| | - J A Roper
- School of Kinesiology (J.A.R.), Auburn University, Auburn, Alabama
| | - S S Grewal
- Neurosurgery (E.H.M., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - M T Holland
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - J N Bentley
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - B L Guthrie
- Neurosurgery (M.T.H., J.N.B., B.L.G.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Bredel
- Departments of Radiation Oncology (R.A.P., A.R.A., E.M.T., M.B.)
| |
Collapse
|
13
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
14
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Yang H, Shan W, Fan J, Deng J, Luan G, Wang Q, Zhang Y, You H. Mapping the Neural Circuits Responding to Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in the Rat Brain. Epilepsy Res 2022; 187:107027. [DOI: 10.1016/j.eplepsyres.2022.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022]
|
16
|
Middlebrooks EH, Grewal SS. Brain Connectomics. Neuroimaging Clin N Am 2022; 32:543-552. [PMID: 35843661 DOI: 10.1016/j.nic.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A central tenet of modern neuroscience is the conceptualization of the brain as a collection of complex networks or circuits with a shift away from traditional "localizationist" theories. Connectomics seeks to unravel these brain networks and their role in the pathophysiology of neurologic diseases. This article discusses the science of connectomics with the examples of its potential role in clinical medicine and neuromodulation in multiple disorders, such as essential tremor, Parkinson's disease, obsessive-compulsive disorder, and epilepsy.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
17
|
Gummadavelli A, Englot DJ, Schwalb JM, Wu C, Gonzalez-Martinez J, Niemat J, Gerrard JL. ASSFN Position Statement on Deep Brain Stimulation for Medication-Refractory Epilepsy. Neurosurgery 2022; 90:636-641. [PMID: 35271523 PMCID: PMC9514731 DOI: 10.1227/neu.0000000000001923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Neuromodulation has taken a foothold in the landscape of surgical treatment for medically refractory epilepsies and offers additional surgical treatment options for patients who are not candidates for resective/ablative surgery. Approximately one third of patients with epilepsy suffer with medication-refractory epilepsy. A persistent underuse of epilepsy surgery exists. Neuromodulation treatments including deep brain stimulation (DBS) expand the surgical options for patients with epilepsy and provide options for patients who are not candidates for resective surgery. DBS of the bilateral anterior nucleus of the thalamus is an Food and Drug Administration-approved, safe, and efficacious treatment option for patients with refractory focal epilepsy. The purpose of this consensus position statement is to summarize evidence, provide recommendations, and identify indications and populations for future investigation in DBS for epilepsy. The recommendations of the American Society of Functional and Stereotactic Neurosurgeons are based on several randomized and blinded clinical trials with high-quality data to support the use of DBS to the anterior nucleus of the thalamus for the treatment of refractory focal-onset seizures.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA;
| | - Jason M. Schwalb
- Department of Neurological Surgery, Henry Ford Health System, Detroit, Michigan, USA;
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| | - Jorge Gonzalez-Martinez
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA;
| | - Joseph Niemat
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jason L. Gerrard
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
18
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
19
|
Loh A, Gwun D, Chow CT, Boutet A, Tasserie J, Germann J, Santyr B, Elias G, Yamamoto K, Sarica C, Vetkas A, Zemmar A, Madhavan R, Fasano A, Lozano AM. Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimul 2022; 15:683-694. [PMID: 35447378 DOI: 10.1016/j.brs.2022.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established treatment for certain movement disorders and has additionally shown promise for various psychiatric, cognitive, and seizure disorders. However, the mechanisms through which stimulation exerts therapeutic effects are incompletely understood. A technique that may help to address this knowledge gap is functional magnetic resonance imaging (fMRI). This is a non-invasive imaging tool which permits the observation of DBS effects in vivo. OBJECTIVE The objective of this review was to provide a comprehensive overview of studies in which fMRI during active DBS was performed, including studied disorders, stimulated brain regions, experimental designs, and the insights gleaned from stimulation-evoked fMRI responses. METHODS We conducted a systematic review of published human studies in which fMRI was performed during active stimulation in DBS patients. The search was conducted using PubMED and MEDLINE. RESULTS The rate of fMRI DBS studies is increasing over time, with 37 studies identified overall. The median number of DBS patients per study was 10 (range = 1-67, interquartile range = 11). Studies examined fMRI responses in various disease cohorts, including Parkinson's disease (24 studies), essential tremor (3 studies), epilepsy (3 studies), obsessive-compulsive disorder (2 studies), pain (2 studies), Tourette syndrome (1 study), major depressive disorder, anorexia, and bipolar disorder (1 study), and dementia with Lewy bodies (1 study). The most commonly stimulated brain region was the subthalamic nucleus (24 studies). Studies showed that DBS modulates large-scale brain networks, and that stimulation-evoked fMRI responses are related to the site of stimulation, stimulation parameters, patient characteristics, and therapeutic outcomes. Finally, a number of studies proposed fMRI-based biomarkers for DBS treatment, highlighting ways in which fMRI could be used to confirm circuit engagement and refine DBS therapy. CONCLUSION A review of the literature reflects an exciting and expanding field, showing that the combination of DBS and fMRI represents a uniquely powerful tool for simultaneously manipulating and observing neural circuitry. Future work should focus on relatively understudied disease cohorts and stimulated regions, while focusing on the prospective validation of putative fMRI-based biomarkers.
Collapse
Affiliation(s)
- Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - David Gwun
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan University School of Medicine, Zhengzhou, China; Department of Neurosurgery, University of Louisville, Louisville, KY, United States
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Vetkas A, Germann J, Elias G, Loh A, Boutet A, Yamamoto K, Sarica C, Samuel N, Milano V, Fomenko A, Santyr B, Tasserie J, Gwun D, Jung HH, Valiante T, Ibrahim GM, Wennberg R, Kalia SK, Lozano AM. Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Commun 2022; 4:fcac092. [PMID: 35611305 PMCID: PMC9123846 DOI: 10.1093/braincomms/fcac092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Deep brain stimulation is a treatment option for patients with drug-resistant epilepsy. The precise mechanism of neuromodulation in epilepsy is unknown, and biomarkers are needed for optimizing treatment. The aim of this study was to describe the neural network associated with deep brain stimulation targets for epilepsy and to explore its potential application as a novel biomarker for neuromodulation. Using seed-to-voxel functional connectivity maps, weighted by seizure outcomes, brain areas associated with stimulation were identified in normative resting state functional scans of 1000 individuals. To pinpoint specific regions in the normative epilepsy deep brain stimulation network, we examined overlapping areas of functional connectivity between the anterior thalamic nucleus, centromedian thalamic nucleus, hippocampus and less studied epilepsy deep brain stimulation targets. Graph network analysis was used to describe the relationship between regions in the identified network. Furthermore, we examined the associations of the epilepsy deep brain stimulation network with disease pathophysiology, canonical resting state networks and findings from a systematic review of resting state functional MRI studies in epilepsy deep brain stimulation patients. Cortical nodes identified in the normative epilepsy deep brain stimulation network were in the anterior and posterior cingulate, medial frontal and sensorimotor cortices, frontal operculum and bilateral insulae. Subcortical nodes of the network were in the basal ganglia, mesencephalon, basal forebrain and cerebellum. Anterior thalamic nucleus was identified as a central hub in the network with the highest betweenness and closeness values, while centromedian thalamic nucleus and hippocampus showed average centrality values. The caudate nucleus and mammillothalamic tract also displayed high centrality values. The anterior cingulate cortex was identified as an important cortical hub associated with the effect of deep brain stimulation in epilepsy. The neural network of deep brain stimulation targets shared hubs with known epileptic networks and brain regions involved in seizure propagation and generalization. Two cortical clusters identified in the epilepsy deep brain stimulation network included regions corresponding to resting state networks, mainly the default mode and salience networks. Our results were concordant with findings from a systematic review of resting state functional MRI studies in patients with deep brain stimulation for epilepsy. Our findings suggest that the various epilepsy deep brain stimulation targets share a common cortico-subcortical network, which might in part underpin the antiseizure effects of stimulation. Interindividual differences in this network functional connectivity could potentially be used as biomarkers in selection of patients, stimulation parameters and neuromodulation targets.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Neurology clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hyun Ho Jung
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taufik Valiante
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - George M Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, M5G 2A2, Canada
| |
Collapse
|
21
|
Tong X, Wang J, Qin L, Zhou J, Guan Y, Zhai F, Teng P, Wang M, Li T, Wang X, Luan G. Analysis of power spectrum and phase lag index changes following deep brain stimulation of the anterior nucleus of the thalamus in patients with drug-resistant epilepsy: A retrospective study. Seizure 2022; 96:6-12. [PMID: 35042005 DOI: 10.1016/j.seizure.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The mechanisms underlying the anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) for the treatment of drug-resistant epilepsy (DRE) have not been fully explored. The present study aimed to measure the changes in whole-brain activity generated by ANT DBS using interictal electroencephalography (EEG). MATERIALS AND METHODS Interictal EEG signals were retrospectively collected in 20 DRE patients who underwent ANT DBS surgery. Patients were classified as responders or non-responders depending on their response to ANT DBS treatment. The power spectrum (PS) and Phase Lag Index (PLI) were determined and data analyzed using a paired sample t-test to evaluate activity differences between pre-and-post-treatment on different frequency categories. Student's t-test, Mann-Whitney test (non-parametric test) and Fisher exact test were used to compare groups in terms of clinical variables and EEG metrics. P values < 0.05 were considered statistically significant, and FDR-corrected values were used for multiple testing. RESULTS PS analysis revealed that whole-brain spectral power had a significant decrease in the beta (p = 0.005) and gamma (p = 0.037) bands following ANT DBS treatment in responders. The analysis of scalp topographic images of all patients showed that ANT DBS decreases PS in the beta band at the F3, F7 and Cz electrode sites. The findings indicated a decrease in PS in the gamma band at the Fp2, F3, Cz, T3, T5 and Oz electrode sites. After ANT DBS treatment, PLI analysis showed a significant decrease in PLI between Fp1 and T3 in the gamma band in responders. CONCLUSION The findings showed that ANT DBS induces a decrease in power in the left frontal lobe, left temporal lobe and midline areas in the beta and gamma bands. Lower whole-brain power in the beta and gamma bands can be used as biomarkers for a favorable therapeutic response to ANT DBS, and decreased synchronization between the left frontal pole and temporal lobe in the gamma band can also be used as a biomarker for effective clinical stimulation to guide postoperative programming.
Collapse
Affiliation(s)
- Xuezhi Tong
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Lang Qin
- McGovern Institute for Brain Research, Peking University, Beijing 100093, China; Center for MRI Research, Peking University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pengfei Teng
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China; Beijing Key Laboratory of Epilepsy, Beijing 100093, China; Epilepsy Institute, Beijing Institute for Brain Disorders, Beijing 100093, China
| |
Collapse
|
22
|
Vetkas A, Fomenko A, Germann J, Sarica C, Iorio-Morin C, Samuel N, Yamamoto K, Milano V, Cheyuo C, Zemmar A, Elias G, Boutet A, Loh A, Santyr B, Gwun D, Tasserie J, Kalia SK, Lozano AM. Deep brain stimulation targets in epilepsy: Systematic review and meta-analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia 2022; 63:513-524. [PMID: 34981509 DOI: 10.1111/epi.17157] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation (DBS) is a neuromodulatory treatment used in patients with drug-resistant epilepsy (DRE). The primary goal of this systematic review and meta-analysis is to describe recent advancements in the field of DBS for epilepsy, to compare the results of published trials, and to clarify the clinical utility of DBS in DRE. A systematic literature search was performed by two independent authors. Forty-four articles were included in the meta-analysis (23 for anterior thalamic nucleus [ANT], 8 for centromedian thalamic nucleus [CMT], and 13 for hippocampus) with a total of 527 patients. The mean seizure reduction after stimulation of the ANT, CMT, and hippocampus in our meta-analysis was 60.8%, 73.4%, and 67.8%, respectively. DBS is an effective and safe therapy in patients with DRE. Based on the results of randomized controlled trials and larger clinical series, the best evidence exists for DBS of the anterior thalamic nucleus. Further randomized trials are required to clarify the role of CMT and hippocampal stimulation. Our analysis suggests more efficient deep brain stimulation of ANT for focal seizures, wider use of CMT for generalized seizures, and hippocampal DBS for temporal lobe seizures. Factors associated with clinical outcome after DBS for epilepsy are electrode location, stimulation parameters, type of epilepsy, and longer time of stimulation. Recent advancements in anatomical targeting, functional neuroimaging, responsive neurostimulation, and sensing of local field potentials could potentially lead to improved outcomes after DBS for epilepsy and reduced sudden, unexpected death of patients with epilepsy. Biomarkers are needed for successful patient selection, targeting of electrodes and optimization of stimulation parameters.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Section of Neurosurgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Centre de recherché du CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vanessa Milano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ajmal Zemmar
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Gavin Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Dave Gwun
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jordy Tasserie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
23
|
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 2021; 20:1038-1047. [PMID: 34710360 DOI: 10.1016/s1474-4422(21)00300-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Three neuromodulation therapies have been appropriately tested and approved in refractory focal epilepsies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation of the epileptogenic zone or zones. These therapies are primarily palliative. Only a few individuals have achieved complete freedom from seizures for more than 12 months with these therapies, whereas more than half have benefited from long-term reduction in seizure frequency of more than 50%. Implantation-related adverse events primarily include infection and pain at the implant site. Intracranial haemorrhage is a frequent adverse event for ANT-DBS and responsive neurostimulation. Other stimulation-specific side-effects are observed with VNS and ANT-DBS. Biomarkers to predict response to neuromodulation therapies are not available, and high-level evidence to aid decision making about when and for whom these therapies should be preferred over other antiepileptic treatments is scant. Future studies are thus needed to address these shortfalls in knowledge, approve other forms of neuromodulation, and develop personalised closed-loop therapies with embedded machine learning. Until then, neuromodulation could be considered for individuals with intractable seizures, ideally after the possibility of curative surgical treatment has been carefully assessed and ruled out or judged less appropriate.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon 1 University Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Epilepsy Institute, Lyon, France
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Arseny Sokolov
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Fasano A, Eliashiv D, Herman ST, Lundstrom BN, Polnerow D, Henderson JM, Fisher RS. Experience and consensus on stimulation of the anterior nucleus of thalamus for epilepsy. Epilepsia 2021; 62:2883-2898. [PMID: 34697794 DOI: 10.1111/epi.17094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation of the anterior nuclei of thalamus (ANT-DBS) is effective for reduction of seizures, but little evidence is available to guide practitioners in the practical use of this therapy. In an attempt to fill this gap, a questionnaire with 37 questions was circulated to 578 clinicians who were either engaged in clinical trials of or known users of DBS for epilepsy, with responses from 141, of whom 58.2% were epileptologists and 28.4% neurosurgeons. Multiple regions of the world were represented. The survey found that the best candidates for DBS were considered those with temporal or frontal seizures, refractory to at least two medicines. Motivations for renewing therapy upon battery depletion were reduced convulsive, impaired awareness, and severe seizures and improved quality of life. Targeting of leads mainly was by magnetic resonance imaging, sometimes with intraoperative imaging or microelectrode recording. The majority used transventricular approaches. Stimulation parameters mostly imitated the SANTE study parameters, except for initial stimulation amplitudes in the 2-3-V or -mA range, versus 5 V in the SANTE study. Stimulation intensity was most often increased or reduced, respectively, for lack of efficacy or side effects, but changes in active contacts, cycle time, and pulse duration were also employed. Mood or memory problems or paresthesias were the side effects most responsible for adjustments. Off-label sites stimulated included centromedian thalamus, hippocampus, neocortex, and a few others. Several physicians used DBS in conjunction with vagus nerve stimulation or responsive neurostimulation, although our study did not track efficacy for combined use. Experienced users varied more from published parameters than did inexperienced users. In conclusion, surveys of experts can provide Class IV evidence for the most prevalent practical use of ANT-DBS. We present a flowchart for one protocol combining common practices. Controlled comparisons will be needed to choose the best approach.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - Dawn Eliashiv
- Department of Neurology, UCLA Seizure Disorders Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan T Herman
- Epilepsy Program, Department of Neurology at Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Jaimie M Henderson
- Department of Neurosurgery and, by courtesy, Neurology and Neurological Sciences, Wu Tsai Neurosciences Institute and Bio-X Institute, Stanford University, Stanford, California, USA
| | - Robert S Fisher
- Department of Neurology & Neurological Sciences and, by courtesy, Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
25
|
Middlebrooks EH, Jain A, Okromelidze L, Lin C, Westerhold EM, O'Steen CA, Ritaccio AL, Quiñones-Hinojosa A, Tatum WO, Grewal SS. Acute Brain Activation Patterns of High- Versus Low-Frequency Stimulation of the Anterior Nucleus of the Thalamus During Deep Brain Stimulation for Epilepsy. Neurosurgery 2021; 89:901-908. [PMID: 34460925 DOI: 10.1093/neuros/nyab306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an increasingly utilized treatment of drug-resistant epilepsy. To date, the effect of high-frequency stimulation (HFS) vs low-frequency stimulation (LFS) in ANT DBS is poorly understood. OBJECTIVE To assess differences in the acute effect of LFS vs HFS in ANT DBS utilizing blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). METHODS In this prospective study of 5 patients with ANT DBS for epilepsy, BOLD activation and deactivation were modeled for 145-Hz and 30-Hz ANT stimulation using an fMRI block design. Data were analyzed with a general linear model and combined via 2-stage mixed-effects analysis. Z-score difference maps were nonparametrically thresholded using cluster threshold of z > 3.1 and a (corrected) cluster significance threshold of P = .05. RESULTS HFS produced significantly greater activation within multiple regions, in particular the limbic and default mode network (DMN). LFS produced minimal activation and failed to produce significant activation within these same networks. HFS produced widespread cortical and subcortical deactivation sparing most of the limbic and DMN regions. Meanwhile, LFS produced deactivation in most DMN and limbic structures. CONCLUSION Our results show that HFS and LFS produce substantial variability in both local and downstream network effects. In particular, largely opposing effects were identified within the limbic network and DMN. These findings may serve as a mechanistic basis for understanding the potential of HFS vs LFS in various epilepsy syndromes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Ayushi Jain
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lela Okromelidze
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chen Lin
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erin M Westerhold
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Chad A O'Steen
- Department of Radiology, Division of Neuroradiology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
26
|
Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NEUROIMAGE-CLINICAL 2021; 32:102846. [PMID: 34624639 PMCID: PMC8503569 DOI: 10.1016/j.nicl.2021.102846] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.
Collapse
|
27
|
Blood oxygen level-dependent (BOLD) response patterns with thalamic deep brain stimulation in patients with medically refractory epilepsy. Epilepsy Behav 2021; 122:108153. [PMID: 34153639 DOI: 10.1016/j.yebeh.2021.108153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Anterior nucleus of thalamus (ANT) deep brain stimulation (DBS) has shown promise as a treatment for medically refractory epilepsy. To better understand the mechanism of this intervention, we used functional magnetic resonance imaging (fMRI) to map the acute blood oxygen level-dependent (BOLD) response pattern to thalamic DBS in fully implanted patients with epilepsy. METHODS Two patients with epilepsy implanted with bilateral ANT-DBS devices underwent four fMRI acquisitions each, during which active left-sided monopolar stimulation was delivered in a 30-s DBS-ON/OFF cycling paradigm. Each fMRI acquisition featured left-sided stimulation of a different electrode contact to vary the locus of stimulation within the thalamus and to map the brain regions modulated as a function of different contact selection. To determine the extent of peri-electrode stimulation and the engagement of local structures during each fMRI acquisition, volume of tissue activated (VTA) modeling was also performed. RESULTS Marked changes in the pattern of BOLD response were produced with thalamic stimulation, which varied with the locus of the active contact in each patient. BOLD response patterns to stimulation that directly engaged at least 5% of the anterior nuclear group by volume were characterized by changes in the bilateral putamen, thalamus, and posterior cingulate cortex, ipsilateral middle cingulate cortex and precuneus, and contralateral medial prefrontal and anterior cingulate. SIGNIFICANCE The differential BOLD response patterns associated with varying thalamic DBS parameters provide mechanistic insights and highlight the possibilities of fMRI biomarkers of optimizing stimulation in patients with epilepsy.
Collapse
|
28
|
Middlebrooks EH, Okromelidze L, Carter RE, Jain A, Lin C, Westerhold E, Peña AB, Quiñones-Hinojosa A, Uitti RJ, Grewal SS. Directed stimulation of the dentato-rubro-thalamic tract for deep brain stimulation in essential tremor: a blinded clinical trial. Neuroradiol J 2021; 35:203-212. [PMID: 34340623 DOI: 10.1177/19714009211036689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Observational studies utilising diffusion tractography have suggested a common mechanism for tremor alleviation in deep brain stimulation for essential tremor: the decussating portion of the dentato-rubro-thalamic tract. We hypothesised that directional stimulation of the dentato-rubro-thalamic tract would result in greater tremor improvement compared to sham programming, as well as comparable improvement as more tedious standard-of-care programming. METHODS A prospective, blinded crossover trial was performed to assess the feasibility, safety and outcomes of programming based solely on dentato-rubro-thalamic tract anatomy. Using magnetic resonance imaging diffusion-tractography, the dentato-rubro-thalamic tract was identified and a connectivity-based treatment setting was derived by modelling a volume of tissue activated using directional current steering oriented towards the dentato-rubro-thalamic tract centre. A sham setting was created at approximately 180° opposite the connectivity-based treatment. Standard-of-care programming at 3 months was compared to connectivity-based treatment and sham settings that were blinded to the programmer. The primary outcome measure was percentage improvement in the Fahn-Tolosa-Marín tremor rating score compared to the preoperative baseline. RESULTS Among the six patients, tremor rating scores differed significantly among the three experimental conditions (P=0.030). The mean tremor rating score improvement was greater with the connectivity-based treatment settings (64.6% ± 14.3%) than with sham (44.8% ± 18.6%; P=0.031) and standard-of-care programming (50.7% ± 19.2%; P=0.062). The distance between the centre of the dentato-rubro-thalamic tract and the volume of tissue activated inversely correlated with the percentage improvement in the tremor rating score (R2=0.24; P=0.04). No significant adverse events were encountered. CONCLUSIONS Using a blinded, crossover trial design, we have shown the technical feasibility, safety and potential efficacy of connectivity-based stimulation settings in deep brain stimulation for treatment of essential tremor.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, USA.,Department of Neurosurgery, Mayo Clinic, USA
| | | | | | | | - Chen Lin
- Department of Radiology, Mayo Clinic, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tsuboi T, Wong JK, Eisinger RS, Okromelidze L, Burns MR, Ramirez-Zamora A, Almeida L, Wagle Shukla A, Foote KD, Okun MS, Grewal SS, Middlebrooks EH. Comparative connectivity correlates of dystonic and essential tremor deep brain stimulation. Brain 2021; 144:1774-1786. [PMID: 33889943 DOI: 10.1093/brain/awab074] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
The pathophysiology of dystonic tremor and essential tremor remains partially understood. In patients with medication-refractory dystonic tremor or essential tremor, deep brain stimulation (DBS) targeting the thalamus or posterior subthalamic area has evolved into a promising treatment option. However, the optimal DBS targets for these disorders remains unknown. This retrospective study explored the optimal targets for DBS in essential tremor and dystonic tremor using a combination of volumes of tissue activated estimation and functional and structural connectivity analyses. We included 20 patients with dystonic tremor who underwent unilateral thalamic DBS, along with a matched cohort of 20 patients with essential tremor DBS. Tremor severity was assessed preoperatively and approximately 6 months after DBS implantation using the Fahn-Tolosa-Marin Tremor Rating Scale. The tremor-suppressing effects of DBS were estimated using the percentage improvement in the unilateral tremor-rating scale score contralateral to the side of implantation. The optimal stimulation region, based on the cluster centre of gravity for peak contralateral motor score improvement, for essential tremor was located in the ventral intermediate nucleus region and for dystonic tremor in the ventralis oralis posterior nucleus region along the ventral intermediate nucleus/ventralis oralis posterior nucleus border (4 mm anterior and 3 mm superior to that for essential tremor). Both disorders showed similar functional connectivity patterns: a positive correlation between tremor improvement and involvement of the primary sensorimotor, secondary motor and associative prefrontal regions. Tremor improvement, however, was tightly correlated with the primary sensorimotor regions in essential tremor, whereas in dystonic tremor, the correlation was tighter with the premotor and prefrontal regions. The dentato-rubro-thalamic tract, comprising the decussating and non-decussating fibres, significantly correlated with tremor improvement in both dystonic and essential tremor. In contrast, the pallidothalamic tracts, which primarily project to the ventralis oralis posterior nucleus region, significantly correlated with tremor improvement only in dystonic tremor. Our findings support the hypothesis that the pathophysiology underpinning dystonic tremor involves both the cerebello-thalamo-cortical network and the basal ganglia-thalamo-cortical network. Further our data suggest that the pathophysiology of essential tremor is primarily attributable to the abnormalities within the cerebello-thalamo-cortical network. We conclude that the ventral intermediate nucleus/ventralis oralis posterior nucleus border and ventral intermediate nucleus region may be a reasonable DBS target for patients with medication-refractory dystonic tremor and essential tremor, respectively. Uncovering the pathophysiology of these disorders may in the future aid in further improving DBS outcomes.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Robert S Eisinger
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Mathew R Burns
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
30
|
Postmortem Dissections of the Papez Circuit and Nonmotor Targets for Functional Neurosurgery. World Neurosurg 2020; 144:e866-e875. [DOI: 10.1016/j.wneu.2020.09.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
|
31
|
Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, Eisinger RS, Almeida L, Burns MR, Horn A, Uitti RJ, Wharen RE, Holanda VM, Grewal SS. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol 2020; 41:1558-1568. [PMID: 32816768 DOI: 10.3174/ajnr.a6693] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indications. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based "circuitopathies," aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in understanding the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and device programming.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., L.O.) .,Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - R A Domingo
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | | | | | - T Tsuboi
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida.,Department of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - J K Wong
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - R S Eisinger
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - L Almeida
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - M R Burns
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - A Horn
- Department of Neurology (T.T.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - R J Uitti
- Department for Neurology (A.H.), Charité, University Medicine Berlin, Berlin, Germany
| | - R E Wharen
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - S S Grewal
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| |
Collapse
|