1
|
Wu X, Stabile LP, Burns TF. The Emerging Role of Immune Checkpoint Blockade for the Treatment of Lung Cancer Brain Metastases. Clin Lung Cancer 2024; 25:483-501. [PMID: 38991863 DOI: 10.1016/j.cllc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Lung cancer has the highest incidence of brain metastases (BM) among solid organ cancers. Traditionally whole brain radiation therapy has been utilized for non-small-cell lung cancer (NSCLC) BM treatment, although stereotactic radiosurgery has emerged as the superior treatment modality for most patients. Highly penetrant central nervous system (CNS) tyrosine kinase inhibitors have also shown significant CNS activity in patients harboring select oncogenic drivers. There is emerging evidence that patients without oncogene-driven tumors derive benefit from the use of immune checkpoint inhibitors (ICIs). The CNS activity of ICIs have not been well studied given exclusion of patients with active BM from landmark trials, due to concerns of inadequate CNS penetration and activity. However, studies have challenged the idea of an immune-privileged CNS, given the presence of functional lymphatic drainage within the CNS and destruction of the blood brain barrier by BM. An emerging understanding of the interactions between tumor and CNS immune cells in the BM tumor microenvironment also support a role for immunotherapy in BM treatment. In addition, posthoc analyses of major trials have shown improved intracranial response and survival benefit of regimens with ICIs over chemotherapy (CT) alone for patients with BM. Two prospective phase 2 trials evaluating pembrolizumab monotherapy and atezolizumab plus CT in patients with untreated NSCLC BM also demonstrated significant intracranial responses. This review describes the interplay between CNS immune cells and tumor cells, discusses current evidence for ICI CNS activity from retrospective and prospective studies, and speculates on future directions of investigation.
Collapse
Affiliation(s)
- Xiancheng Wu
- Department of Medicine, Division of Internal Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Timothy F Burns
- UPMC Hillman Cancer Center, Pittsburgh, PA; Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
2
|
Suzuki T, Deguchi S, Matsushima K, Katsumata S, Kojima H, Koki M, Konno H, Isaka M, Oishi T, Ohde Y, Sugino T, Mitsuya K, Hayashi N. Brain Metastasis of Non-small Cell Lung Cancer After Disease-Free Survival of 5 years: Case Series and Comprehensive Literature Review. World Neurosurg 2024; 186:e353-e359. [PMID: 38570091 DOI: 10.1016/j.wneu.2024.03.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND In the treatment of nonsmall cell lung cancer (NSCLC), a disease-free survival of 5 years is a criterion for cure. This study aimed to evaluate the characteristics and outcomes of patients with brain metastases of NSCLC after a disease-free survival of 5 years (late recurrent brain metastasis [LRBM]). METHODS We reviewed 1281 consecutive patients with brain metastasis of lung cancer at a single institute between November 2014 and December 2022. Relevant articles were retrieved from PubMed. Only peer-reviewed journals published in English were included. RESULTS Six patients (0.47%) showed LRBM. Three were male. The median age at lung cancer diagnosis was 45 years. The histological diagnosis of all patients was adenocarcinoma. Driver gene mutations were observed in five patients. The median latency period from lung cancer treatment to the development of brain metastasis was 13 years. All patients had no metastasis to any other organs and underwent craniotomies. The median follow-up duration after craniotomy was 3.5 years. No local intracranial recurrences were observed. Three patients had distant intracranial recurrences at 7, 2, and 0.6 years after craniotomy. Five patients survived for 8, 4, 3, 2, and 0.3 years after craniotomy. One patient experienced re-recurrence in the lung 4 years after craniotomy and died 3.7 years later. In our systematic review, only six studies described LRBM of NSCLC. CONCLUSIONS LRBM is rare in patients with NSCLC. In our institution, many of these patients harbored driver gene mutations, and achieved long-term survival with aggressive local therapy. Multicenter analysis is mandatory.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Neurosurgery, Shizuoka Cancer Center, Shizuoka, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Keigo Matsushima
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shinya Katsumata
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideaki Kojima
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Maeda Koki
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hayato Konno
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mitsuhiro Isaka
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuma Oishi
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Nakamasa Hayashi
- Division of Neurosurgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
3
|
Zhao J, Liu H, Qi T, Zhao H, Ye T, Ning P. Efficacy and safety analysis of stereotactic body radiotherapy for brain multi-metastases in non-small cell lung cancer patients. Technol Health Care 2024; 32:293-301. [PMID: 37393454 DOI: 10.3233/thc-230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Lung cancer is prone to metastasize to the brain, which is difficult for surgery and leads to poor prognosis due to poor chemotherapy efficacy. OBJECTIVE Our aim is to evaluate the efficacy and safety of stereotactic body radiotherapy (SBRT) for brain multi-metastases. METHODS In the retrospective study, a total of 51 non-small cell lung cancer (NSCLC) patients with brain multi-metastases (3-5 metastases) receiving SBRT in the local hospital between 2016 and 2019 were enrolled for analyzing the efficacy and safety of SBRT. The primary endpoints included 1-year local control rate, radiotherapy toxicity, overall survival and progression-free survival. RESULTS The median follow-up for the enrolled patients was 21 months, and the 1-year and 2-year OS rates were 82.4% and 45.1%, respectively. Demographic analysis showed no significant differences between SBRT alone and combination with whole brain radiotherapy in clinical characteristics including age, gender and Eastern Cooperative Oncology Group performance status. The 1-year local control rate was 77.3% (17/22) for SBRT alone, which was comparable to 79.3% (23/29) of combined radiotherapy. Cox proportional hazard regression demonstrated that the prognostic benefit of combining WBRT was not significantly superior to SBRT alone (HR = 0.851, P= 0.263). Their radiotherapy toxicity rate was lower in SBRT alone group (13.6%, vs. 44.8% for combination; P= 0.017). CONCLUSION The current research suggested that SBRT alone could effectively relieve tumor burden and improve the prognosis and quality of life for NSCLC patients with brain multi-metastases, which should be validated in further prospective clinical trials.
Collapse
|
4
|
Ngu S, Werner C, D' Amico RS, Wernicke AG. Whole brain radiation therapy resulting in radionecrosis: a possible link with radiosensitising chemoimmunotherapy. BMJ Case Rep 2023; 16:e256758. [PMID: 38016763 PMCID: PMC10685978 DOI: 10.1136/bcr-2023-256758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Radionecrosis describes a rare but serious complication of radiation therapy. In clinical practice, stereotactic radiosurgery (SRS) is increasingly used in combination with systemic therapy, including chemotherapy, immune checkpoint inhibitor and targeted therapy, either concurrently or sequentially. There is a paucity of literature regarding radionecrosis in patients receiving whole brain radiation therapy (WBRT) alone (without additional SRS) in combination with immunotherapy or targeted therapies. It is observed that certain combinations increase the overall radiosensitivity of the tumorous lesions. We present a rare case of symptomatic radionecrosis almost 1 year after WBRT in a patient with non-squamous non-small cell lung cancer on third-line chemoimmunotherapy. We discuss available research regarding factors that may lead to radionecrosis in these patients, including molecular and genetic profiles, specific drug therapy combinations and their timing or increased overall survival.
Collapse
Affiliation(s)
- Sam Ngu
- Department of Hematology/Oncology, Lenox Hill Hospital, New York, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Cassidy Werner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Randy S D' Amico
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - A Gabriella Wernicke
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Radiation Medicine, Lenox Hill Hospital, New York, New York, USA
- Northwell Health Cancer Institute, New York, New York, USA
| |
Collapse
|
5
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
6
|
Tracz JA, Donnelly BM, Ngu S, Vojnic M, Wernicke AG, D'Amico RS. The abscopal effect: inducing immunogenicity in the treatment of brain metastases secondary to lung cancer and melanoma. J Neurooncol 2023; 163:1-14. [PMID: 37086369 DOI: 10.1007/s11060-023-04312-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE The phenomenon of radiation therapy (RT) causing regression of targeted lesions as well as lesions outside of the radiation field is known as the abscopal effect and is thought to be mediated by immunologic causes. This phenomena has been described following whole brain radiation (WBRT) and stereotactic radiosurgery (SRS) of brain metastasis (BM) in advanced melanoma and non-small-cell lung cancer (NSCLC). We systematically reviewed the available literature to identify which radiation modality and immunotherapy (IT) combination may elicit the abscopal effect, the optimal timing of RT and IT, and potential adverse effects inherent to the combination of RT and IT. METHODS Using PRISMA guidelines, a search of PubMed, Medline, and Web of Science was conducted to identify studies demonstrating the abscopal effect during treatment of NSCLC or melanoma with BM. RESULTS 598 cases of irradiated BM of melanoma or NSCLC in 18 studies met inclusion criteria. The most commonly administered ITs included PD-1 or CTLA-4 immune checkpoint inhibitors (ICI), with RT most commonly administered within 3 months of ICI. Synergy between ICI and RT was described in 16 studies including evidence of higher tumor response within and outside of the irradiated field. In the 12 papers (n = 232 patients) that reported objective response rate (ORR) in patients with BM treated with RT and concurrent systemic IT, the non-weighted mean ORR was 49.4%; in the 5 papers (n = 110 patients) that reported ORR for treatment with RT or IT alone, the non-weighted mean ORR was 27.8%. No studies found evidence of significantly increased toxicity in patients receiving RT and ICI. CONCLUSION The combination of RT and ICIs may enhance ICI efficacy and induce more durable responses via the abscopal effect in patients with brain metastases of melanoma or NSCLC.
Collapse
Affiliation(s)
- Jovanna A Tracz
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Brianna M Donnelly
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Sam Ngu
- Department of Hematology and Oncology, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Morana Vojnic
- Department of Hematology and Oncology, Lenox Hill Hospital, New York, NY, 10075, USA
| | | | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, New York, NY, 10075, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
7
|
Leu J, Akerman M, Mendez C, Lischalk JW, Carpenter T, Ebling D, Haas JA, Witten M, Barbaro M, Duic P, Tessler L, Repka MC. Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure. Front Oncol 2023; 13:1132777. [PMID: 37091181 PMCID: PMC10113671 DOI: 10.3389/fonc.2023.1132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionBrain metastases are the most common intracranial tumor diagnosed in adults. In patients treated with stereotactic radiosurgery, the incidence of post-treatment radionecrosis appears to be rising, which has been attributed to improved patient survival as well as novel systemic treatments. The impacts of concomitant immunotherapy and the interval between diagnosis and treatment on patient outcomes are unclear.MethodsThis single institution, retrospective study consisted of patients who received single or multi-fraction stereotactic radiosurgery for intact brain metastases. Exclusion criteria included neurosurgical resection prior to treatment and treatment of non-malignant histologies or primary central nervous system malignancies. A univariate screen was implemented to determine which factors were associated with radionecrosis. The chi-square test or Fisher’s exact test was used to compare the two groups for categorical variables, and the two-sample t-test or Mann-Whitney test was used for continuous data. Those factors that appeared to be associated with radionecrosis on univariate analyses were included in a multivariable model. Univariable and multivariable Cox proportional hazards models were used to assess potential predictors of time to local failure and time to regional failure.ResultsA total of 107 evaluable patients with a total of 256 individual brain metastases were identified. The majority of metastases were non-small cell lung cancer (58.98%), followed by breast cancer (16.02%). Multivariable analyses demonstrated increased risk of radionecrosis with increasing MRI maximum axial dimension (OR 1.10, p=0.0123) and a history of previous whole brain radiation therapy (OR 3.48, p=0.0243). Receipt of stereotactic radiosurgery with concurrent immunotherapy was associated with a decreased risk of local failure (HR 0.31, p=0.0159). Time interval between diagnostic MRI and first treatment, time interval between CT simulation and first treatment, and concurrent immunotherapy had no impact on incidence of radionecrosis or regional failure.DiscussionAn optimal time interval between diagnosis and treatment for intact brain metastases that minimizes radionecrosis and maximizes local and regional control could not be identified. Concurrent immunotherapy does not appear to increase the risk of radionecrosis and may improve local control. These data further support the safety and synergistic efficacy of stereotactic radiosurgery with concurrent immunotherapy.
Collapse
Affiliation(s)
- Justin Leu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Meredith Akerman
- Division of Health Services Research, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Christopher Mendez
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Todd Carpenter
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - David Ebling
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Jonathan A. Haas
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
- NYCyberKnife at Perlmutter Cancer Center – Manhattan, New York, NY, United States
| | - Matthew Witten
- Department of Medical Physics, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Marissa Barbaro
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Paul Duic
- Department of Neurology, New York University (NYU) Long Island School of Medicine, Mineola, NY, United States
| | - Lee Tessler
- Department of Neurosurgery, Perlmutter Cancer Center at New York University (NYU) Long Island, Mineola, NY, United States
| | - Michael C. Repka
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Michael C. Repka,
| |
Collapse
|
8
|
Nardone V, Romeo C, D'Ippolito E, Pastina P, D'Apolito M, Pirtoli L, Caraglia M, Mutti L, Bianco G, Falzea AC, Giannicola R, Giordano A, Tagliaferri P, Vinciguerra C, Desideri I, Loi M, Reginelli A, Cappabianca S, Tassone P, Correale P. The role of brain radiotherapy for EGFR- and ALK-positive non-small-cell lung cancer with brain metastases: a review. LA RADIOLOGIA MEDICA 2023; 128:316-329. [PMID: 36786970 PMCID: PMC10020247 DOI: 10.1007/s11547-023-01602-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Non-small cell lung cancer (NSCLC) is frequently complicated by central nervous system (CNS) metastases affecting patients' life expectancy and quality. At the present clinical trials including neurosurgery, radiotherapy (RT) and systemic treatments alone or in combination have provided controversial results. CNS involvement is even more frequent in NSCLC patients with EGFR activating mutations or ALK rearrangement suggesting a role of target therapy in the upfront treatment in place of loco-regionals treatments (i.e. RT and/or surgery). So far clinical research has not explored the potential role of accurate brain imaging (i.e. MRI instead of the routine total-body contrast CT and/or PET/CT staging) to identify patients that could benefit of local therapies. Moreover, for patients who require concomitant RT there are no clear guidelines on the timing of intervention with respect to innovative precision medicine approaches with Tyrosine Kinase Inhibitors, ALK-inhibitors and/or immuno-oncological therapies. On this basis the present review describes the therapeutic strategies integrating medical and radiation oncology in patients with metastatic NSCLC (mNSCLC) adenocarcinoma with CNS involvement and EGFR activating mutations or ALK rearrangement.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Caterina Romeo
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | | | - Maria D'Apolito
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Giovanna Bianco
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonella Consuelo Falzea
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | | | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
9
|
The role of immune checkpoint inhibitors in patients with intracranial metastatic disease. J Neurooncol 2023; 161:469-478. [PMID: 36790654 DOI: 10.1007/s11060-023-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Intracranial metastatic disease (IMD) complicates the course of nearly 2-4% of patients with systemic cancer. The prevalence of IMD has been increasing over the past few decades. Historically, definitive treatment for brain metastases (BM) has been limited to radiation therapy or surgical resection. Chemotherapies have not typically proven valuable in the treatment of IMD, with the exception of highly chemotherapy-sensitive lesions. Recent data have supported a role for systemic targeted therapies and immune checkpoint inhibitors (ICIs) in the treatment of select patients with IMD. There remains, however, a clear clinical need for further investigation to delineate the role of ICIs in patients with BM. In this review, we outline and describe recent and current efforts to identify the efficacy of ICI therapy in patients with IMD.
Collapse
|
10
|
徐 利, 陈 应, 王 梅. [Efficacy and Safety of Radiotherapy Combined with Immunotherapy
for Brain Metastases from Lung Cancer: A Meta-analysis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:715-722. [PMID: 36285391 PMCID: PMC9619347 DOI: 10.3779/j.issn.1009-3419.2022.101.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immunotherapy (IT) is recommended for the treatment of advanced non-small cell lung cancer (NSCLC), while brain radiotherapy (RT) is the mainstream treatment for patients with brain metastases (BM). This study aimed to investigate the efficacy and safety of combined use of RT and IT. METHODS The date was limited to May 1, 2022, and literature searches were carried out in CNKI, Wanfang, PubMed, EMBASE and Cochrane databases. Heterogeneity was judged using the I2 test and P value. Publication bias was assessed using a funnel plot. The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS). Statistical analysis was performed using Stata 16.0 software. RESULTS A total of 17 articles involving 2,636 patients were included. In the comparison of RT+IT group and RT group, no significant difference was found in overall survival (OS) (HR=0.85, 95%CI: 0.52-1.38, I2=73.9%, Pheterogeneity=0.001) and intracranial distance control (DBC) (HR=1.04, 95%CI: 0.55-1.05, I2=80.5%, Pheterogeneity<0.001), but the intracranial control (LC) in the RT+IT group was better than the RT group (HR=0.46, 95%CI: 0.22-0.94, I2=22.2%, Pheterogeneity=0.276), and the risk of radiation necrosis/treatment-related imaging changes (RN/TRIC) was higher than RT (HR=1.72, 95%CI: 1.12-2.65, I2=40.2%, Pheterogeneity=0.153). In the comparison between the RT+IT concurrent group and the sequential group, no significant difference was found in OS (HR=0.62, 95%CI: 0.27-1.43, I2=74.7%, Pheterogeneity=0.003) and RN/TRIC (HR=1.72, 95%CI: 0.85-3.47, I2=0%, Pheterogeneity=0.388) was different between the two groups. However, DBC in the concurrent treatment group was better than that in the sequential treatment group (HR=0.77, 95%CI: 0.62-0.96, I2=80.5%, Pheterogeneity<0.001). CONCLUSIONS RT combined with IT does not improve the OS of NSCLC patients with BM, but also increases the risk of RN/TRIC. In addition, compared with sequential RT and IT, concurrent RT and IT improved the efficacy of DBC.
Collapse
Affiliation(s)
- 利娟 徐
- 215200 苏州,苏州市第九人民医院门诊部Department of Outpatients, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - 应泰 陈
- 100076 北京,北京航天总医院胸外科Department of Thoracic Surgery, Beijing Aerospace General Hospital, Beijing 100076, China
| | - 梅 王
- 100076 北京,北京航天总医院市场开发处Department of Marketing, Beijing Aerospace General Hospital, Beijing 100076, China
| |
Collapse
|
11
|
London D, Patel DN, Donahue B, Navarro RE, Gurewitz J, Silverman JS, Sulman E, Bernstein K, Palermo A, Golfinos JG, Sabari JK, Shum E, Velcheti V, Chachoua A, Kondziolka D. The incidence and predictors of new brain metastases in patients with non-small cell lung cancer following discontinuation of systemic therapy. J Neurosurg 2022; 137:544-554. [PMID: 34891140 DOI: 10.3171/2021.9.jns212150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with non-small cell lung cancer (NSCLC) metastatic to the brain are living longer. The risk of new brain metastases when these patients stop systemic therapy is unknown. The authors hypothesized that the risk of new brain metastases remains constant for as long as patients are off systemic therapy. METHODS A prospectively collected registry of patients undergoing radiosurgery for brain metastases was analyzed. Of 606 patients with NSCLC, 63 met the inclusion criteria of discontinuing systemic therapy for at least 90 days and undergoing active surveillance. The risk factors for the development of new tumors were determined using Cox proportional hazards and recurrent events models. RESULTS The median duration to new brain metastases off systemic therapy was 16.0 months. The probability of developing an additional new tumor at 6, 12, and 18 months was 26%, 40%, and 53%, respectively. There were no additional new tumors 22 months after stopping therapy. Patients who discontinued therapy due to intolerance or progression of the disease and those with mutations in RAS or receptor tyrosine kinase (RTK) pathways (e.g., KRAS, EGFR) were more likely to develop new tumors (hazard ratio [HR] 2.25, 95% confidence interval [CI] 1.33-3.81, p = 2.5 × 10-3; HR 2.51, 95% CI 1.45-4.34, p = 9.8 × 10-4, respectively). CONCLUSIONS The rate of new brain metastases from NSCLC in patients off systemic therapy decreases over time and is uncommon 2 years after cessation of cancer therapy. Patients who stop therapy due to toxicity or who have RAS or RTK pathway mutations have a higher rate of new metastases and should be followed more closely.
Collapse
Affiliation(s)
| | | | - Bernadine Donahue
- 2Radiation Oncology, and
- 3Department of Radiation Oncology, Maimonides Cancer Center, Brooklyn, New York
| | | | | | | | | | | | | | | | - Joshua K Sabari
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Elaine Shum
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Vamsidhar Velcheti
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | - Abraham Chachoua
- 4Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York University, New York; and
| | | |
Collapse
|
12
|
Pierret T, Giaj-Levra N, Toffart AC, Alongi F, Moro-Sibilot D, Gobbini E. Immunotherapy in NSCLC Patients With Brain and Leptomeningeal Metastases. Front Oncol 2022; 12:787080. [PMID: 35494085 PMCID: PMC9039308 DOI: 10.3389/fonc.2022.787080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Immunotherapy has now been integrated as a treatment strategy for most patients with non-small cell lung cancer (NSCLC). However, the pivotal clinical trials that demonstrated its impressive efficacy often did not include patients with active, untreated brain metastases or leptomeningeal carcinomatosis. Nevertheless, NSCLC is the most common tumor to metastasize to the brain, and patients develop brain and meningeal involvement in approximately 40 and 10% of cases, respectively. Consequently, the appropriate care of these patients is a recurrent clinical concern. Although there are many aspects that would merit further investigation to explain the mechanism of intracranial response to immune checkpoint inhibitors (ICPs), some data suggest that they are able to cross the blood–brain barrier, resulting in local tumor microenvironment modification. This results in a similar clinical benefit in patients with stable, previously treated brain metastases compared to the general population. Despite important limitations, some real-life studies have described that the ICPs’ efficacy was maintained also in less selected patients with untreated or symptomatic brain metastases. In contrast, few data are available about patients with leptomeningeal carcinomatosis. Nevertheless, neurological complications due to ICP treatment in patients with brain metastases have to be evaluated and carefully monitored. Despite the fact that limited data are available in the literature, the purpose of this review is to show that the multimodal treatment of these patients with brain metastases and/or leptomeningeal disease should be discussed during tracing of the history of the disease, participating in the local and possibly systemic control of NSCLC.
Collapse
Affiliation(s)
- Thomas Pierret
- Thoracic Oncology Unit, Grenoble University Hospital, La Tronche, France
| | - Niccolò Giaj-Levra
- Department of Advanced Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | | | - Filippo Alongi
- Department of Advanced Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy.,University of Brescia, Brescia, Italy
| | - Denis Moro-Sibilot
- Thoracic Oncology Unit, Grenoble University Hospital, La Tronche, France
| | - Elisa Gobbini
- Thoracic Oncology Unit, Grenoble University Hospital, La Tronche, France.,Cancer Research Center Lyon, Center Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Rubino S, Oliver DE, Tran ND, Vogelbaum MA, Forsyth PA, Yu HHM, Ahmed K, Etame AB. Improving Brain Metastases Outcomes Through Therapeutic Synergy Between Stereotactic Radiosurgery and Targeted Cancer Therapies. Front Oncol 2022; 12:854402. [PMID: 35311078 PMCID: PMC8924127 DOI: 10.3389/fonc.2022.854402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common form of brain cancer. Increasing knowledge of primary tumor biology, actionable molecular targets and continued improvements in systemic and radiotherapy regimens have helped improve survival but necessitate multidisciplinary collaboration between neurosurgical, medical and radiation oncologists. In this review, we will discuss the advances of targeted therapies to date and discuss findings of studies investigating the synergy between these therapies and stereotactic radiosurgery for non-small cell lung cancer, breast cancer, melanoma, and renal cell carcinoma brain metastases.
Collapse
Affiliation(s)
- Sebastian Rubino
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Daniel E. Oliver
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Nam D. Tran
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Peter A. Forsyth
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Kamran Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Arnold B. Etame
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
14
|
Matsunaga S, Shuto T. Outcomes of Gamma Knife Radiosurgery for Brain Metastases From Anaplastic Lymphoma Kinase Rearrangement-Positive and EGFR Mutation-Positive Non-Small Cell Lung Cancer. Cureus 2021; 13:e20398. [PMID: 35047245 PMCID: PMC8757575 DOI: 10.7759/cureus.20398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction The outcomes after gamma knife radiosurgery (GKRS) were retrospectively analysed in patients with brain metastases from anaplastic lymphoma kinase (ALK) rearrangement-positive and epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) to evaluate the efficacy, safety and difference for overall survival and local tumor control. Methods The medical records were retrospectively reviewed of 607 patients (25 ALK-positive, 171 EGFR-positive, and 411 wild type) with 2959 tumors who had undergone GKRS. Results The median overall survival time after initial GKRS was 14 months. Driver gene mutation-positive patients had significantly longer overall survival than wild type patients (p < 0.0001), and ALK-positive patients survived significantly longer than EGFR-positive patients (p = 0.04). Multivariate analysis showed the unfavorable factors significantly affecting overall survival outcomes were older age, lower Karnofsky Performance Status score, multiple intracranial metastases, uncontrolled primary cancer, uncontrolled extracranial metastases, no administration of immune checkpoint inhibitors, and driver gene mutation-negative cases. Seventy-three patients died of uncontrolled brain metastases at a median of 12 months. Driver gene mutations had no influence (p = 0.33), and ALK-positive and EGFR-positive patients showed no significant difference in neurological survival (p = 0.83). A total of 174 patients demonstrated distant brain control failure at a median of 15 months. ALK-positive type was significant compared with EGFR-positive type (p = 0.047), but driver gene mutation-positive and -negative types showed no significant difference in the development of new brain metastases (p = 0.2). The median tumor volume was 1.06 cm3 in the driver gene mutation-positive type and 1.85 cm3 in wild type. The median marginal dose was 20 Gy in both types. The 6-, 12-, and 24-month local tumor control rates were 97.3%, 96.1%, and 95.9%, respectively. Driver gene mutations had a significantly positive impact on local tumor control (p = 0.001), and ALK-positive and EGFR-positive types showed no significant difference (p = 0.95). A total of 193 tumors had radiation injury at a median of 12 months after GKRS. The 6-, 12-, and 24-month GKRS-related complication rates were 3.3%, 8.1%, and 8.7%, respectively. Driver gene mutations significantly induced radiation damage (p = 0.021), and the ALK-positive type was affected more than the EGFR-positive type (p = 0.02). Conclusions ALK rearrangement-positive NSCLC patients tended to have significantly longer survival, but had higher incidence of new intracranial metastases due to long-term survival after GKRS, compared with EGFR mutation-negative and driver gene mutation-negative NSCLC patients. GKRS induced significantly satisfactory local tumor control in driver gene mutation-positive tumors but GKRS-related complication frequency was higher, especially in ALK-positive NSCLC patients. Therefore, more careful imaging follow-up is necessary after GKRS for patients with driver gene mutation-positive NSCLC.
Collapse
|
15
|
Yang Y, Deng L, Yang Y, Zhang T, Wu Y, Wang L, Bi N. Efficacy and Safety of Combined Brain Radiotherapy and Immunotherapy in Non-Small-Cell Lung Cancer With Brain Metastases: A Systematic Review and Meta-Analysis. Clin Lung Cancer 2021; 23:95-107. [PMID: 34284948 DOI: 10.1016/j.cllc.2021.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are recommended to treat advanced non-small-cell lung cancer (NSCLC), whereas brain radiotherapy (RT) is the mainstream therapy for patients with brain metastases (BMs). This systematic review and meta-analysis investigated whether the combination of brain RT and ICIs would generate a synergistic effect without unacceptable toxicity to treat NSCLC with BMs. METHODS Literature searching was performed in PubMed, Embase, Web Of Science, and The Cochrane Library up to December 20, 2020. Heterogeneity, sensitivity analysis, forest plots, and publication bias were analyzed using Stata 15.0. RESULTS Nineteen studies were included. In the comparison of the brain RT+ICIs arm and brain RT alone arm, the pooled effect size (ES) for overall survival (OS) (hazard ratio [HR] = 0.77; 95% confidence interval [CI] 0.71-0.83; I² = 0; P < .001; n = 4) and grade 3-4 neurological adverse events (AEs) (risk ratio [RR] = 0.91; 95% CI 0.41-2.02; I² = 26.5; P = .809; n = 4) indicated that the brain RT+ICIs model had significantly better systemic efficacy and similar neurological AEs compared with brain RT alone for NSCLC. Concurrent RT+ICIs were identified as the optimal model, which achieved the best efficacy without significantly increased AEs compared with sequential RT+ICIs. CONCLUSIONS Combined ICIs and brain RT exhibited favorable efficacy and acceptable toxicity for NSCLC patients with BMs, among which, the concurrent model might be the optimal option. Our results could guide the design of future randomized controlled trials and clinical practice.
Collapse
Affiliation(s)
- Yin Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Yufan Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Yuqi Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong Province, China.
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing, China.
| |
Collapse
|
16
|
Cho A, Untersteiner H, Hirschmann D, Shaltout A, Göbl P, Dorfer C, Rössler K, Marik W, Kirchbacher K, Kapfhammer I, Zöchbauer-Müller S, Gatterbauer B, Hochmair MJ, Frischer JM. Gamma Knife Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer Patients Treated with Immunotherapy or Targeted Therapy. Cancers (Basel) 2020; 12:cancers12123668. [PMID: 33297416 PMCID: PMC7762317 DOI: 10.3390/cancers12123668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In non-small cell lung cancer patients with brain metastases, combined Gamma Knife radiosurgery and immunotherapy or targeted therapy showed an increase in overall survival. The combination of Gamma Knife radiosurgery and immunotherapy or targeted therapy did not increase complications related to radiosurgery. Therefore, the combined treatment seems to be a safe and powerful treatment option for non-small cell lung cancer patients with brain metastases. Abstract The combination of Gamma Knife radiosurgery (GKRS) and systemic immunotherapy (IT) or targeted therapy (TT) is a novel treatment method for brain metastases (BMs) in non-small cell lung cancer (NSCLC). To elucidate the safety and efficacy of concomitant IT or TT on the outcome after GKRS, 496 NSCLC patients with BMs, who were treated with GKRS were retrospectively reviewed. The median time between the initial lung cancer diagnosis and the diagnosis of brain metastases was one month. The survival after the initial BM diagnosis was significantly longer than the survival predicted by prognostic BM scores. After the first Gamma Knife radiosurgery treatment (GKRS1), the estimated median survival was 9.9 months (95% CI = 8.3–11.4). Patients with concurrent IT or TT presented with a significantly longer survival after GKRS1 than patients without IT or TT (p < 0.001). These significant differences in the survival were also apparent among the four treatment groups and remained significant after adjustment for Karnofsky performance status scale (KPS), recursive partitioning analysis (RPA) class, sex, and multiple BMs. About half of all our patients (46%) developed new distant BMs after GKRS1. Of note, no statistically significant differences in the occurrence of radiation reaction, radiation necrosis, or intralesional hemorrhage in association with IT or TT at or after GKRS1 were observed. In NSCLC-BM patients, the concomitant use of GKRS and IT or TT showed an increase in overall survival without increased complications related to GKRS. Therefore, the combined treatment with GKRS and IT or TT seems to be a safe and powerful treatment option and emphasizes the role of radiosurgery in modern BM treatment.
Collapse
Affiliation(s)
- Anna Cho
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Helena Untersteiner
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Dorian Hirschmann
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Abdallah Shaltout
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Philipp Göbl
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Wolfgang Marik
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University Vienna, 1090 Vienna, Austria;
| | | | | | - Sabine Zöchbauer-Müller
- Department of Internal Medicine I, Division of Oncology, Medical University Vienna, 1090 Vienna, Austria;
| | - Brigitte Gatterbauer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
| | - Maximilian J. Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Vienna North Hospital, 1210 Vienna, Austria;
| | - Josa M. Frischer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria; (A.C.); (H.U.); (D.H.); (A.S.); (P.G.); (C.D.); (K.R.); (B.G.)
- Correspondence: ; Tel.: +43-1-40400-45510
| |
Collapse
|