1
|
Han W, He L, Wang F, Zhao X, Jin C. Oblique Lumbar Interbody Fusion Combined With Anterolateral Fixation and Cement Augmentation for the Treatment of Degenerative Lumbar Diseases in the Elderly Population: A Retrospective Study. Orthop Surg 2025; 17:446-459. [PMID: 39627870 DOI: 10.1111/os.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES Cage subsidence is a common complication of oblique lumbar interbody fusion (OLIF), particularly in elderly patients with osteoporosis or osteopenia. While bilateral pedicle screw fixation (BPS) is effective in reducing subsidence, it is associated with longer operative times, increased blood loss, and greater tissue trauma. In contrast, anterolateral fixation (AF) is less invasive but linked to higher subsidence rates. Ensuring both minimal invasiveness and adequate stability in OLIF-assisted fixation remains a significant challenge. This study aimed to evaluate the efficacy of combining AF with cement augmentation (AF + CA) in reducing cage subsidence and improving clinical outcomes compared with AF and BPS. METHODS A retrospective analysis was conducted on 138 elderly patients with degenerative lumbar diseases treated with OLIF. Patients were divided into three groups: AF + CA (32 patients), AF (32 patients), and BPS (74 patients). Clinical and radiographic outcomes were compared among the groups, and logistic regression analyses were performed to identify risk factors for cage subsidence after OLIF. RESULTS At 1 year postoperatively, the disc height of the AF + CA group was significantly greater than that of the AF group. The cage subsidence rate in the AF + CA group was 24.3%, significantly lower than that in the AF group (48.8%, p < 0.05) and comparable to the BPS group (30.4%). Survivorship curve analysis showed better outcomes in reducing cage subsidence in the AF + CA group compared with the AF group, with no significant difference between the AF + CA and BPS groups. Compared with the AF + CA and BPS groups, the AF group had significantly higher grades and severity of cage subsidence. Fusion rates at 1 year were 91.9% in the AF + CA group, 90.2% in the AF group, and 95.1% in the BPS group, with no significant differences. The AF + CA group had significantly shorter operative times, less intraoperative blood loss, lower VAS scores at 3 days and 1 year postoperatively, and lower ODI scores at 3 days and 3 months compared with the BPS group. Multivariate regression analysis revealed that AF was a significant risk factor for cage subsidence, with an odds ratio of 3.399 compared with AF + CA. CONCLUSIONS AF + CA effectively reduces cage subsidence in OLIF surgeries, offering results comparable to BPS while providing advantages such as shorter surgical time, reduced blood loss, and improved early postoperative outcomes. AF + CA is a viable alternative, especially for elderly patients with comorbidities who may not tolerate the longer operative durations or greater blood loss associated with BPS.
Collapse
Affiliation(s)
- Weiqi Han
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China
| | - Lei He
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China
| | - Fei Wang
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaofeng Zhao
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China
| | - Cong Jin
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
2
|
Hsieh MK, Li YD, Chen WP, Lee DM, Tai CL. Biomechanical insights into anterolateral vertebral screw fixation in osteoporotic spines: a comparative study of fixation methods and positions using porcine vertebrae. J Orthop Surg Res 2025; 20:31. [PMID: 39794854 PMCID: PMC11724585 DOI: 10.1186/s13018-025-05452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs. unicortical). This study aimed to investigate the biomechanical impact of fixation position and method in osteoporotic spine. METHODS Seventy-two fresh‑frozen porcine vertebrae (L1-6) were decalcified using 0.5 M EDTA and divided into two groups based on fixation method: bicortical or unicortical. Six groups for each method were created according to the screw position in the lateral vertebral body, with six specimens in each group: anterior, central, and posterior in the middle body and para-endplate regions. Correlations among screw position, fixation method and axial pullout strength were analyzed. RESULTS A 4-week decalcification process, bone mineral density in the porcine vertebrae decreased to approximately 48% (p < 0.05) of the original value, categorizing them as osteoporotic. Bicortical fixation showed significantly greater pullout forces than unicortical fixation, with differences ranging from 82 to 273%. Notably, central or posterior screws outperformed anterior screws in pullout strength. CONCLUSION Bicortical fixation exhibited significantly greater pullout forces than unicortical fixation. We suggest positioning screws in the central or posterior region of the middle body with bicortical fixation in osteoporotic vertebrae.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yun-Da Li
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - De-Mei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Lung Tai
- Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Wang Z, Yang W, Liu X, Liang S, Cai Z, Guo W, Zhang J, Ge Z. An in vitro biomechanical evaluation of integrated lateral plate combined with oblique lateral interbody fusion in different bone conditions. Sci Rep 2024; 14:29432. [PMID: 39604491 PMCID: PMC11603067 DOI: 10.1038/s41598-024-80631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Oblique lateral interbody fusion (OLIF) is a minimally invasive surgery for the treatment of lumbar degenerative diseases (LDD). Under normal bone mass(NB), supplemental with lateral plate (LP) fixation has been proven to provide stability and reduce complications. However, it is unclear whether OLIF combined with LP fixation can achieve satisfactory fixation effects in cases of osteoporosis(OP) or osteopenia (OS)? In this study, Eighteen L3-5 spinal specimens from 3 to 6 months old fresh calves were equally divided into 3 groups: group A (NB), group B (OS) and group C (OP). A load control scheme was adopted and evaluated using multidirectional nondestructive moments (± 7.5 N·m). An electronic universal tester and a tensile/torsion tester were simulated to generate 6 degrees of freedom of motion, and a VIC-3D three-dimensional optical full-field strain measurement system dynamically tracked the surgical segmental displacement. Each spine was evaluated under the following conditions at the L4-5 level: intact (INT); OLIF stand-alone (SA); cage supplemented with LP, cage supplemented with unilateral pedicle screws (UPS), and cage supplemented with bilateral pedicle screws (BPS). The current data show that With NB and OS models, LP fixation significantly reduced ROM in the LB and AR directions, with slightly less stability than BPS fixation and comparable to UPS. In the case of OP, LP fixation may increase the risk of internal fixation failure, and it is more preferable to choose BPS fixation with stronger stability.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou City of Henan, Zhengzhou, China
| | - Wanzhong Yang
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Xiaoyin Liu
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Simin Liang
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Zecheng Cai
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Wei Guo
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Jianqun Zhang
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China
| | - Zhaohui Ge
- Department of Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan City of Ningxia, China.
| |
Collapse
|
4
|
Palka M, Miszczyk P, Jurewicz M, Perz R. Finite element method analysis of bone stress for variants of locking plate placement. Heliyon 2024; 10:e26840. [PMID: 38660239 PMCID: PMC11039970 DOI: 10.1016/j.heliyon.2024.e26840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024] Open
Abstract
This study investigates the optimal placement of locking plate screws for bone fracture stabilization in the humerus, a crucial factor for enhancing healing outcomes and patient comfort. Utilizing Finite Element Method (FEM) modeling, the research aimed to determine the most effective screw configuration for achieving optimal stress distribution in the humerus bone. A computer tomography (CT) scan of the humerus was performed, and the resulting images were used to create a detailed model in SOLIDWORKS 2012. This model was then analyzed using ANSYS Workbench V13 to develop a finite element model of the bone. Four different screw configurations were examined: 4 × 0°, 4 × 10°, 4 × 20°, 2 × 20°; 2 × 0°. These configurations were subjected to bending in the XZ and YZ planes, as well as tension and compression along the Z axis. The research identified the 2 × 20°+2 × 0° configuration as the most beneficial, with average stress values below 30 MPa and peak stress values below 50 MPa in 3-point bending at the first screw. This configuration consistently showed the lowest stress values across all loading scenarios. Specifically, stress levels ranged from 20 MPa to 50 MPa for bending in the XZ plane, 20 MPa-35 MPa for bending in the YZ plane, 20 MPa-30 MPa for extension in the Z-axis, and 18 MPa-25 MPa for compression in the Z-axis. The 4 × 10° and 4 × 20° configurations also produced satisfactory results, with stress levels not exceeding 70 MPa. However, the 4 × 0° configuration presented considerable stress during bending and compression in the Z-axis, with stress values exceeding 100 MPa, potentially leading to mechanical damage. In conclusion, the 2 × 20°; 2 × 0° screw configuration was identified as the most effective in minimizing stress on the treated bone. Future work will involve a more detailed analysis of this methodology and its potential integration into clinical practice, with a focus on enhancing patient outcomes in bone fracture treatment.
Collapse
Affiliation(s)
- Marek Palka
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-660, Warsaw, Poland
| | - Patrycja Miszczyk
- Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | - Maciej Jurewicz
- Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafal Perz
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-660, Warsaw, Poland
| |
Collapse
|
5
|
Xu Z, Zheng Q, Zhang L, Chen R, Li Z, Xu W. Biomechanical evaluation of different oblique lumbar interbody fusion constructs: a finite element analysis. BMC Musculoskelet Disord 2024; 25:97. [PMID: 38279094 PMCID: PMC10821608 DOI: 10.1186/s12891-024-07204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Finite element analysis (FEA) was performed to investigate the biomechanical differences between different adjunct fixation methods for oblique lumbar interbody fusion (OLIF) and to further analyze its effect on adjacent segmental degeneration. METHODS We built a single-segment (Si-segment) finite element model (FEM) for L4-5 and a double-segment (Do-segment) FEM for L3-5. Each complete FEM was supplemented and modified, and both developed two surgical models of OLIF with assisted internal fixation. They were OLIF with posterior bilateral percutaneous pedicle screw (TINA system) fixation (OLIF + BPS) and OLIF with lateral plate system (OLIF + LPS). The range of motion (ROM) and displacement of the vertebral body, cage stress, adjacent segment disc stress, and spinal ligament tension were recorded for the four models during flexion/extension, right/left bending, and right/left rotation by applying follower load. RESULTS For the BPS and LPS systems in the six postures of flexion, extension, right/left bending, and right/left rotation, the ROM of L4 in the Si-segment FEM were 0.32°/1.83°, 0.33°/1.34°, 0.23°/0.47°, 0.24°/0.45°, 0.33°/0.79°, and 0.34°/0.62°; the ROM of L4 in the Do-segment FEM were 0.39°/2.00°, 0.37°/1.38°, 0.23°/0.47°, 0.21°/0.44°, 0.33°/0.57°, and 0.31°/0.62°, and the ROM of L3 in the Do-segment FEM were 6.03°/7.31°, 2.52°/3.50°, 4.21°/4.38°, 4.21°/4.42°, 2.09°/2.32°, and 2.07°/2.43°. BPS system had less vertebral displacement, less cage maximum stress, and less spinal ligament tension in Si/Do-segment FEM relative to the LPS system. BPS system had a smaller upper adjacent vertebral ROM, greater intervertebral disc stress in terms of left and right bending as well as left and right rotation compared to the LPS system in the L3-4 of the Do-segment FEM. There was little biomechanical difference between the same fixation system in the Si/Do-segment FEM. CONCLUSIONS Our finite element analysis showed that compared to OLIF + LPS, OLIF + BPS (TINA) is more effective in reducing interbody stress and spinal ligament tension, and it better maintains the stability of the target segment and provides a better fusion environment to resist cage subsidence. However, OLIF + BPS (TINA) may be more likely to cause adjacent segment degeneration than OLIF + LPS.
Collapse
Affiliation(s)
- Zhengquan Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Liqun Zhang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Rongsheng Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Zhechen Li
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
6
|
Liu J, Geng Z, Wang J, Zhang Z, Zhang X, Miao J. Biomechanical differences between two different shapes of oblique lumbar interbody fusion cages on whether to add posterior internal fixation system: a finite element analysis. J Orthop Surg Res 2023; 18:962. [PMID: 38093357 PMCID: PMC10720077 DOI: 10.1186/s13018-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Oblique lateral lumbar fusion (OLIF) is widely used in spinal degeneration, deformity and other diseases. The purpose of this study was to investigate the biomechanical differences between two different shapes of OLIF cages on whether to add posterior internal fixation system, using finite element analysis. METHODS A complete three-dimensional finite element model is established and verified for L3-L5. Surgical simulation was performed on the verified model, and the L4-L5 was the surgical segment. A total of the stand-alone group (Model A1, Model B1) and the BPSF group (Model A2, Model B2) were constructed. The four OLIF surgical models were: A1. Stand-alone OLIF with a kidney-shaped Cage; B1. Stand-alone OLIF with a straight cage; A2. OLIF with a kidney-shaped cage + BPSF; B2. Stand-alone OLIF with a straight cage + BPSF, respectively. The differences in the range of motion of the surgical segment (ROM), equivalent stress peak of the cage (ESPC), the maximum equivalent stress of the endplate (MESE) and the maximum stress of the internal fixation (MSIF) were compared between different models. RESULTS All OLIF surgical models showed that ROM declines between 74.87 and 96.77% at L4-L5 operative levels. The decreasing order of ROM was Model A2 > Model B2 > Model A1 > Model A2. In addition, the ESPC and MESE of Model A2 are smaller than those of other OLIF models. Except for the left-bending position, the MSIF of Model B2 increased by 1.51-16.69% compared with Model A2 in each position. The maximum value of MESE was 124.4 Mpa for Model B1 in the backward extension position, and the minimum value was 7.91 Mpa for Model A2 in the right rotation. Stand-alone group showed significantly higher ROMs and ESPCs than the BPSF group, with maximum values of 66.66% and 70.59%. For MESE, the BPSF group model can be reduced by 89.88% compared to the stand-alone group model. CONCLUSIONS Compared with the traditional straight OLIF cage, the kidney-shaped OLIF cage can further improve the stability of the surgical segment, reduce ESPC, MESE and MSIF, and help to reduce the risk of cage subsidence.
Collapse
Affiliation(s)
- Jianchao Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Ziming Geng
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jian Wang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Xingze Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
7
|
Brouwer de Koning SG, de Winter N, Moosabeiki V, Mirzaali MJ, Berenschot A, Witbreuk MMEH, Lagerburg V. Design considerations for patient-specific bone fixation plates: a literature review. Med Biol Eng Comput 2023; 61:3233-3252. [PMID: 37691047 DOI: 10.1007/s11517-023-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/29/2023] [Indexed: 09/12/2023]
Abstract
In orthopedic surgery, patient-specific bone plates are used for fixation when conventional bone plates do not fit the specific anatomy of a patient. However, plate failure can occur due to a lack of properly established design parameters that support optimal biomechanical properties of the plate.This review provides an overview of design parameters and biomechanical properties of patient-specific bone plates, which can assist in the design of the optimal plate.A literature search was conducted through PubMed and Embase, resulting in the inclusion of 78 studies, comprising clinical studies using patient-specific bone plates for fracture fixation or experimental studies that evaluated biomechanical properties or design parameters of bone plates. Biomechanical properties of the plates, including elastic stiffness, yield strength, tensile strength, and Poisson's ratio are influenced by various factors, such as material properties, geometry, interface distance, fixation mechanism, screw pattern, working length and manufacturing techniques.Although variations within studies challenge direct translation of experimental results into clinical practice, this review serves as a useful reference guide to determine which parameters must be carefully considered during the design and manufacturing process to achieve the desired biomechanical properties of a plate for fixation of a specific type of fracture.
Collapse
Affiliation(s)
| | - N de Winter
- Medical Physics, OLVG Hospital, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - V Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - A Berenschot
- Medical Library, Department of Research and Epidemiology, OLVG Hospital, Amsterdam, The Netherlands
| | | | - V Lagerburg
- Medical Physics, OLVG Hospital, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Lv H, Yang YS, Zhou JH, Guo Y, Chen H, Luo F, Xu JZ, Zhang ZR, Zhang ZH. Simultaneous Single-Position Lateral Lumbar Interbody Fusion Surgery and Unilateral Percutaneous Pedicle Screw Fixation for Spondylolisthesis. Neurospine 2023; 20:824-834. [PMID: 37798977 PMCID: PMC10562230 DOI: 10.14245/ns.2346378.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE To evaluate the clinical and radiological efficacy of a combine of lateral single screw-rod and unilateral percutaneous pedicle screw fixation (LSUP) for lateral lumbar interbody fusion (LLIF) in the treatment of spondylolisthesis. METHODS Sixty-two consecutive patients with lumbar spondylolisthesis who underwent minimally invasive (MIS)-TLIF with bilateral pedicle screw (BPS) or LLIF-LSUP were retrospectively studied. Segmental lordosis angle (SLA), lumbar lordosis angle (LLA), disc height (DH), slipping percentage, the cross-sectional areas (CSA) of the thecal sac, screw placement accuracy, fusion rate and foraminal height (FH) were used to evaluate radiographic changes postoperatively. Visual analogue scale (VAS) and Oswestry Disability Index (ODI) were used to evaluate the clinical efficacy. RESULTS Patients who underwent LLIF-LSUP showed shorter operating time, less length of hospital stay and lower blood loss than MIS-TLIF. No statistical difference was found between the 2 groups in screw placement accuracy, overall complications, VAS, and ODI. Compared with MIS-TLIF-BPS, LLIF-LSUP had a significant improvement in sagittal parameters including DH, FH, LLA, and SLA. The CSA of MIS-TLIF-BPS was significantly increased than that of LLIF-LSUP. The fusion rate of LLIF-LSUP was significantly higher than that of MIS-TLIF-BPS at the follow-up of 3 months postoperatively, but there was no statistical difference between the 2 groups at the follow-up of 6 months, 9 months, and 12 months. CONCLUSION The overall clinical outcomes and complications of LLIF-LSUP were comparable to that of MIS-TLIF-BPS in this series. Compared with MIS-TLIF-BPS, LLIF-LSUP for lumbar spondylolisthesis represents a significantly shorter operating time, hospital stay and lower blood loss, and demonstrates better radiological outcomes to maintain lumbar lordosis, and reveal an overwhelming superiority in the early fusion rate.
Collapse
Affiliation(s)
- Hui Lv
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Yu Sheng Yang
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Jian Hong Zhou
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Yuan Guo
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Hui Chen
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Fei Luo
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Jian Zhong Xu
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Zhong Rong Zhang
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| | - Ze Hua Zhang
- Department of Orthopaedic, Southwest Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, Chongqing, China
| |
Collapse
|
9
|
Zhong Y, Wang Y, Zhou H, Wang Y, Gan Z, Qu Y, Hua R, Chen Z, Chu G, Liu Y, Jiang W. Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis. Front Med (Lausanne) 2023; 10:1183683. [PMID: 37457575 PMCID: PMC10345158 DOI: 10.3389/fmed.2023.1183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Objective The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position. Methods A three-dimensional nonlinear finite element (FE) model of an intact L1-L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2-L3 and L3-L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots. Results When compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1-L2, L4-L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious. Conclusion Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Yujie Wang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yudong Wang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Ziying Gan
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yimeng Qu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Runjia Hua
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhaowei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Lee HJ, Lee SJ, Jung JM, Lee TH, Jeong C, Lee TJ, Jang JE, Lee JW. Biomechanical Evaluation of Lateral Lumbar Interbody Fusion with Various Fixation Options for Adjacent Segment Degeneration: A Finite Element Analysis. World Neurosurg 2023; 173:e156-e167. [PMID: 36775239 DOI: 10.1016/j.wneu.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE Adjacent segment degeneration (ASD) is a common phenomenon after lumbar fusion. Lateral lumbar interbody fusion (LLIF) may provide an alternative treatment method for ASD. This study used finite element analysis to evaluate the biomechanical effects of LLIF with various fixation options and identify an optimal surgical strategy for ASD. METHODS A validated L1-S1 finite element model was modified for simulation. Six finite element models of the lumbar spine were created and were divided into group 1 (L4-5 posterior lumbar interbody fusion [PLIF] + L3-4 LLIF) and group 2 (L5-S1 PLIF + L4-5 LLIF). Each group consisted of 1) cage-alone, 2) cage + lateral screw fixation (LSF), and 3) cage + bilateral pedicle screw fixation (BPSF) models. The range of motion, intradiscal pressure, and facet loads of adjacent segments as well as interbody cage stress were analyzed. RESULTS The stress on the LLIF cage-superior endplate interface was highest in the cage-alone model followed by the cage + LSF model and cage + BPSF model. The increase in range of motion, intradiscal pressure, and facet loads at the adjacent segment was highest in the cage + BPSF model followed by the cage + LSF model and cage-alone model. However, the biomechanical effect on the adjacent segment seemed similar in the cage-alone and cage + LSF models. CONCLUSIONS LLIF with BPSF is recommended when performing LLIF surgery for ASD after L4-5 and L5-S1 PLIF. Considering cage subsidence and biomechanical effects on the adjacent segment, LLIF with LSF may be a suboptimal option for ASD surgery.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Sung-Jae Lee
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jong-Myung Jung
- Department of Neurosurgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea.
| | - Tae Hoon Lee
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Chandong Jeong
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Tae Jin Lee
- Department of Orthopedic Surgery, 9988 Joint & Spine Hospital, Seoul, Republic of Korea
| | - Ji-Eun Jang
- R&D Center, GS Medical Co., Ltd., Cheongju, Republic of Korea
| | - Jae-Won Lee
- R&D Center, GS Medical Co., Ltd., Cheongju, Republic of Korea
| |
Collapse
|
11
|
Eremina G, Smolin A, Xie J, Syrkashev V. Development of a Computational Model of the Mechanical Behavior of the L4-L5 Lumbar Spine: Application to Disc Degeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6684. [PMID: 36234026 PMCID: PMC9572952 DOI: 10.3390/ma15196684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Degenerative changes in the lumbar spine significantly reduce the quality of life of people. In order to fully understand the biomechanics of the affected spine, it is crucial to consider the biomechanical alterations caused by degeneration of the intervertebral disc (IVD). Therefore, this study is aimed at the development of a discrete element model of the mechanical behavior of the L4-L5 spinal motion segment, which covers all the degeneration grades from healthy IVD to its severe degeneration, and numerical study of the influence of the IVD degeneration on stress state and biomechanics of the spine. In order to analyze the effects of IVD degeneration on spine biomechanics, we simulated physiological loading conditions using compressive forces. The results of modeling showed that at the initial stages of degenerative changes, an increase in the amplitude and area of maximum compressive stresses in the disc is observed. At the late stages of disc degradation, a decrease in the value of intradiscal pressure and a shift in the maximum compressive stresses in the dorsal direction is observed. Such an influence of the degradation of the geometric and mechanical parameters of the tissues of the disc leads to the effect of bulging, which in turn leads to the formation of an intervertebral hernia.
Collapse
Affiliation(s)
- Galina Eremina
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Pr. Akademicheskii, 2/4, 634055 Tomsk, Russia
| | - Alexey Smolin
- Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, Pr. Akademicheskii, 2/4, 634055 Tomsk, Russia
| | - Jing Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Vladimir Syrkashev
- Department of General Medicine, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Ji Y, Zhang Q, Song Y, Hu Q, Fekete G, Baker JS, Gu Y. Biomechanical characteristics of 2 different posterior fixation methods of bilateral pedicle screws: A finite element analysis. Medicine (Baltimore) 2022; 101:e30419. [PMID: 36086784 PMCID: PMC10980486 DOI: 10.1097/md.0000000000030419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To explore the biomechanical characteristics of 2 posterior bilateral pedicle screw fixation methods using finite element analysis. METHODS A normal L3-5 finite element model was established. Based on the verification of its effectiveness, 2 different posterior internal fixation methods were simulated: bilateral pedicle screws (model A) were placed in the L3 and L5 vertebral bodies, and bilateral pedicle screws (model B) were placed in the L3, L4, and L5 vertebral bodies. The stability and stress differences of intervertebral discs, endplates, screws, and rods between models were compared. RESULTS Compared with the normal model, the maximum stress of the range of motion, intervertebral disc, and endplate of the 2 models decreased significantly. Under the 6 working conditions, the 2 internal fixation methods have similar effects on the stress of the endplate and intervertebral disc, but the maximum stress of the screws and rods of model B is smaller than that of model A. CONCLUSIONS Based on these results, it was found that bilateral pedicle screw fixation in 2 vertebrae L3 and L5 can achieve similar stability as bilateral pedicle screw fixation in 3 vertebrae L3, L4, and L5. However, the maximum stress of the screw and rod in model B is less than that in model A, so this internal fixation method can effectively reduce the risk of fracture. The 3-dimensional finite element model established in this study is in line with the biomechanical characteristics of the spine and can be used for further studies on spinal column biomechanics. This information can serve as a reference for clinicians for surgical selection.
Collapse
Affiliation(s)
- Yulei Ji
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Qiaolin Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
| | - Qiuli Hu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Gusztáv Fekete
- Savaria Institute of Technology, Eötvös Loránd University, Szombathely, Hungary
| | - Julien S. Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|