1
|
Han H, Li R, Fu D, Zhou H, Zhan Z, Wu Y, Meng B. Revolutionizing spinal interventions: a systematic review of artificial intelligence technology applications in contemporary surgery. BMC Surg 2024; 24:345. [PMID: 39501233 PMCID: PMC11536876 DOI: 10.1186/s12893-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
Leveraging its ability to handle large and complex datasets, artificial intelligence can uncover subtle patterns and correlations that human observation may overlook. This is particularly valuable for understanding the intricate dynamics of spinal surgery and its multifaceted impacts on patient prognosis. This review aims to delineate the role of artificial intelligence in spinal surgery. A search of the PubMed database from 1992 to 2023 was conducted using relevant English publications related to the application of artificial intelligence in spinal surgery. The search strategy involved a combination of the following keywords: "Artificial neural network," "deep learning," "artificial intelligence," "spinal," "musculoskeletal," "lumbar," "vertebra," "disc," "cervical," "cord," "stenosis," "procedure," "operation," "surgery," "preoperative," "postoperative," and "operative." A total of 1,182 articles were retrieved. After a careful evaluation of abstracts, 90 articles were found to meet the inclusion criteria for this review. Our review highlights various applications of artificial neural networks in spinal disease management, including (1) assessing surgical indications, (2) assisting in surgical procedures, (3) preoperatively predicting surgical outcomes, and (4) estimating the occurrence of various surgical complications and adverse events. By utilizing these technologies, surgical outcomes can be improved, ultimately enhancing the quality of life for patients.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongming Fu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyou Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi'ang Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Yahanda AT, Joseph K, Bui T, Greenberg JK, Ray WZ, Ogunlade JI, Hafez D, Pallotta NA, Neuman BJ, Molina CA. Current Applications and Future Implications of Artificial Intelligence in Spine Surgery and Research: A Narrative Review and Commentary. Global Spine J 2024:21925682241290752. [PMID: 39359113 PMCID: PMC11559723 DOI: 10.1177/21925682241290752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES Artificial intelligence (AI) is being increasingly applied to the domain of spine surgery. We present a review of AI in spine surgery, including its use across all stages of the perioperative process and applications for research. We also provide commentary regarding future ethical considerations of AI use and how it may affect surgeon-industry relations. METHODS We conducted a comprehensive literature review of peer-reviewed articles that examined applications of AI during the pre-, intra-, or postoperative spine surgery process. We also discussed the relationship among AI, spine industry partners, and surgeons. RESULTS Preoperatively, AI has been mainly applied to image analysis, patient diagnosis and stratification, decision-making. Intraoperatively, AI has been used to aid image guidance and navigation. Postoperatively, AI has been used for outcomes prediction and analysis. AI can enable curation and analysis of huge datasets that can enhance research efforts. Large amounts of data are being accrued by industry sources for use by their AI platforms, though the inner workings of these datasets or algorithms are not well known. CONCLUSIONS AI has found numerous uses in the pre-, intra-, or postoperative spine surgery process, and the applications of AI continue to grow. The clinical applications and benefits of AI will continue to be more fully realized, but so will certain ethical considerations. Making industry-sponsored databases open source, or at least somehow available to the public, will help alleviate potential biases and obscurities between surgeons and industry and will benefit patient care.
Collapse
Affiliation(s)
- Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jacob K. Greenberg
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John I. Ogunlade
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Hafez
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nicholas A. Pallotta
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Brian J. Neuman
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Camilo A. Molina
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Zaidat B, Kurapatti M, Gal JS, Cho SK, Kim JS. Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression. Global Spine J 2024:21925682241277771. [PMID: 39169510 DOI: 10.1177/21925682241277771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often 'black boxes' that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. METHODS Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model's decision-making process. RESULTS The model's Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. CONCLUSIONS We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.
Collapse
Affiliation(s)
- Bashar Zaidat
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Mark Kurapatti
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Jonathan S Gal
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Samuel K Cho
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Jun S Kim
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
4
|
Adida S, Legarreta AD, Hudson JS, McCarthy D, Andrews E, Shanahan R, Taori S, Lavadi RS, Buell TJ, Hamilton DK, Agarwal N, Gerszten PC. Machine Learning in Spine Surgery: A Narrative Review. Neurosurgery 2024; 94:53-64. [PMID: 37930259 DOI: 10.1227/neu.0000000000002660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 11/07/2023] Open
Abstract
Artificial intelligence and machine learning (ML) can offer revolutionary advances in their application to the field of spine surgery. Within the past 5 years, novel applications of ML have assisted in surgical decision-making, intraoperative imaging and navigation, and optimization of clinical outcomes. ML has the capacity to address many different clinical needs and improve diagnostic and surgical techniques. This review will discuss current applications of ML in the context of spine surgery by breaking down its implementation preoperatively, intraoperatively, and postoperatively. Ethical considerations to ML and challenges in ML implementation must be addressed to maximally benefit patients, spine surgeons, and the healthcare system. Areas for future research in augmented reality and mixed reality, along with limitations in generalizability and bias, will also be highlighted.
Collapse
Affiliation(s)
- Samuel Adida
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Andrew D Legarreta
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Joseph S Hudson
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - David McCarthy
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Edward Andrews
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Regan Shanahan
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Suchet Taori
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Raj Swaroop Lavadi
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Thomas J Buell
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| | - Nitin Agarwal
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh , Pennsylvania , USA
| | - Peter C Gerszten
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh , Pennsylvania , USA
| |
Collapse
|
5
|
Caterson J, Lewin A, Williamson E. The application of explainable artificial intelligence (XAI) in electronic health record research: A scoping review. Digit Health 2024; 10:20552076241272657. [PMID: 39493635 PMCID: PMC11528818 DOI: 10.1177/20552076241272657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 11/05/2024] Open
Abstract
Machine Learning (ML) and Deep Learning (DL) models show potential in surpassing traditional methods including generalised linear models for healthcare predictions, particularly with large, complex datasets. However, low interpretability hinders practical implementation. To address this, Explainable Artificial Intelligence (XAI) methods are proposed, but a comprehensive evaluation of their effectiveness is currently limited. The aim of this scoping review is to critically appraise the application of XAI methods in ML/DL models using Electronic Health Record (EHR) data. In accordance with PRISMA scoping review guidelines, the study searched PUBMED and OVID/MEDLINE (including EMBASE) for publications related to tabular EHR data that employed ML/DL models with XAI. Out of 3220 identified publications, 76 were included. The selected publications published between February 2017 and June 2023, demonstrated an exponential increase over time. Extreme Gradient Boosting and Random Forest models were the most frequently used ML/DL methods, with 51 and 50 publications, respectively. Among XAI methods, Shapley Additive Explanations (SHAP) was predominant in 63 out of 76 publications, followed by partial dependence plots (PDPs) in 11 publications, and Locally Interpretable Model-Agnostic Explanations (LIME) in 8 publications. Despite the growing adoption of XAI methods, their applications varied widely and lacked critical evaluation. This review identifies the increasing use of XAI in tabular EHR research and highlights a deficiency in the reporting of methods and a lack of critical appraisal of validity and robustness. The study emphasises the need for further evaluation of XAI methods and underscores the importance of cautious implementation and interpretation in healthcare settings.
Collapse
Affiliation(s)
| | - Alexandra Lewin
- London School of Hygiene and Tropical Medicine, Bloomsbury, UK
| | | |
Collapse
|
6
|
Schonfeld E, Mordekai N, Berg A, Johnstone T, Shah A, Shah V, Haider G, Marianayagam NJ, Veeravagu A. Machine Learning in Neurosurgery: Toward Complex Inputs, Actionable Predictions, and Generalizable Translations. Cureus 2024; 16:e51963. [PMID: 38333513 PMCID: PMC10851045 DOI: 10.7759/cureus.51963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Machine learning can predict neurosurgical diagnosis and outcomes, power imaging analysis, and perform robotic navigation and tumor labeling. State-of-the-art models can reconstruct and generate images, predict surgical events from video, and assist in intraoperative decision-making. In this review, we will detail the neurosurgical applications of machine learning, ranging from simple to advanced models, and their potential to transform patient care. As machine learning techniques, outputs, and methods become increasingly complex, their performance is often more impactful yet increasingly difficult to evaluate. We aim to introduce these advancements to the neurosurgical audience while suggesting major potential roadblocks to their safe and effective translation. Unlike the previous generation of machine learning in neurosurgery, the safe translation of recent advancements will be contingent on neurosurgeons' involvement in model development and validation.
Collapse
Affiliation(s)
- Ethan Schonfeld
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Alex Berg
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Thomas Johnstone
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Aaryan Shah
- School of Humanities and Sciences, Stanford University, Stanford, USA
| | - Vaibhavi Shah
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Ghani Haider
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Anand Veeravagu
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
7
|
Ghanem M, Ghaith AK, El-Hajj VG, Bhandarkar A, de Giorgio A, Elmi-Terander A, Bydon M. Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review. Brain Sci 2023; 13:1723. [PMID: 38137171 PMCID: PMC10741524 DOI: 10.3390/brainsci13121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Clinical prediction models for spine surgery applications are on the rise, with an increasing reliance on machine learning (ML) and deep learning (DL). Many of the predicted outcomes are uncommon; therefore, to ensure the models' effectiveness in clinical practice it is crucial to properly evaluate them. This systematic review aims to identify and evaluate current research-based ML and DL models applied for spine surgery, specifically those predicting binary outcomes with a focus on their evaluation metrics. Overall, 60 papers were included, and the findings were reported according to the PRISMA guidelines. A total of 13 papers focused on lengths of stay (LOS), 12 on readmissions, 12 on non-home discharge, 6 on mortality, and 5 on reoperations. The target outcomes exhibited data imbalances ranging from 0.44% to 42.4%. A total of 59 papers reported the model's area under the receiver operating characteristic (AUROC), 28 mentioned accuracies, 33 provided sensitivity, 29 discussed specificity, 28 addressed positive predictive value (PPV), 24 included the negative predictive value (NPV), 25 indicated the Brier score with 10 providing a null model Brier, and 8 detailed the F1 score. Additionally, data visualization varied among the included papers. This review discusses the use of appropriate evaluation schemes in ML and identifies several common errors and potential bias sources in the literature. Embracing these recommendations as the field advances may facilitate the integration of reliable and effective ML models in clinical settings.
Collapse
Affiliation(s)
- Marc Ghanem
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
- School of Medicine, Lebanese American University, Byblos 4504, Lebanon
| | - Abdul Karim Ghaith
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Victor Gabriel El-Hajj
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Archis Bhandarkar
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| | - Andrea de Giorgio
- Artificial Engineering, Via del Rione Sirignano, 80121 Naples, Italy;
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Mohamad Bydon
- Mayo Clinic Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA; (M.G.); (A.K.G.); (V.G.E.-H.); (A.B.); (M.B.)
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
8
|
Kassicieh AJ, Rumalla K, Segura AC, Kazim SF, Vellek J, Schmidt MH, Shin PC, Bowers CA. Endoscopic and Nonendoscopic Approaches to Single-Level Lumbar Spine Decompression: Propensity Score-Matched Comparative Analysis and Frailty-Driven Predictive Model. Neurospine 2023; 20:119-128. [PMID: 37016860 PMCID: PMC10080425 DOI: 10.14245/ns.2346110.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023] Open
Abstract
Objective: The endoscopic spine surgery (ESS) approach is associated with high levels of patient satisfaction, shorter recovery time, and reduced complications. The present study reports multicenter, international data, comparing ESS and non-ESS approaches for singlelevel lumbar decompression, and proposes a frailty-driven predictive model for nonhome discharge (NHD) disposition.Methods: Cases of ESS and non-ESS lumbar spine decompression were queried from the American College of Surgeons National Surgical Quality Improvement Program database (2017–2020). Propensity score matching was performed on baseline characteristics frailty score (measured by risk analysis index [RAI] and modified frailty index-5 [mFI-5]). The primary outcome of interest was NHD disposition. A predictive model was built using logistic regression with RAI as the primary driver.Results: Single-level nonfusion spine lumbar decompression surgery was performed in 38,686 patients. Frailty, as measured by RAI, was a reliable predictor of NHD with excellent discriminatory accuracy in receiver operating characteristic (ROC) curve analysis: C-statistic: 0.80 (95% confidence interval [CI], 0.65–0.94) in ESS cohort, C-statistic: 0.75 (95% CI, 0.73–0.76) overall cohort. After propensity score matching, there was a reduction in total operative time (89 minutes vs. 103 minutes, p = 0.049) and hospital length of stay (LOS) (0.82 days vs. 1.37 days, p < 0.001) in patients treated endoscopically. In ROC curve analysis, the frailty-driven predictive model performed with excellent diagnostic accuracy for the primary outcome of NHD (C-statistic: 0.87; 95% CI, 0.85–0.88).Conclusion: After frailty-based propensity matching, ESS is associated with reduced operative time, shorter hospital LOS, and decreased NHD. The RAI frailty-driven model predicts NHD with excellent diagnostic accuracy and may be applied to preoperative decisionmaking with a user-friendly calculator: nsgyfrailtyoutcomeslab.shinyapps.io/lumbar_decompression_dischargedispo.
Collapse
Affiliation(s)
- Alexander J. Kassicieh
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Kavelin Rumalla
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Aaron C. Segura
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
| | - John Vellek
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
- School of Medicine, New York Medical College (NYMC), Valhalla, NY, USA
| | - Meic H. Schmidt
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
| | - Peter C. Shin
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
| | - Christian A. Bowers
- Department of Neurosurgery, University of New Mexico Hospital (UNMH), Albuquerque, NM, USA
- Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM, USA
- Corresponding Author Christian A. Bowers Department of Neurosurgery, University of New Mexico Health Sciences Center, 1 University New Mexico, MSC10 5615, Albuquerque, NM 81731, USA
| |
Collapse
|